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Executive Summary  
This document discusses data handling, requirements analysis, and scenario definition in the 

context of the three use cases of EVENFLOW: Industry 4.0, Personalized Medicine, and 

Infrastructure Life Cycle Assessment. These aspects are crucial to ensuring that the objectives 

of the use cases are met, and the needs of the stakeholders are fulfilled.  

In the Industry 4.0 use case, the main objective is to ensure the autonomous transportation 

of sensitive cargos in a factory setting by implementing efficient path planning and forecasting 

functionalities. The Personalized Medicine use case involves the utilization of latent 

representation learning models to scrutinize cancer progression data, which in turn facilitates 

molecular characterization. The Infrastructure Life Cycle Assessment use case is aimed at 

optimizing equipment efficiency, reducing waste, and enabling predictive maintenance in the 

manufacturing industry, with a specific focus on identifying leakage points in water 

distribution and critical infrastructure. 

In all three use cases, the process of data handling encompasses the collection, processing, 

and storage of information derived from the use cases. Equally important is requirements 

analysis, which involves the vital task of gathering and documenting the use case 

requirements, ensuring that they are understood by all members of the consortium. 

Furthermore, scenario definition is an essential element that involves anticipating potential 

scenarios or situations in the domains of the use cases. Its purpose is to mitigate the impact 

of unexpected events and ensure that the required quality standards are met. 
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Acronyms and Abbreviations 
 

Acronym/ 
Abbreviation 

Title 

AGV Autonomous Guided Vehicles 

RGBD-Camera Red Green Blue Depth Camera 

IMU Inertial Measurement Unit 

EKF Extended Kalman Filter 

TCGA The Cancer Genome Atlas 

AI Artificial Intelligence 

VAE Variational AutoEncoder 

CBM Condition-Based Maintenance 

PdM Predictive Maintenance 

LCA Lifecycle Assessment 

OEE Overall Equipment Efficiency 

DL Deep Learning 

ID Identifier 

HPC High-Performance Computing 

PFlops/s PetaFlops/seconds 

CSV Comma Separated Value 

ROS Robot Operating System 

Rot Rotation 

EUDAT European Data Infrastructure 

RDBMS Relational Database Management System 
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 Introduction 

1.1 Project Information 

The EVENFLOW project aims to develop hybrid learning techniques for complex event 

forecasting, which will combine deep learning with logic-based learning and reasoning into 

neuro-symbolic forecasting models. The envisioned methods combine neural representation 

learning techniques, powerful symbolic learning and reasoning tools, to synthesise high-level, 

interpretable patterns of critical situations to be forecast. 

Crucial in the EVENFLOW approach is the online nature of the learning methods, which makes 

them applicable to evolving data flows and allows to utilise rich domain knowledge that is 

becoming available progressively. To deal with the brittleness of neural predictors and the 

high volume/velocity of temporal data flows, the EVENFLOW techniques rely on novel, formal 

verification techniques for machine learning, in addition to a suite of scalability algorithms for 

federated training and incremental model construction. The learnt forecasters will be 

interpretable and scalable, allowing for fully explainable insights, delivered in a timely fashion 

and enabling proactive decision making. 

EVENFLOW is evaluated on three challenging use cases related to (1) oncological forecasting 

in precision medicine, (2) safe and efficient behaviour of autonomous transportation robots 

in smart factories and (3) reliable life cycle assessment of critical infrastructure. 

Expected impact: 

• New scientific horizons in integrating machine learning and machine reasoning, 

neural, statistical and symbolic AI. 

• Breakthroughs in verification, interpretability and scalability of neuro-symbolic 

learning systems. 

• Interpretable, verifiable and scalable ML-based proactive analytics and decision-

making for humans-in-the-loop and autonomous systems alike. 

• Robust, resilient solutions in critical sectors of science and industry. 

• Accurate and timely forecasting in vertical sectors (healthcare, Industry 4.0, critical 

infrastructure monitoring). 

• Novel FAIR datasets for scientific research. 

• Novel resources and approaches for verifiable, interpretable, scalable and knowledge-

aware machine learning. 

Table 1: EVENFLOW Consortium. 

Number1 Name Country Short name 

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA 

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxembourg INTRA-LU 

2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH 
"DEMOKRITOS" 

Greece NCSR 

 

1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner. 
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Number1 Name Country Short name 

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS 
TECHNOLOGIES TIS PLIROFORIAS, TON 
EPIKOINONION KAI TIS GNOSIS 

Greece ARC 

4 BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

Spain BSC 

5 DEUTSCHES FORSCHUNGSZENTRUM FUR 
KUNSTLICHE INTELLIGENZ GMBH 

Germany DFKI 

6 EKSO SRL Italy EKSO 

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND 
MEDICINE 

United Kingdom ICL 

 

1.2 Document Scope 

The scope of this document entails the description of data handling, requirements analysis, 

and scenario definition in the context of the EVEFLOW use cases: Industry 4.0, Personalized 

Medicine, and Infrastructure Life Cycle Assessment. These aspects are essential to ensure that 

the objectives of the project are completed successfully and meets the needs of the use case 

stakeholders.  

Data handling involves the collection, processing, and storage of data. Requirements analysis 

involves gathering, documenting, and validating the use case requirements and ensuring that 

they are clearly understood by the whole consortium. Scenario definition involves the 

creation of potential scenarios or situations that may occur in the domains of applications of 

the use cases, helping minimize the impact of unexpected events and to ensure the required 

quality standards. 

1.3 Document Structure 

This document is comprised of the following chapters: 

Chapter 1 presents an overview of the scenario and the challenges faced in use cases. 

Chapter 2 presents the requirements for the implementation of forecasting functionalities 

in the use cases. 

Chapter 3 presents the handling and pre-processing the data used in the use cases. 
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 Scenario definition 

2.1 EVENFLOW Use Case Scenarios Summary 

This chapter is concerned with presenting the use case scenarios. The Industry 4.0 use case 

(Section 2.2) focuses on autonomous transportation of sensitive cargos in a factory 

environment in a timely manner. By integrating forecasting functionalities into the cost maps 

used for robot navigation, the robot can efficiently plan its path, anticipating the situations 

ahead and avoiding collisions through replanning. The Personalized Medicine use case 

(Section 2.3) involves latent representation learning models of cancer progression data. 

Tracing probabilistic trajectories of individual data points in the latent space enables 

forecasting undesirable outcomes and facilitates molecular characterization. The 

Infrastructure Life Cycle Assessment use case (Section 2.4) encompasses the implementation 

of AI in the manufacturing industry to optimize the overall equipment efficiency, reduce 

waste, and enable predictive maintenance, focusing on smart pipes in water distribution and 

critical infrastructure to identify leakage points and reduce management costs. 

2.2 Industry 4.0 

In Industry 4.0, autonomous guided Vehicles (AGV) take a key role in production processes by 

transporting sensitive cargo. The timeliness of those transports a crucial to keeping the entire 

factory process on track. This requires a robust and time-optimal delivery of the goods. The 

scheme shows the general structure of the implemented navigation pipeline, which is based 

on Nav2. The robot uses a 3D Lidar, a RGBD-Camera, an Inertial Measurement Unit (IMU), 

and wheel encoders as sensors. It is steered by three independent mecanum wheels, allowing 

simultaneous movement in x, y, and the steering angle theta. 

  

Figure 1. Navigation Concept. 

To determine the pose of the robot, extended Kalman filter (EKF) is used. IMU measurements 

and wheel odometry are fed in the EKF. In addition, visual and lidar-based pose estimation is 

used as input to the EKF. For navigation, it is highly relevant to know the surrounding of the 

robot. The current state of the art simplifies the environment to 2D Gridmaps modelling the 

occupancy of a certain gridpoint based on costs. These maps are called costmaps. The 
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costmaps are implemented in two different layers, the global- and local costmap. The global 

costmap usually contains all the static objects and is used for planning from start to finish by 

avoiding static objects. Additionally, a local map that models only the area close to the robot 

is implemented to avoid dynamic objects. The local planner plans trajectories based on the 

global plan to avoid dynamic obstacles. The planned path is then fed into a controller to follow 

the path with the robot. 

To navigate complex factory environments, robots use costmaps containing information 

about space occupancy. However, these costmaps do not incorporate semantic knowledge 

about objects or forecasting functionalities. The goal of this scenario is to use the forecasting 

availability of EVENFLOW to create a costmap including information on possible future 

trajectories of objects based on the past movement patterns. Early detection of such events 

will allow for replanning and avoiding collisions far ahead in the path planning of the robot. 

Avoiding scenarios with humans in the vicinity of robots leads to less replanning efforts and a 

faster delivery of goods. 

To create the costmap with forecasting functionalities, EVENFLOW will be used. The task of 

the forecasting system is to forecast trajectories of objects based on known patterns. The 

trained model will be integrated with the robot's navigation system to provide forecasting 

information. The information will be incorporated into the costmap, allowing the robot to 

replan its path far ahead of the situation, leading to a more optimal path. 

Processed information about detected objects in the environment will be used as input 

information for the EVENFLOW approach. The information will be obtained through sensors 

such as cameras and lidars. The information will include additional information about the 

detected object, e.g., the class and directional velocity of the object. The processed 

information will be incorporated into the costmap, allowing the robot to avoid potentially 

risky situations. 

The use of forecasting availability and processed information about detected objects in the 

environment can significantly improve the efficiency and safety of the delivery process. Using 

the costmap with forecasting functionalities will allow the robot to navigate while avoiding 

potentially risky situations and predicting the future position of detected objects. Integrating 

EVENFLOW and processed information will lead to a more efficient and safer delivery process, 

making autonomous robots even more important in various industries. 

2.3 Personalized Medicine 

Although understanding the molecular changes that occur during cancer progression is critical 

for developing effective treatment strategies, the current scarcity of molecular data of 

intermediate stages of tumour progression is a significant limitation in cancer research. 

Indeed, obtaining samples that comprehensively cover the entire long-term process of cancer 

progression can be challenging due to difficulties and limitations of imaging and 

histopathological techniques, the invasiveness of certain procedures, and patient-related 

issues like delays in seeking medical attention. As a result, the current landscape of available 

molecular data of cancer progression is extremely fragmented and it often consists of 
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measurements that are taken at different time points during the progression of cancer in 

different groups of people.  

An example is the molecular data of cancer staging that can be found in The Cancer Genome 

Atlas (TCGA). TCGA collects large amounts of molecular data from cancer patients, including 

DNA sequencing data, RNA expression data, and epigenetic profiling data, among others. 

Given the pressing need for new technologies that can help characterize or infer molecular 

changes that occur during breast cancer progression, BSC aims to develop artificial 

intelligence (AI) approaches with the goal of effectively forecasting cancer progression and 

facilitating the identification of effective treatment strategies. 

The approach that is employed consists in training and evaluating a Variational Autoencoder 

(VAE) using TCGA breast cancer RNA expression data. The resulting lower-dimensional 

representation of such data, or latent space, is then explored to trace probabilistic trajectories 

of individual data points as they move from one cancer stage to another. These trajectories 

enable the exploration of possible outcomes and future directions facilitating the 

development of forecasting models.  

2.4 Infrastructure Life Cycle Assessment 

The use of AI allows the development of added-value use cases in the manufacturing 

shopfloor and the manufacturing chain, including intelligent asset management, condition-

based maintenance (CBM), predictive maintenance (PdM) and lifecycle assessment (LCA) for 

key assets. The latter use cases enable manufacturers and other users of assets to avoid the 

catastrophic consequences of unplanned downtimes, boost the optimization of the Overall 

Equipment Efficiency (OEE), and contribute essentially to waste reduction in-line with the 

twin transition agenda of most industrial organizations. 

In parallel, based on experience, water losses in the underground potable and irrigation 

networks exceed in many cases 50%. Beyond the significant ecological footprint, the 

possibility of accurately identifying the point of leakage determines a substantial reduction of 

these management/maintenance costs, improving the efficiency of networks and 

infrastructures. Moreover, the availability of information in (near) real time on the proper 

operation of factory plants and critical infrastructures becomes of great interest in the case 

of industrial applications where safety aspects are of primary importance. Applying machine 

learning techniques is a challenging task. 

The use case scenario will provide the means for gathering and analysing digital data about 

the conditions of the pipes towards optimizing their lifecycle management including their 

maintenance, services, repair, and other lifecycle management processes. In this direction, 

the project will develop an innovative digitally enabled lifecycle assessment tool for pipes, 

which will provide the means for optimizing both economic and environmental parameters, 

while providing recommendations for creating new pipes and resolving relevant trade-offs. 

The use case aims at designing and developing an innovative predictive maintenance 

application based on Deep Learning (DL) techniques and manufacturing data related to smart 

pipes for water distribution/irrigation and critical infrastructure. 
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 Requirements analysis 

3.1 EVENFLOW Use Cases Requirements Analysis Summary 

This chapter is focused on presenting the main requirements of the use cases. The Industry 

4.0 use case (Section 3.2) requires real-time navigation with efficient forecasting capabilities 

to enable better replanning. The Personalized Medicine use case (Section 0) necessitates 

access to public molecular data of cancer progression and appropriate computational 

resources for model development. The Infrastructure Life Cycle Assessment use case (Section 

3.4) requires regular data gathering of pipe conditions and the availability of suitable 

computational resources for implementing models that can analyse any anomalies referred 

to a base case scenario. 

3.2 Industry 4.0 

The Industry 4.0 Scenarios have multiple requirements in different areas. The first 

requirement comes from the nature of the problem. As navigation needs to run in real-time 

for the forecasting to be useful there is a need for the forecasting algorithm to run with a 

desired update rate faster than 5Hz on the robot’s computation device. To be able to include 

EVENFLOW forecasting in costmaps in it is necessary to receive information on the future 

behaviour of the object from the forecasting algorithm. This can be information on the 

involved object identifier (ID) and additional information like the location and time 

occurrence of the event. The more information is available on the forecasted event the better 

replanning based on costmap is possible. 

Table 2. Minimum required data from DFKI partner. 

Information per detected object  Provider  
Object ID DFKI 

Position DFKI 

Velocity DFKI 

Array of possible trajectories (x, y, time) NCSR 

Probability per trajectory NCSR 

 

3.3 Personalized Medicine 

The requirements of the Personalized Medicine use case consist in the availability of public 

molecular data of cancer progression and the availability of suitable computational resources 

for the implementation of models for generating probabilistic trajectories and forecast 

relevant events. 

The data that is currently used is RNA expression of breast cancer from TCGA, which contains 

information on 1084 female subjects belonging to four distinct cancer stages in varying 

proportions. Breast cancer stages are classified based on the size of the tumour and the 

extend of spread:  
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• Stage I involves a small tumour, typically less than 2 cm in diameter, that is confined 

to the breast tissue. 

• Stage II, the tumour may be larger, up to 5 cm in diameter, and may have spread to 

nearby lymph nodes. 

• Stage III, the tumour is larger and may involve nearby tissues, such as the chest wall 

or skin, and may have spread to multiple lymph nodes.  

• Stage IV represents the most advanced stage of breast cancer, where the cancer has 

spread to distant parts of the body, such as the bones, liver, or lungs. 

This data is publicly available, and it can be accessed at the Genomic Data Commons Data 

Portal: https://portal.gdc.cancer.gov/. The study of TCGA liver cancer staging is under 

consideration for further applications in the context of the project.  

The use case has access to world-class computational resources. The BSC is a national 

research and supercomputing centre in Spain, specialised in high-performance computing 

(HPC), which manages MareNostrum, one of the most powerful supercomputers in Europe. 

The centre has several supercomputing clusters, among which are two outstanding ones. 

MareNostrum4: It is the most powerful supercomputer in Spain, with a disk storage capacity 

of 14 Petabytes and is connected to the Big Data infrastructures of BSC, which have a total 

capacity of 24.6 Petabytes, connected to the European research centres and universities 

through the RedIris and Geant networks; MareNostrum5: a pre-exascale heterogeneous 

supercomputer that is 18 times more than the current MareNostrum4. It will have a target 

performance above 200 PFlops/s in two major working partitions, one based on general-

purpose nodes and the other based on accelerated nodes. 

3.4 Infrastructure Life Cycle Assessment 

The requirements of the use case consist in the periodic and regular data gathering of the 

pipe conditions and the availability of suitable computational resources for the 

implementation of models for analysing any anomality referred to a base case scenario.  

The pilot will build and validate policy models that will reduce physical and commercial water 

losses and maintenance cost, while helping the management entity (private or public entity) 

establish effective maintenance and repair schedules/policies. The project’s tools will 

recommend, simulate, and identify policies associated with pipe/water data measurement. 

Based on the results and experience, the AI pilot can suggest upscaled wider monitored 

network sections. 

 

 

https://portal.gdc.cancer.gov/
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 Data handling 

4.1 EVENFLOW Use Cases Data Handling Summary 

Currently, all use cases in the project seem to provide data in the form of Comma Separated 

Value (CSV) files that are ASCII text files representing records that contain attribute values 

separated by a standard separator symbol (usually, the comma “,” character). In the case of 

time-series data, usually there exists one column in the CSV file that represents a timestamp, 

or at least the order (position) of the record in the sequence within which it belongs. Such 

data can be represented in their raw format (flat text files) or they can be processed and 

entered either in the chosen database for handling time-series (InfluxDB) or in the Kafka 

distributed message bus as data in one or more topics. In the latter case, the data can be 

stored as a link to the external file system where they live, or they can be stored themselves 

as (potentially huge) strings in a topic, which however is against the design assumptions of 

Kafka, and any other message bus in general, or finally, the data in each CSV file can be 

“decomposed” and stored as chunks, or rows themselves in possibly different topics, 

depending on the need of the consumers of this data. In many cases, the data in CSV form 

never enter either of the data management solutions, and instead remain in certain folders 

that can be accessed by various protocols (e.g. FTP protocol). 

4.2 Data Schemas per Use Case 

4.2.1 Industry 4.0 

Generated data in the DFKI scenario come in the form of time series, commonly as 

measurements from robot sensors. The process of data generation and data handling do not 

make use of Kafka, nor InfluxDB. We record our data and store them as ROS bags (a file format 

containing ROS messages from topics of interest e.g., position, velocity…), then convert all the 

recordings into .csv format. Moreover, the data are offered for further usage by involved 

EVENFLOW partners via ownCloud. 

The data collection is done in the following sensors: Lidar, camera, IMU, wheel odometry, and 

magnetometer.  

In general, the dataset contains of .csv files and a detailed description of the recorded 

scenario and signals. Each .csv file contains: 

Headers (first row) of all .csv files contain descriptive information on the quantities being 

measured. 

Possible content of the datasets can be: 

• In the “imu.csv” file, first column corresponds to timestamp (Unix epoch). Columns 

2,3, and 4 correspond to angular velocities along x, y, and z axis. Columns 5,6, and 7 

correspond to linear accelerations along x, y, and z axis, and the remainder of the 

columns correspond to the orientation of IMU. Content of all columns is of numerical 

values. 

• In the “odmetry.csv” file, first column corresponds to timestamp (Unix epoch). The 

rest of the columns correspond to robot pose along x, y and z axis, as well as 
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orientation of the robot using quaternion representation (last 4 columns). Position 

and orientation are calculated from wheel encoder. Content of all columns is of 

numerical values. 

• In the “detected_obj.csv” file, first column corresponds to timestamp (Unix epoch). 

The second column contains the number of detected objects. From the third column 

on there are x columns per detected object with the following information: ID, Class, 

accuracy of the detection, Pose (x, y, z), Rot(x, y, z), linear velocity. 

4.2.2 Personalized Medicine 

The RNA expression data of TCGA breast cancer was downloaded from the corresponding 

source (see Section 3.3) and stored locally at BSC. Prior to model implementation, the data 

has been pre-processed and thoroughly analysed using statistical techniques to summarize 

and visualize it. 

The VAE model has been implemented in PyTorch and trained and tested locally at BSC. The 

obtained patient trajectories are stored in comma separated values (.csv) files and shared 

with NCSR. In the original .csv files we can find one column per gene and one row per patient, 

and the corresponding gene expression, a numerical value. Meanwhile, the data processed 

through the VAE keeps the same patients in the rows, but the columns are now a linear 

combination of genes, greatly reducing this dimension. The data sharing platform used is 

B2DROP (https://eudat.eu/services/userdoc/b2drop) that is the official BSC service for data 

sharing outside the institution. The focus of B2DROP is to facilitate collaboration and file 

sharing among scholars and researchers who handle significant volumes of data. As a result, 

it has emerged as the preferred solution for EUDAT (European Data Infrastructure), which is 

a pan-European data infrastructure that offers data services to the research community. 

4.2.3 Infrastructure Life-Cycle Assessment 

The Infrastructure Life-Cycle Assessment data (Pozzalo data) are time-series data that 

represent experimental measurements from vibration sensors (number and location to be 

determined) attached to certain water pipes having a number of taps that can be open or 

closed, with the objective to be able to detect leakages in these pipes, and eventually even 

be able to localize leakage spots and other phenomena: flow, pressure, etc. 

The datasets come in a set of file-system folders, appropriately named using the convention  

“<sensor-name>_Scenario<X>_<timestamp>” and  

“<sensor-name>_Leakage_<timestamp>”.  

The scenarios correspond to a series of events that correspond to various simulations of 

situations where some tap may be open (emulating a leakage scenario), or not; they may also 

correspond to a transient state where an initial empty set of pipes start filling in with flowing 

water etc. Within each top-level folder therefore, there exist further sub-folders with names 

that follow the convention “<lag-in-seconds>_<event-name>” where <event-name> can be 

for example “Tap1Open” or “AllTapsClosed” etc. 

Within each sub-folder, there is a single CSV file whose records follow the format: 

https://eudat.eu/services/userdoc/b2drop
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<timestamp>, <sensor-value> 

There is always a top (header) row that reads: 

“Time,Modulus” 

In fact, for experiments where read-outs from more than 1 sensor are taken, it is possible that 

the exact time of the measurement between the two sensors does not coincide; this creates 

the need for an algorithm that matches in an optimal sense the readings of the two (or more) 

sensors, for a classification/regression model to later use together. 

Sampling frequency, strongly influencing DB dimensions, shall be calibrated carefully to reach 

max efficiency. Only anomalies referred to a base case scenario shall be evidenced, analysed 

and examined.  

4.3 Streaming Data Handling 

So far, all use cases we have seen above concern time-series (sequential data). However, this 

does not mean that the data are streaming data, though it is possible to convert them into 

streams when this is beneficial for the performance or, more basically, for the functionalities 

of the system. Both Apache Kafka, and InfluxDB are designed to work mainly with streaming 

data, but where the focus of Apache Kafka is to act as a broker that allows many consumers 

to concurrently read data that are sent non-stop from various producers, the focus of InfluxDB 

is to act as a database management system, allowing for the long-term storage and indexing 

of streaming data, of continuous queries using a NoSQL language, and of course, monitoring 

the status of the incoming data sources and raising alerts if some data source seems to be 

disrupted for some reason. Given the current needs of the project, it appears that sending 

appropriate subsets of some of the CSV files in Kafka is currently more useful to the 

consortium. 

4.4 Database Data Handling 

The InfluxDB time-series database comes with its own query language (InfluxQL) that allows 

complex querying with syntax and functionalities that sometimes resemble PL/SQL more than 

the standard declarative SQL language. We are currently in the process of deploying InfluxDB 

with the help of the helm package management tool for Kubernetes clusters. 

However, for non-time-series, non-sequential data the best tool to use is a relational database 

management system. If the need arises, we shall be using MySQL (or MariaDB) as it represents 

the most popular free (for non-commercial purposes) RDBMS. 
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