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Executive Summary  
Deliverable D3.3 presents the final results of the use cases in the EVENFLOW project, detailing 

the development and validation of a unified technological framework for complex event 

forecasting. This framework integrates machine learning, symbolic reasoning, and 

probabilistic temporal modelling to deliver forecasts that are accurate, interpretable, and 

deployable. 

Its effectiveness is demonstrated across three real-world use cases. In Industry 4.0, 

EVENFLOW enables proactive deadlock avoidance and smoother multi-robot navigation 

through forecast-driven, liveness-aware controllers. In personalized oncology, it supports 

early detection of cancer stage transitions, uncovers interpretable temporal patterns, and 

generates confidence-calibrated probabilistic forecasts even when patient data is limited. In 

industrial monitoring, the framework achieves accurate classification of pipe and tap 

scenarios, reconstructs underlying temporal dynamics, and reliably predicts future events 

from high-frequency sensor measurements. 

Across these domains, EVENFLOW proves both theoretically expressive and operationally 

robust, highlighting the practical impact of integrating learning, symbolic reasoning, and 

temporal forecasting in dynamic, high-stakes environments. 
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1 Introduction 

1.1 Project Information 

EVENFLOW develops hybrid learning techniques for complex event forecasting, which 

combine deep learning with logic-based learning and reasoning into neuro-symbolic 

forecasting models. This approach combines neural representation learning techniques that 

construct event-driven features from streams of perception-level data with powerful 

symbolic learning and reasoning tools, which utilize such features to synthesize high-level, 

interpretable patterns for forecasting critical events. 

To deal with the brittleness of neural predictors and the high volume/velocity of temporal 

data flows, the EVENFLOW techniques rely on novel, formal verification techniques for 

machine learning, in addition to a suite of scalability algorithms for training based on data 

synopsis, federated training and incremental model construction. The learnt forecasters will 

be interpretable and scalable, allowing for explainable and robust insights, delivered in a 

timely fashion and enabling proactive decision making. 

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting in 

healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart 

factories and (3) reliable life cycle assessment of critical infrastructure. 

Table 1: The EVENFLOW consortium. 

Number1 Name Country Short name 

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA 
1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU 
2 NATIONAL CENTER FOR SCIENTIFIC 

RESEARCH "DEMOKRITOS" 
Greece NCSR 

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS 
STIS TECHNOLOGIES TIS PLIROFORIAS, TON 
EPIKOINONION KAI TIS GNOSIS 

Greece ARC 

4 BARCELONA SUPERCOMPUTING CENTER-
CENTRO NACIONAL DE SUPERCOMPUTACION 

Spain BSC 

5 DEUTSCHES FORSCHUNGSZENTRUM FUR 
KUNSTLICHE INTELLIGENZ GMBH 

Germany DFKI 

6 EKSO SRL Italy EKSO 
7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY 

AND MEDICINE 
United 
Kingdom 

ICL 

 

1.1 Document scope 

The EVENFLOW project tackles the challenge of forecasting rare and complex events across 

three key domains: Industry 4.0, Personalized Medicine, and Infrastructure Management. By 

integrating neuro-symbolic reasoning with reproducible, data-driven modelling, EVENFLOW 

delivers actionable predictive intelligence: 

 
1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner. 
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● Industry 4.0: Enables proactive safety through efficient multi-robot navigation in 

dynamic industrial environments. 

● Personalized Medicine: Supports clinical precision by forecasting critical events and 

adverse outcomes in oncology. 

● Infrastructure Management: Enhances asset resilience via advanced predictive 

maintenance and lifecycle assessment of infrastructure. 

Together, these applications illustrate EVENFLOW’s potential as a scalable, accurate, and 

interpretable solution for complex, real-world predictive challenges. This document provides 

a follow-up to the previous deliverable, D3.2, detailing progress and refinements in the 

project’s methodologies and applications. 

1.2 Document Structure 

This document is structured as follows: 

Chapter 1: Introduction – Outlines the scope, objectives, and overall context of the 

deliverable. 

Chapter 2: Use Case Objectives – Defines the goals and expected outcomes for each use case, 

covering Industry 4.0, Personalized Medicine, and Infrastructure Life Cycle Assessment. 

Chapter 3: Use Case Developments – Describes the development of each use case, including 

experimental platforms, datasets, predictive models, and control or forecasting strategies. 

Chapter 4: EVENFLOW Technology Applied to Use Cases – Presents the practical application 

of the EVENFLOW framework, showcasing neurosymbolic deadlock recognition for Industry 

4.0, hybrid approaches for early kidney cancer transition detection in Personalized Medicine, 

and infrastructure life cycle assessment methodologies. 

Chapter 5: Use Case Evaluation – Details the evaluation methodology, experimental setup, 

quantitative results, and their interpretation for all use cases. 

Chapter 6: Conclusions – Summarizes key outcomes, insights, and lessons learned from the 

project. 
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2 Use Case Objectives 

2.1 Industry 4.0 

The main objectives of the Industry 4.0 use case are centred on predictive and proactive robot 

navigation within an intralogistics system. At the core, the project seeks to develop 

mechanisms that allow robots to forecast potential conflicts, including deadlocks (a condition 

in which robots mutually obstruct each other, halting task execution), and adjust their 

navigation strategies to prevent them. The objectives can be summarized as follows:  

● Generate reproducible datasets to support model training, validation, and 

performance assessment.  

● Predict potential deadlocks and collisions between robots using both time-series and 

neuro-symbolic models.  

● Enable proactive navigation that minimizes operational delays and ensures safety.  

● Evaluate forecasting and control strategies both at the individual robot level and 

across the multi-robot system.  

These objectives aim to ensure that AMRs can operate efficiently and safely even in complex 

industrial settings, where multiple robots interact and the environment is highly dynamic. 

2.2 Personalized Medicine 

This use case leverages EVENFLOW technology to forecast critical tumor evolution and 

adverse pharmacological reactions within oncological "virtual patient" environments. By 

synthesizing data-driven deep learning with neuro-symbolic reasoning, the project aims to 

transform early clinical indicators into proactive, actionable decision support. 

The specific objectives are to: 

1. Develop reliable and reproducible virtual patient datasets for model benchmarking, 

utilizing advanced deep generative architectures such as Variational Autoencoders 

(VAEs). 

2. Learn explainable latent representations that map unobserved biological variables to 

transparent generative factors, with special emphasis on disease progression stages. 

3. Infer pseudo-temporal patient trajectories from latent spaces to represent the 

evolution of tumors throughout stages. 

4. Identify temporally correlated event sequences within these trajectories, specifically 

focusing on the molecular biomarkers. 

5. Integrate synthetic data and discovered patterns into the EVENFLOW online neuro-

symbolic learning engine to facilitate the early forecasting of high-impact clinical 

events. 

Through these objectives, the use case provides an interpretable and forward-looking 

framework for managing the dynamic complexities of oncological care and patient evolution. 



 D3.3 – Final Use Case Evaluation 
 

Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  12 

 

 

2.3 Infrastructure Life Cycle Assessment 

The primary objective of this use case is to develop a digital twin for pipe networks that can 

accurately identify and forecast lifecycle assessment (LCA) states and critical incidents. At its 

core, the initiative seeks to shift infrastructure management from a predominantly reactive 

approach to a predictive and proactive one, enabling earlier intervention and more informed 

decision-making. By anticipating key lifecycle events, the digital twin will provide data-driven 

intelligence to support maintenance planning, service optimization, and timely refurbishment 

actions. 

To achieve this, the use case focuses on creating a continuously updated digital 

representation of the pipe network that captures both real-time conditions and historical LCA 

states. It aims to forecast rare yet high-impact events, such as defects, malfunctions, and 

degradation processes that compromise performance and reliability. In addition, the 

approach supports the early prediction of End-of-Life conditions, allowing repairs, 

replacements, or refurbishments to be planned well in advance. The digital twin will also 

identify lifecycle states associated with inefficient operation or increased CO₂ emissions, 

enabling targeted interventions that improve both performance and sustainability. By 

leveraging EVENFLOW’s advanced forecasting capabilities, the system is designed to learn 

from sparse historical data and reliably predict infrequent but critical events. Collectively, 

these efforts aim to enhance the resilience, sustainability, and cost-effectiveness of pipe 

network management in the face of highly consequential lifecycle risks. 
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3 Use Case Developments 

3.1 Industry 4.0 

3.1.1 Experimental Platform and Dataset Generation  

The evaluation relied primarily on a high-fidelity simulation environment, as the physical 

Festo Robotino robots proved less reliable for repeatable testing due to hardware limitations 

and navigation inefficiencies with the default Nav2 stack. The simulation environment was 

enhanced to support multi-robot scenarios, high-level planning, and dynamic task 

assignments (Figure 1). 

 

Figure 1: Multi-Robot Simulation Pipeline. 

In the simulation, two robots operate simultaneously across a set of six factory 

stations, representing machine modules or workstations. Each station may 

provide additional contextual information through RGB images corresponding to the tasks 

being executed. Robots follow high-level plans that define the sequential order of station 

visits, ensuring that the trajectories encompass realistic interactions and potential conflict 

situations.  

The simulation generates comprehensive datasets for model development and evaluation. 

These datasets include robot positions, velocities, goal completion status, deadlock and 

collision flags, and RGB images from robot-mounted cameras. By providing a reproducible 

environment and detailed data capture, the simulation allows for rigorous evaluation of both 

forecasting models and control strategies under diverse operational conditions.  
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3.1.2 Predictive Models and Forecasting  

Two approaches to deadlock forecasting were explored. The first and primary method uses 

the “Wayeb” time-series forecaster from NCSR, which leverages trajectory data and robot 

motion dynamics to calculate the probability of entering a deadlock state at a future time 

step. This model identifies patterns in the relative distances and movement between robots, 

providing an early warning system for potential conflicts.  

The second approach explored neuro-symbolic forecasting, which analyses RGB image 

streams from robots to infer the intended path of observed robots. This method predicts not 

only the trajectory of other robots but also their high-level plan, allowing the system 

to anticipate deadlocks and potential bottlenecks. While this method was investigated, the 

final evaluation primarily focused on the Wayeb forecaster due to its robustness, reliability, 

and simplicity for real-time deployment in multi-robot scenarios.  

3.1.3 Control and Deadlock Resolution  

The control and deadlock resolution component of the EVENFLOW Industry 4.0 use case is 

designed to operationalize deadlock forecasts produced by the predictive models, translating 

early warnings into proactive motion adjustments at the robot level. 

Unlike traditional reactive navigation approaches, which respond only after a deadlock has 

materialized, the EVENFLOW control stack assumes that deadlocks can be forecast at the level 

of high-level task plans. Each robot follows a predefined high-level plan consisting of an 

ordered sequence of workstation visits. These plans induce characteristic interaction patterns 

between robots, including potential deadlock configurations. The forecasting models 

described in Section 3.1.2 are trained on executions of such plans and provide early 

predictions when a currently executing plan prefix is likely to lead to a deadlock. 

The role of the controller is therefore not to detect deadlocks directly, but to maintain 

liveness once a deadlock risk is forecast, ensuring that robots continue to make progress and 

do not enter mutually blocking configurations. 

3.1.3.1 Liveness-Based Control Concept 

Deadlocks in multi-robot navigation typically emerge from symmetric interactions, where 

robots slow down simultaneously or repeatedly yield to each other. To prevent this, 

EVENFLOW enforces liveness constraints that guarantee forward progress while preserving 

efficiency. 

Let 𝑣1(𝑡)and 𝑣2(𝑡)denote the linear velocities of two interacting robots at time 𝑡. When the 

forecaster predicts an upcoming deadlock along the currently executing high-level plan, the 

controller enforces a velocity asymmetry constraint: 

𝑚𝑎𝑥(𝑣1(𝑡), 𝑣2(𝑡))  ≥  𝛼(𝑝𝑑)  ⋅  𝑚𝑖𝑛(𝑣1(𝑡), 𝑣2(𝑡)) 

where 𝛼(𝑝𝑑)is a risk-adaptive liveness parameter based on the deadlock probability 𝑝𝑑 ∈

[0,1] predicted by the forecaster. In the experiments reported here, 𝛼 = 2 is used as a 

nominal value. More generally, 𝛼 can be adjusted according to the strength of the forecast: 

𝛼(𝑝𝑑) = 1 + (𝛼𝑚𝑎𝑥 − 1) ⋅ 𝑝𝑑 
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● Low forecast probability (𝑝𝑑 ≈ 0): minimal deviation, 𝛼(𝑝𝑑) ≈ 1 

● High forecast probability (𝑝𝑑 ≈ 1): stronger asymmetry, 𝛼(𝑝𝑑) → 𝛼𝑚𝑎𝑥  

To minimize control effort, the robot which adjusts its speed (either slows down or speeds 

up) is chosen to require minimal deviation from its nominal planner velocity 𝑣𝑖
𝑛𝑜𝑚(𝑡). 

Formally, the liveness-adjusted target velocities 𝑣𝑖
𝑙𝑖𝑣𝑒(𝑡) solve: 

∑

𝑖∈{1,2}

||𝑣𝑖
𝑙𝑖𝑣𝑒(𝑡) − 𝑣𝑖

𝑛𝑜𝑚(𝑡)||2  

subject to: 

(𝑣1
𝑙𝑖𝑣𝑒(𝑡), 𝑣2

𝑙𝑖𝑣𝑒(𝑡))  ≥ 𝛼(𝑝𝑑) ⋅ (𝑣1
𝑙𝑖𝑣𝑒(𝑡), 𝑣2

𝑙𝑖𝑣𝑒(𝑡))  

This ensures smooth, minimal-effort intervention, breaking symmetry only as much as 

necessary to maintain forward motion. 

3.1.3.2 Integration with Nav2 Controllers (DWB Only) 

The liveness mechanism was integrated into the Dynamic Window Approach (DWB) local 

planner. The liveness constraint acts as a lightweight velocity modulation layer, applied after 

the planner computes candidate velocity commands. This design preserves compatibility with 

the standard DWB stack and allows the controller to operate at high frequency (30 Hz) in a 

fully decentralized manner. 

Key features of the DWB integration: 

• continuous forward motion, 

• symmetry breaking in conflict situations, 

• forecast-driven activation based on deadlock probability, 

• minimal deviation from nominal path-following behaviour, ensuring smooth and 

efficient trajectories. 

Implementation Concept: 

• Each robot evaluates a deadlock potential function based on predicted robot 

interactions and applies a liveness constraint if forward progress is threatened. 

• Velocity commands are modulated in real time to prevent stalling while maintaining 

goal-directed motion. 

• Constraints operate in a decentralized manner, requiring no centralized coordination. 

3.2 Personalized Medicine 

3.2.1 Use case scope and approach  

The EVENFLOW Personalized Medicine use case has focused on advancing computational 

approaches to interpret temporal omics data in cancer, bridging cutting-edge machine 

learning techniques with clinically relevant insights. The project explored innovative 

strategies for both data augmentation and dynamic process reconstruction, leveraging 

Variational Autoencoders (VAEs) and their extensions to address the complex heterogeneity 
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of cancer progression. The overall strategy combines a solid assessment of the state of the 

art with two complementary methodological application areas: data augmentation and 

dynamic process reconstruction. 

3.2.2 State of the art survey  

As a foundation for the use case, a systematic review on the application of Variational 

Autoencoders (VAEs) to temporal omics inference in cancer has been conducted and is 

currently under review in NAR Genomics & Bioinformatics. A pre-print is available at biorXiv 

[REF-01]. The paper provides a comprehensive review of the application of VAEs in cancer 

research over the past decade, with a particular emphasis on studies leveraging omics data. 

The work focuses on how VAEs have been employed to model complex, high-dimensional 

biological data and support cancer-related tasks (Figure 2). The review shows that VAEs have 

been widely and successfully applied to static analyses, including cancer subtyping, diagnosis, 

and prognosis. However, it also reveals that the use of VAEs to explicitly model temporal 

tumor evolution remains limited. Most existing studies rely on cross-sectional datasets, and 

only a small fraction attempt to capture time-dependent processes such as disease 

progression or staging. A key limitation identified is the scarcity of longitudinal omics datasets, 

which constrains the development and validation of models aimed at dynamic inference. As 

a result, important biological questions related to cancer evolution and temporal trajectories 

remain underexplored within the current VAE literature. We propose that future research 

should more fully exploit the generative capabilities of VAEs to model cancer dynamics over 

time. Such approaches could enable improved reconstruction of disease trajectories, facilitate 

the study of stage transitions, and ultimately provide deeper insights into tumor evolution. 

 

Figure 2: Common representation learning approaches in cancer research. VAEs encode 
diverse omics data into a latent space mainly used for subtyping, prognosis, and pseudo-

time inference. In contrast, decoder-based applications for data reconstruction and temporal 
cancer progression remain largely underexplored. 
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3.2.3 Application 1: Data Augmentation 

The first application area of the EVENFLOW Personalized Medicine use case focuses on the 

use of VAEs to generate realistic synthetic omics data for cancer research. This approach 

addresses data sparsity and imbalance while enabling controlled exploration of biological 

variability. Special emphasis is placed on model transparency and robustness through the 

integration of explainable AI (XAI), fairness metrics, and comparisons with alternative 

modelling paradigms, including multilayer networks and multiscale mechanistic simulations. 

Results on medulloblastoma, a childhood brain tumour, are reported in the pre-print 

available in biorXiv and bound to be submitted shortly to Nature Communications [REF-02]. 

This work investigates molecular heterogeneity in medulloblastoma using VAEs, refining the 

canonical subgroup stratification (groups WNT, SHH, Group 3 or G3 and Group 4 or G4) and 

identifies an intermediate subgroup between G3 and G4. Leveraging the largest available 

medulloblastoma transcriptomics cohort, we employ a VAE-based pipeline to generate high-

quality synthetic data, enabling detailed exploration of the G3–G4 boundary. Explainability 

methods are integrated to interpret latent representations and uncover gene expression 

patterns driving subgroup separation. The key contributions include the identification of an 

intermediate G3–G4 subgroup and the characterization of genes underpinning distinctions 

among the four canonical medulloblastoma subgroups (WNT, SHH, G3, and G4). Moreover, a 

three-class classifier that explicitly accounts for the putative G3-G4 subgroup among patients 

traditionally labelled as G3 or G4 achieves performance comparable to the conventional 

binary classifier when trained on synthetically balanced data (Figure 3A). Notably, this model 

also exhibits the lowest equal opportunity gap, indicating fairer performance across groups 

(Figure 3B). This is particularly relevant because misclassification between G3 and G4 can 

directly affect treatment decisions, as G3 patients typically receive more aggressive therapy 

than G4 patients, and the inclusion of a third subgroup may enable the development of more 

personalized treatment strategies. Overall, the work demonstrates how generative modelling 

combined with explainable AI can improve interpretability and clinical relevance of generative 

AI approaches in paediatric brain tumor research. 
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Figure 3: (A) Performance metrics of four classifiers applied to patients traditionally labelled 
as G3 or G4: binary models trained on unbalanced real data (2RD) and balanced synthetic 
data (2SD), and three-class models trained on unbalanced real data (3RD) and balanced 
synthetic data (3SD). (B) Weighted macro true positive rate (TPR) for the four classifiers 
across three patient groups (more aggressive, less aggressive, and intermediate). Equal 

opportunity gap values for each classifier are shown on the right. 

3.2.4 Application 2: Dynamic Process Reconstruction 

The second application area focuses on reconstructing temporal and pseudo-temporal 

dynamics from cross-sectional or partially aligned omics datasets. By combining VAEs, rule 

learning, and probabilistic event forecasting, this work aims to infer latent trajectories, 

identify key transitions in disease progression, and enable predictive modelling of cancer 
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evolution. We investigated these approaches in breast invasive carcinoma (BRCA) and kidney 

renal clear cell carcinoma (KIRC). In both cases, the corresponding synthetic datasets are 

publicly available on Zenodo [REF-03]. For KIRC, a manuscript is currently in preparation for 

submission to Nature Machine Intelligence. Additional details on the KIRC results are provided 

in Section 4.2. 

3.3 Infrastructure Life Cycle Assessment 

The Infrastructure Life Cycle Assessment use case is developing the datasets analysis gathered 

from a pipe section (Figure 4), with the aim of identifying states and incidents ahead of time 

and with high accuracy. In particular the LAB testing (at UNIPA), and the small scale pilot at 

EKSO premises (with preliminary AI processing) had led to the definition of the best set of 

technology (vibration sensors) already deployed in a full scale pilot on a real potable water 

pipe section, in operations and at present producing data continuously. 

3.3.1 Experimental Platform and Dataset Generation  

The main features of the Small-scale Pilot are the following: 

1. Vibration time series from 1 sensor (event labelled) locally registered; 

2. Frequency: 6,6 ksps; 

3. Magnitude: 800MB on compressed CSV file; 

4. Limited time frame measurements: 1 hour; 

5. Different simulated leakage in distance and size. 

 

The main features of the Full scale Pilot are the following: 

● Vibration time series from 10 sensors (event labelled) remotely registered; 

● Frequency:1,6 ksps (each sensor-BUS main constraint); 

● Magnitude: 14MB/10min. (all sensors) in Binary format (Numpy zipped) 

● Continuous measurement: 24/7 

● Sigle leakage simulation. 

 

 

Figure 4: Aerial view of the full-scale pilot potable water pipeline equipped with vibration 
sensors. 

This is enabling EKSO to make educated, data-driven analysis regarding some major relevant 

phenomenons/defects, operational or structural that could affect the pipe efficiency: 

• General Anomaly detection 

• leak presence 
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• sizing leak 

• locating leak 

• Signal evolution in time 

• Ageing phenomenons 

 
These are the main KPIs to base real time evaluation of the efficiency of the pipe status and 

operations to consequently make decisions about maintenance, service, and repairs of the 

pipes, including the implementation of refurbishment operations when required sizing and 

locating them at the best. 

First results on the Full Scale Pilot, on the Leak detection and location tell us that one sensor’s 

recordings analysis alone are confirming that it is not enough: Pre-processing one sensor’s 

recordings gives accuracy from 60% to 97%. Progressing on a major complex scenario using 

the closest sensor, the model increases accuracy to 98.5%; if we use all 10 sensors, we 

increase accuracy to 99.8 %. 

Regarding the short term target related to the leak detection and sizing, data classification 

issues under consideration are the following: 

• During training: Create a model for each sensor that answers the relevant question “Is 

there a leakage X meters to my right/left?” 

• During inference: Run each produced model on each sensor’s test dataset. Compute 

leakage location as the average location of the locations given by the 100 models. 

• During visualization: When detecting a leakage, if the leakage is not consistently (all 

the sensors together) detected for the next 1 minute or so, consider it FALSE ALARM. 

• Prepare more data to train the models using leakages observed from different 

locations. 
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4 Application of the EVENFLOW framework to the Use Cases 

4.1 Industry 4.0: Neurosymbolic Deadlock Recognition 

A deadlock refers to a situation in which a robot is unable to proceed due to obstacles, 

including unforeseen interactions with another robot. Such scenarios can lead to unexpected 

delays within the industrial setting, and it is thus desirable to be able to forecast and 

consequently avoid them. We would like to achieve the above in a decentralised manner, in 

which each robot is tasked to forecast its own deadlock given only data streams from its own 

sensors, such as image streams from a mounted camera and tabular streams from mobility 

sensors (e.g. position, orientation, velocity, etc.). 

Because the deadlock condition intuitively depends on quantities that change over time, such 

as speed and acceleration, it is natural to express it as a temporal specification. This 

formulation is also instrumental for the aim of forecasting such situations. In particular, we 

model deadlock as a deterministic finite automaton (DFA) which operates on the distance 

between the two robots. Conceptually, we think of this specification as domain knowledge, 

i.e. it could be constructed by a domain expert. In reality, this automaton is learnt from 

sequences of mobility data from the two robots, including positive (including deadlock) and 

negative (not including deadlock) trajectories. 

 

 
Figure 5: Simple multi-robot scenario and high-level plans illustrating decentralized deadlock 

forecasting. 

We construct an out-of-distribution train/test split, wherein we train using sequences from 

trajectories following Plans 1-4, and test on sequences taken from Plan 5. This is an 80/20 

train/test split. Initially we perform 5-fold cross-validation on the 80 trajectories in order to 

tune an early stopping parameter. Using this parameter, we then train on all 80 trajectories 

and test on the held-out set of 20 trajectories. 
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Table 2: Models, tasks, and performance metrics on training and test datasets. 

Model Task 

Performance Metrics 

train test 

CNN 
Coordinate 
regression 

MAPE* MAPE 

3.43% 3.65% 

CNN+LSTM 
Sequence 

classification 

Accuracy F1-Score Accuracy F1-Score 

99.1% 98.4% 87.9% 81.3% 

CNN+DFA 
Sequence 

classification 

Accuracy F1-Score Accuracy F1-Score 

92.3% 80.0% 93.8% 84.0% 

* Mean Absolute Percentage Error  

 

We see that while a neural system trained end-to-end on sequence classification for 

deadlocks outperforms the NeSy system in the training set, these roles flip when tested on a 

OOD setting. It is worth noting that conceptually the OOD setting is not adversarial, in fact 

the images are quite similar (the robots are still moving in the same space but are simply 

following different paths). It is precisely this type of generalisation that is achieved from the 

introduction of domain knowledge into the system, encoded here as a temporal specification 

through an automaton. 

4.1.1 Early Deadlock Recognition 

4.1.1.1 Summary 

We evaluate early deadlock recognition, event forecasting, on a shared dataset using three 

method families: (1) a purely neural LSTM classifier that maps prefixes, early events in the 

sequence, directly to labels, (2) Forward Recognition, a modular generative + symbolic 

pipeline that samples suffixes and applies a symbolic DFA to detect deadlocks in the 

generated sequence, and (3) Wayeb, a symbolic probabilistic forecasting tool. All methods 

operate on the same trajectories and are compared across a sweep of observation earliness 

(prefix length k) using metrics, such as precision, recall and F1 score. 

4.1.1.2 Introduction 

Early classification asks: given an observed prefix X1:k of a discretized trajectory, can we 

reliably predict whether the unobserved continuation will lead to a deadlock. This task trades 

off earliness and reliability: smaller k gives earlier warnings but less information. Our 

evaluation measures performance as a function of k to identify practical operating points for 

proactive interventions. 
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4.1.1.3 Data and preprocessing 

Experiments use logged robot trajectories whose continuous inter-robot distances are 

discretized with SAX into 40 symbols. Each trajectory, which contains 20 timepoints, is split 

into an observed prefix, e.g. 8, and a target suffix, e.g. 12 respectively. For the variable-length 

generator we sample multiple prefix lengths per example to improve robustness to different 

observation horizons.  

In the figure below we see a sample of 100 trajectories and the values they take at each 

timepoint. We observe that positive sequences (depicted in orange) have a decreasing trend, 

which means that the distance between the two robots decreases as time passes in the 

positive trajectories. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Sample of 100 discretized robot trajectories over time, showing that positive 
sequences (orange) exhibit a decreasing inter-robot distance trend compared to negative 

sequences (blue). 

The dataset is imbalanced. The training split contains 833 sequences (715 negative / no-

deadlock, 118 positive / deadlock), while the test split contains 208 sequences (181 negative, 

27 positive). Because the positive (deadlock) class is the minority, accuracy alone can be 

misleading. Therefore we focus on precision, recall and the F1 score for the positive class as 

primary evaluation metrics. 
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Figure 7: Mean discretized trajectory per label over time, with shaded regions indicating the 
25th-75th percentile range, highlighting the decreasing inter-robot distance trend in positive 

sequences. 

The core objective is early and reliable deadlock detection. This means maximizing the F1 

(macro) score as early as possible (small k). We report metrics across prefix lengths and 

compare error modes (precision vs recall) and robustness to prefix variability. To find the best 

method for this task, we apply the following methods.  

4.1.2 Methods 

4.1.2.1 Purely Neural 

The purely neural method implements2 an end‑to‑end LSTM classifier that maps a 

fixed‑length observed prefix directly to a binary deadlock label. Input sequences are encoded 

over the 40‑symbol vocabulary and the model consists of a single LSTM layer 

(hidden_size=128), whose final hidden state is projected to two logits corresponding to the 

positive / negative classes. Models are trained with cross‑entropy loss using the Adam 

optimizer (default learning rate 1e‑3) and configurable epochs and batch size.  

The purely neural design is attractive for its simplicity and for avoiding hand‑coded rules: a 

single model learns discriminative features directly from prefixes. This simplicity comes with 

trade-offs, such as that the classifier can be sensitive to the class imbalance and that this is a 

black-box architecture with no information being able to be given to the system manager, in 

order to do replanning.  

4.1.2.2 Forward Recognition Methodology 

With this methodology we study3 early deadlock forecasting for mobile robots by combining 

generative sequence prediction with symbolic recognition. The pipeline predicts future 

discrete distance values from partial observations and evaluates whether the completed 

trajectory satisfies a deadlock pattern encoded as a deterministic finite automaton (DFA). We 

compare four generators, a second-order Markov chain, a sequence to sequence LSTM, an 

 
2 GitHub private repository: https://github.com/EVENFLOW-project-EU/dfki-forward-
recognition/blob/main/methods/lstm_classification.py 
3 GitHub private repository: https://github.com/EVENFLOW-project-EU/dfki-forward-recognition 

https://github.com/EVENFLOW-project-EU/dfki-forward-recognition/blob/main/methods/lstm_classification.py
https://github.com/EVENFLOW-project-EU/dfki-forward-recognition/blob/main/methods/lstm_classification.py
https://github.com/EVENFLOW-project-EU/dfki-forward-recognition
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autoregressive LSTM trained on fixed-length prefixes, and a variable-length autoregressive 

LSTM, and quantify recognition performance (accuracy, precision, recall, F1) as a function of 

observation earliness. The results show a clear earliness–accuracy trade-off: neural 

autoregressive approaches attain the highest F1 at early prefixes, while variable-length 

training improves scores at late prefixes. 

4.1.3 Introduction 

Being able to forecast deadlocks before they occur enables proactive replanning and safer 

operation in multi-robot systems. We frame the task as forward recognition: given an 

observed prefix of discretized inter-robot distances, predict whether the unobserved 

continuation will lead to a deadlocked configuration. Our methodology separates prediction 

and recognition: a generative model hypothesizes suffixes, and a symbolic DFA determines 

whether the hypothesized full trajectory matches the deadlock pattern. 

4.1.4 Problem formulation 

Let X1:k denote the observed prefix of discrete tokens. The goal is to decide whether the 

concatenated sequence X1:k || Sk+1:T, where Sk+1:T is a suffix sampled from a generative model 

conditioned on X1:k, is accepted by the deadlock SFA. We study how classification quality 

varies with k to quantify how early reliable forecasts can be made. 

4.1.5 Architecture 

4.1.5.1 Generator Component 

We evaluated four generators with different inductive biases and computational costs. 

➢ Second‑order Markov chain: This baseline estimates next‑token probabilities by 

counting observed triplet transitions and normalizing with a small additive smoothing 

constant. Training is a simple fit of empirical counts. There is no gradient-based loss. 

➢ Seq2Seq LSTM: A single-layer encoder processes the prefix and a dense projection 

produces logits for the whole suffix. Training minimizes cross-entropy aggregated over 

suffix positions. This model captures if there is a summary/encoding of the prefix 

useful for multi-step prediction. 

➢ Autoregressive LSTM (fixed‑length): The encoder LSTM consumes a fixed-length 

prefix and an LSTMCell decoder generates the suffix one step at a time. Training uses 

teacher forcing and token-level cross-entropy, while at inference the model decodes 

autoregressively with greedy sampling. 

➢ Variable‑length autoregressive LSTM: Architecturally similar to the fixed-length 

autoregressive model but trained on many prefix lengths sampled from full 

sequences. The loss ignores padded positions in the suffix and is therefore robust to 

variable-target lengths. This training strategy yields better performance when 

inference prefixes vary in length. 

4.1.5.2 Recognition (symbolic) component 

Recognition is performed by a deterministic finite automaton that encodes domain 

knowledge about deadlock configurations. The automaton’s acceptance of a generated full 
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sequence is interpreted as a positive deadlock forecast. This design isolates symbolic decision 

rules from generative errors and supports interpretable failure analysis. 

To generate the automaton we use Answer Set Automata Learning (ASAL). ASAL is a 

framework for learning and revising complex event patterns represented as symbolic finite 

automata (SFA) from labelled streams of multivariate event-based data. In ASAL, a symbolic 

temporal model that accepts or rejects the input event traces is encoded as an answer set 

automaton (ASA), i.e., an answer set program that combines a generic automata interpreter, 

a specification of the automaton’s structure (states and transitions), background predicates 

that operate over event tuples (e.g., trends, thresholds, attribute comparisons etc), and 

transition guard rules, defined as Boolean combinations of the background predicates.  

A high-level diagram of the whole pipeline - methodology described above:  

Figure 8: High-level diagram of the ASAL pipeline. 

We also compare the above methods with a purely symbolic one. For this symbolic method 

we just use the automaton for the prefix sequences only. If the automaton does not reach an 

accepting state by the end of the prefix sequence, we consider the at hand sequence, a 

sequence with no deadlock and label it as such, otherwise we label it as 1, because the 

accepting state has been reached.  

This method serves as a proof that the deadlock does not happen that early in the sequence 

and that the automaton alone is not sufficient for forecasting.  

4.1.6 Methodology 

We sweep prefix lengths k from small (very early observations) to large (near-complete 

trajectories) and report recognition accuracy, precision, recall and F1 for the positive 

(deadlock) class at each k. Each generator is trained using standard cross-entropy 

optimization (except the Markov baseline, which is fitted via counts), with hyperparameters 

chosen to balance convergence and computational cost. 



 D3.3 – Final Use Case Evaluation 
 

Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  27 

 

 

4.1.7 Results 

The experiments reveal consistent patterns across models. At early prefixes (k small, e.g., 2-

6), predictions are highly uncertain and recognition F1s are low (roughly 0.3-0.5). As more of 

the trajectory is observed, performance improves. This is mostly a sanity check, because our 

primary interest is actually earlyness. Therefore, we focus our analysis on prefix lengths k in 

the range 5-14. 

Within the earliness window the autoregressive LSTM attains the highest average F1 and 

consistently outperforms seq2seq and the Markov baseline on average. The variable-length 

autoregressive model narrows the gap and provides better robustness across earlier prefixes 

(it shows smaller drops at smaller k). The Markov chain shows a high single-point peak at 

k=11,14, likely reflecting a favourable alignment between simple generative predictions and 

the DFA at that prefix length m but its mean performance across the earliness window is lower 

than the neural autoregressive approaches. 

Table 3: F1 scores show that autoregressive models outperform others in the earliness 
window. 

Type of 
Generator 
component 
/ Prefix 

 Markov Chain 
Sequence to 
Sequence 

Autoregressive  
Variable-length 
Autoregressive 

k=3 0.308 0.42 0.452 0.4 

k=5 0.414 0.491 0.518 0.441 

k=8  0.525 0.557 0.570 0.557 

k=10 0.59 0.592 0.588 0.591 

k=13 0.635 0.623 0.655 0.669 

k=15  0.764 0.664 0.693 0.731 

k=17 0.778 0.78 0.881 0.834 

 

In the plot below the F1-score vs prefix-length plot shows the earliness-accuracy trade-off 

directly: each curve corresponds to one generative+recognizer pipeline and the vertical axis 

reports F1 for the positive (deadlock) class at each observed prefix length. 
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Figure 9: F1 scores for the positive class versus prefix length, illustrating the earliness-
accuracy trade-off for each generative+recognizer pipeline. 

Precision/recall plots expose differences in error modes: some models trade precision for 

recall at particular prefix lengths, while others remain more balanced.  

 

 
Figure 10: Precision–recall plots highlight differences in error trade-offs across models at 

varying prefix lengths. 

Finally, plotting the generative loss (cross‑entropy) across prefixes shows that prediction 

confidence and sharpness generally increase with prefix length. Inspecting loss together with 

recognition metrics helps distinguish cases where lower loss does (or does not) translate into 

better symbolic recognition. 
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Figure 11: Generative loss (cross-entropy) across prefixes, showing increasing prediction 
confidence with longer prefixes and its relationship to recognition performance. 

4.1.7.1 Method comparison 

We compare three approaches for early deadlock recognition: the purely neural LSTM 

classifier, Forward Recognition with autoregressive generation, and Wayeb (in this setting, 

Wayeb uses the discretized SAX data and the same ASAL-generated automaton as in the 

method Forward Recognition). All methods operate on the same discretized SAX trajectories 

and are evaluated across varying prefix lengths. 

 
Figure 12: Comparison of early deadlock recognition methods (LSTM classifier, Forward 

Recognition with autoregressive generation, and Wayeb) across prefix lengths on discretized 
SAX trajectories. 
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The purely neural method achieves the highest average F1-score, benefiting from its end-to-

end discriminative learning. However, it provides no interpretability or uncertainty 

quantification, and predictions are opaque binary classifications. 

Forward Recognition offers modularity and interpretability: the DFA acceptance provides an 

explainable decision tied to symbolic domain knowledge. The autoregressive generator 

achieves competitive performance, particularly at early prefix lengths (k=5-10), though its 

reliance on generated suffixes introduces error propagation from the generative component. 

Wayeb provides probabilistic forecasts with uncertainty estimates via confidence intervals, 

enabling risk-aware decision-making. Its use of variable-order Markov models captures long-

term dependencies efficiently, though performance depends on the quality of the learned 

PST and the automaton structure. 

In summary, we can conclude that the purely neural approach maximizes F1 on average but 

sacrifices transparency, while Forward Recognition balances performance with 

interpretability. Wayeb uniquely offers uncertainty quantification alongside symbolic 

reasoning, but worse average performance overall. 

4.2 Personalized Medicine: Hybrid Methods for early KIRC transition 

recognition 

4.2.1 Summary 

This work investigates hybrid methods for recognizing and forecasting stage transitions in 

Kidney Renal Clear Cell Carcinoma (KIRC) from transcriptomic time series. By utilizing 

discriminative machine learning, neural sequence models, and symbolic event-based 

forecasting we aim to characterize predictive signals in both patient-derived and synthetic 

longitudinal data. In collaboration with the Barcelona Supercomputing Center (BSC), we first 

establish baseline stage classification capabilities on the KIRC dataset. We then evaluate 

trajectory classification methods on VAE-generated synthetic sequences, demonstrating that 

purely neural network methods achieve strong full-trajectory discrimination performance. 

For the critical early-warning task, we compare a purely neural baseline against a 

neurosymbolic approach that combines ASAL, a framework for learning interpretable finite-

state automata from discretized gene expression streams, with Wayeb, a probabilistic 

complex event forecasting system that produces confidence-calibrated temporal predictions. 

While the neural method achieves improved performance with rapid early convergence, the 

ASAL+Wayeb system delivers competitive scoring alongside explicit uncertainty 

quantification, interpretable symbolic patterns auditable by clinical experts, and probabilistic 

forecast intervals for transition timing. These capabilities are essential for developing 

trustworthy, deployable early-warning systems in high-stakes medical contexts. 

4.2.2 Goal 

The primary objective is to evaluate and compare methods for detecting and forecasting stage 

transition-related events in patient transcriptomic time series data derived from real KIRC 

samples. The work focuses on following tasks: 
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• The development of a baseline classification performance for KIRC stage 

discrimination and the identification of a minimal, interpretable gene panel that 

improves this performance  

• The implementation of a time-series model that separates trajectories that proceed 

to late-stage from those that remain early and finally, 

• The investigation of symbolic forecasting approaches that provide early-warning 

predictions with explicit uncertainty for disease progression.  

4.2.3 Data and Preprocessing 

4.2.3.1 Static TCGA Dataset 

The core dataset comprises bulk RNA-sequencing gene expression profiles and corresponding 

clinical annotations for 530 KIRC patients obtained from The Cancer Genome Atlas (TCGA) via 

the UCSC Xena browser. The original data encompass expression measurements for 8,516 

genes following preprocessing steps that removed genes with zero expression in at least 20% 

of patients and genes exhibiting both mean and variance below 0.5. Clinical metadata include 

pathological stage classifications (Stages I, II, III, and IV), which were binarized into "early" 

(Stages I and II) and "late" (Stages III and IV) categories to reflect clinically meaningful 

progression thresholds. The dataset exhibits class imbalance, with a higher proportion of 

early-stage patients, necessitating the use of macro-averaged F1-score as the primary 

evaluation metric rather than accuracy. The data were partitioned into training (424 patients, 

80%) and test (106 patients, 20%) sets with stratified sampling to preserve class proportions, 

following the same split used in the collaborative VAE training to prevent information leakage. 

4.2.3.2 Synthetic Trajectories Dataset 

Synthetic longitudinal gene expression trajectories were generated by BSC using a Variational 

Autoencoder trained on the TCGA KIRC dataset. The VAE architecture learns a low-

dimensional latent representation of patient gene expression profiles and employs a decoder 

to generate synthetic samples. To simulate disease progression, positive trajectories 

representing early-to-late stage transitions were constructed by interpolating between early-

stage and late-stage patient embeddings in the latent space over 50 discrete time points. 

Multiple negative-trajectory construction strategies were explored to provide contrasting 

non-progressive patterns: (1) latent-space interpolation between pairs of early-stage patients 

(early-to-early trajectories), (2) augmentation of early-stage patient expression profiles with 

additive Gaussian noise in the original gene expression space, and (3) augmentation with 

Gaussian noise applied in the latent space. These synthetic datasets enable controlled 

evaluation of classification methods under varying degrees of class separability and noise 

characteristics. All synthetic trajectory datasets preserved the original train-test patient 

partition to maintain experimental consistency and avoid contamination between training 

and evaluation phases. 

4.2.3.3 Preprocessing Pipeline 

Gene expression values were subjected to standard normalization using MinMaxScaler to 

ensure all features occupy comparable numeric ranges, mitigating the influence of genes with 

extreme expression magnitudes. For classification experiments, we initially retained all 8,516 

genes, then systematically reduced the feature space through iterative SHAP-based feature 
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importance ranking. Patient samples with missing clinical stage annotations were excluded, 

reducing the dataset from an initial pool to the final 531 annotated patients. The 

preprocessing workflow prioritized maintaining the biological signal while removing technical 

artifacts and uninformative features, as evidenced by subsequent classification performance 

improvements following dimensionality reduction. 

4.2.4 Methods 

4.2.4.1 Stage Classification with XGBoost 

We employed gradient-boosted decision trees via the XGBoost framework as the primary 

classification model due to its robust performance on high-dimensional tabular data and built-

in handling of feature interactions. The classifier was configured with standard 

hyperparameters including 50–300 boosting rounds, maximum tree depths of 3–10, learning 

rates between 0.001 and 0.2, and subsample ratios of 0.5–1.0. Given the class imbalance in 

the dataset, we explored the scale_pos_weight parameter to adjust the contribution of 

minority-class samples during training. Model training employed 5-fold stratified cross-

validation to ensure robust performance estimation and mitigate overfitting risks. 

Hyperparameter optimization was conducted using the Optuna framework with a Tree-

structured Parzen Estimator to maximize macro-averaged F1-score on validation folds. The 

final model was trained on the full training set and evaluated on the held-out test set using 

multiple metrics: F1-score (macro), accuracy, precision (macro), recall (macro), and confusion 

matrices to assess both overall performance and class-specific discriminative capacity. 

4.2.4.2 Feature Selection via SHAP 

To identify a minimal gene panel that retains maximal discriminative information for stage 

classification, we applied SHapley Additive exPlanations (SHAP), a model-agnostic 

interpretability method grounded in cooperative game theory. SHAP values quantify the 

marginal contribution of each feature to individual predictions by computing the average 

change in model output when a feature is included versus excluded across all possible feature 

coalitions. We employed the TreeExplainer algorithm, which provides exact SHAP values for 

tree-based models with computational efficiency. The feature importance ranking was 

derived by computing the mean absolute SHAP value for each gene across all validation 

samples, capturing both the magnitude and consistency of each gene's contribution to stage 

discrimination. The feature selection procedure proceeded iteratively: (1) train a baseline 

XGBoost classifier on the full gene panel, (2) compute SHAP values on an independent 

validation set (20% of training data), (3) rank genes by mean absolute SHAP values, (4) 

evaluate classification performance using top-k gene subsets for varying k, and (5) select the 

k that maximizes validation F1-score. This process identified a panel of 45 genes that achieved 

improved performance compared to the full 8,516-gene feature space. The selected genes 

exhibit high discriminative capacity as evidenced by their SHAP importance scores, with the 

top-ranked genes including OASL (mean |SHAP| = 0.842), HUS1B (0.766), C9orf129 (0.533), 

HPDL (0.515), and SLC22A1 (0.444). The reduced gene panel seems to improve model 

generalization. 
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4.2.4.3 Trajectory classification 

Prior to implementing early-warning forecasting, we establish a fundamental capability 

assessment through full-trajectory classification. This task evaluates whether a model can 

discriminate complete disease progression sequences, distinguishing trajectories that 

transition from early to late-stage cancer from those that remain stable, when provided with 

the entire temporal observation window. Full-trajectory classification serves as an upper-

bound performance benchmark, representing the ideal scenario where all temporal 

information is available before prediction is required. 

For this task, we employ a purely neural approach using an LSTM architecture. The network 

processes complete synthetic gene expression trajectories spanning all 50 discrete time 

points, with the model's recurrent layers capturing temporal dependencies across the full 

sequence before producing a final binary classification. Training and evaluation follow the 

same stratified train-test partitions used throughout the experimental pipeline, with 

performance measured via macro-averaged F1-score, accuracy, precision, and recall to 

account for potential class imbalance between progressive and non-progressive trajectories. 

The baseline expectation for this task is straightforward: given access to the complete 

trajectory, the model should minimally achieve performance equivalent to a static classifier 

operating solely on the terminal time point. That’s true, because the final observed state 

alone suffices to determine whether a patient has progressed to late-stage disease. Superior 

performance would indicate that temporal patterns embedded throughout the trajectory, 

such as rate of change, inflection points, or sequential gene expression dynamics, carry 

additional discriminative signal beyond the endpoint state. This full-trajectory baseline 

establishes the performance ceiling against which early-warning methods must be evaluated, 

quantifying the predictive cost of operating with incomplete temporal information in realistic 

clinical scenarios. 
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4.2.4.4 Early Trajectory classification 

Figure 13: Overview of the hybrid neurosymbolic framework for early trajectory 
classification, combining ASAL for interpretable pattern discovery with Wayeb for 

probabilistic forecasting of disease progression from partial longitudinal data. 

The early trajectory classification task extends beyond static-stage discrimination to detect 

impending transitions from early to late-stage disease using only partial temporal 

observations. Given a prefix of a patient's longitudinal trajectory, the objective is to forecast 

whether the sequence will ultimately progress to late-stage cancer or remain stable, thereby 

enabling proactive clinical intervention before irreversible progression occurs. To address this 

challenge, we employ a hybrid neurosymbolic approach that combines ASAL (Answer Set 

Automata Learning) for pattern discovery with Wayeb for probabilistic forecasting of 

transition events. 

ASAL (Answer Set Automata Learning) serves as the pattern induction component, learning 

interpretable finite-state automata from discretized time-series data. Operating on symbolic 

representations generated with K-bins discretizer, ASAL uses Monte Carlo Tree Search over 

an Answer Set Programming-encoded hypothesis space to discover temporal state-transition 

rules that discriminate progressive from non-progressive trajectories. The framework 

expresses complex event recognition operators, including sequence, iteration, and filtering, 

through answer set automata that combine a generic automaton interpreter with learnable 

guard conditions defined as Boolean combinations of background predicates such as trends, 

thresholds, and attribute comparisons. This formulation enables ASAL to extract clinically 

interpretable temporal patterns while maintaining predictive accuracy through constraint-

driven abductive learning. 
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Wayeb complements ASAL by providing probabilistic forecasting capabilities for the learned 

patterns. Wayeb is an online, probabilistic system designed for Complex Event Forecasting 

(CEF), addressing the challenge of predicting the potential occurrence of a declaratively 

defined Complex Event (CE) pattern (often formulated as a Symbolic Regular Expression (SRE)) 

within an event stream before it is actively detected by a Complex Event Recognition (CER) 

engine. Given a symbolic finite automaton specification and an incoming event stream, 

Wayeb constructs Variable-order Markov Models, specifically Prediction Suffix Trees, to 

capture long-term statistical dependencies without the computational burden of exhaustive 

state enumeration. By modelling waiting-time distributions through the theory of absorbing 

Markov chains, Wayeb produces forecasts in the form of confidence intervals [start, end] that 

predict the number of future events until pattern completion occurs with user-defined 

confidence threshold θ. This integration enables our system to not only detect early warning 

signals but also quantify uncertainty around predicted transition timing. 

The complete framework is shown in Figure 13.  

4.2.4.5 Neural Comparison 

To establish a purely data-driven baseline for trajectory classification, we implemented a Long 

Short-Term Memory (LSTM) network trained directly on the synthetic gene expression time 

series. The LSTM architecture comprises a single recurrent layer with 128 hidden units 

followed by a fully connected classification head, designed to capture temporal dependencies 

in the last timepoint trajectories without relying on explicit symbolic abstraction or event 

detection. The model operates on variable-length trajectory prefixes, enabling assessment of 

classification performance as a function of observed sequence length-a critical consideration 

for early-warning scenarios where predictions must be made with limited temporal context.  

The LSTM was evaluated using the same train-test splits as the symbolic methods with the 

discretized data, with performance measured via macro-averaged F1-score, accuracy, 

precision, and recall. This neural baseline serves as a comparative reference point for 

assessing whether explicit symbolic pattern extraction and probabilistic forecasting offer 

advantages over end-to-end learned representations, particularly in terms of interpretability, 

sample efficiency, uncertainty quantification for transition prediction tasks and performance. 

4.2.5 Results 

4.2.5.1 Static TCGA Classification 

Baseline classification on the static TCGA dataset using the full 8,516-gene panel yielded 

moderate performance with macro-averaged F1-scores ranging between 0.70–0.75 across 

cross-validation folds, reflecting the inherent difficulty of stage discrimination from high-

dimensional gene expression data. Application of SHAP-based feature selection to identify 

the top 45 genes resulted in improved performance, with test-set F1-score increasing to 

approximately 0.79 and AUC rising from 0.787 to 0.873. This improvement demonstrates that 

dimensionality reduction via explainability-guided feature selection effectively removes 

noisy, irrelevant features and concentrates the model's capacity on biologically informative 

transcriptomic markers. Precision and recall metrics exhibited balanced performance across 

early and late classes, with confusion matrices indicating relatively symmetric error 



 D3.3 – Final Use Case Evaluation 
 

Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  36 

 

 

distributions. The classifier achieved accuracy values exceeding 0.80, though this metric is less 

informative given the class imbalance favouring early-stage patients. 

 

 
Figure 14: Baseline and SHAP-guided feature selection performance on the TCGA dataset, 

showing improved F1-score and AUC after reducing to the top 45 informative genes. 

4.2.5.2 Feature Importance 

The SHAP-based feature ranking revealed a compact set of genes with substantial 

discriminative capacity. The top 45 genes span diverse biological pathways, including immune 

response (OASL, CD1C), cell cycle regulation (MCM2, MYCN), metabolic processes (CYP3A4, 

CYP17A1), and developmental signalling (GATA6, FOXF2, HOXB8). Notably, genes such as 

OASL and HUS1B exhibited mean absolute SHAP values exceeding 0.75, indicating their 

consistent and substantial contribution to stage predictions across the patient cohort. The 

feature importance distribution exhibits a long-tailed pattern, with a small subset of genes 

contributing disproportionately to model decisions, while the majority of the 8,516 genes 

provide minimal discriminative signal. This finding validates the feature selection strategy and 

suggests that KIRC stage transitions are governed by a relatively focused transcriptomic 

signature rather than diffuse genome-wide alterations. 

The full list of the 45 genes is the below:  

OASL HUS1B C9orf129 HPDL SLC22A1 C10orf41 LOC10013235

4 

FGF12 

TRIM36 CD1C DNASE1L3 HS3ST1 LOC653113 CYP3A4 KIF17 FOXF2 

GJB1 JAKMIP3 NUPR1 GATA6 OTOF CES8 MCM2 MYCN 

HOXB8 MYH7B EPHB4 CYP17A1 CABYR MADCAM1 CCDC146 KIAA0802 

MASP1 DACT3 CTAGE9 MXRA7 KIAA1024 C4orf6 LRRIQ1 PLEKHH2 

KLC3 AFAP1L1 FAM186B SLC22A16 HSD17B3 - - - 

 

In the table below, we also compare with an average of 10 experiments executed each time 

with a different random reduced gene subset. This shows that feature reduction alone does 

not suffice to improve performance.  
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Table 4: Comparison of classifier performance using the full gene panel, random 45-gene 
subsets, and SHAP-selected 45 genes. 

# of genes F1-macro Accuracy  Precision Recall 

8.516 0.684 0.708 0.657 0.548 

45 (random) 0.6479 0.6736 0.6036 0.5143 

45 (SHAP) 0.799 0.811 0.789 0.714 

 

4.2.5.3 Synthetic Trajectory Evaluation 

As established in the Methodology section, demonstrating full-trajectory classification 

capability is a prerequisite before implementing early-warning forecasting systems. This 

evaluation serves dual purposes: first, to confirm that complete temporal sequences contain 

sufficient discriminative signals for stage progression prediction, and second, to inform 

dataset selection for subsequent early classification experiments. We present results across 

three synthetic dataset configurations that vary systematically in their construction of 

negative trajectories, those representing patients who remain in early-stage disease without 

progression to late-stage cancer. Positive trajectories, representing early-to-late stage 

transitions, are constructed identically across all datasets through latent-space interpolation 

between early-stage and late-stage patient embeddings over 50 discrete time points. 

Moreover, all datasets include only the 45-genes established in the above experiments.  

● Synthetic Trajectory Data Type A (Latent-to-Latent): Negative trajectories are 

generated via latent-space interpolation between pairs of early-stage patients, 

producing smooth transitions that remain within the early-stage manifold.  

● Synthetic Trajectory Data Type B (Noise-Augmented): Negative trajectories are 

constructed by augmenting early-stage patient profiles with additive Gaussian noise, 

introducing stochastic variability while preserving the fundamental early-stage 

characteristics. This dataset includes two subtypes based on the space in which noise 

is applied: 

○ Subtype B1 (Real-Space Noise): Gaussian noise is applied directly to gene 

expression values in the original 8,516-dimensional feature space, simulating 

measurement variability and biological stochasticity at the transcriptomic 

level. 
○ Subtype B2 (Latent-Space Noise): Gaussian noise is applied within the VAE's 

learned latent representation before decoding back to gene expression space, 

introducing controlled perturbations that respect the statistical structure 

captured by the generative model. 
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Table 5: Trajectories classification scores. 

Dataset Types Latent-to-Latent Real-Space Noise  Latent-Space Noise 

F1-macro score 0.5481 0.9382 0.9951 

 

The full-trajectory LSTM classifier exhibits markedly different performance across the three 

synthetic dataset configurations, revealing fundamental differences in task difficulty that 

arise from the negative trajectory construction strategies.  

The Latent-to-Latent dataset yields near-random performance (F1 = 0.5481), indicating that 

trajectories constructed through latent-space interpolation between early-stage patients are 

virtually indistinguishable from those interpolating between early and late-stage patients. 

Conversely, the Latent-Space Noise configuration achieves nearly perfect discrimination (F1 

= 0.9951), likely because noise perturbations in the learned latent representation create 

distributional shifts that are easily exploited by the classifier but do not reflect realistic 

biological variability. 

The Real-Space Noise dataset occupies an intermediate difficulty regime (F1 = 0.9382), 

demonstrating strong but imperfect separability. The classification errors suggest the task 

remains challenging enough to stress-test early-warning methods without being artificially 

trivial or impossibly difficult. Therefore, we select the Real-Space Noise dataset for all 

subsequent early trajectory classification experiments. 

4.2.5.4 Early Trajectory classification Evaluation 

Having established the feasibility of full-trajectory discrimination, we now address the 

primary objective: early classification of disease progression from incomplete temporal 

observations. This task requires predicting whether a patient will transition to late-stage 

cancer using only a prefix of their longitudinal trajectory, simulating realistic clinical scenarios 

where intervention decisions must precede observable progression. 

The evaluation compares our hybrid approach, combining ASAL for pattern discovery with 

Wayeb for probabilistic forecasting, against the purely neural LSTM baseline to assess the 

trade-offs between interpretability, uncertainty quantification, and predictive performance. 

4.2.5.5 Learned Symbolic Automaton 

A key advantage of the ASAL framework is its production of human-interpretable temporal 

patterns that can be audited and validated by domain experts. Operating on the top-45 gene 

panel identified through SHAP-based feature selection and discretized data, ASAL induced the 

following finite-state automaton from the Real-Space Noise training trajectories.  

The learned automaton structure encodes temporal rules that discriminate progressive from 

non-progressive trajectories through Boolean combinations of gene expression thresholds. 

For instance, specific state transitions may be guarded by conditions such as "SLC22A1 

expression increases above threshold τ₁ for consecutive time steps". This symbolic 

representation enables clinical experts to evaluate whether the discovered patterns align 
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with known biological mechanisms of KIRC progression and also and most importantly modify 

the automaton based on expert knowledge.  

Below is the automaton generated based on the gene SLC22A1 with ASAL:  

 

Figure 15: Finite-state automaton induced by ASAL from discretized SLC22A1 expression 
trajectories. 

4.2.5.6 Comparative Performance Results 

To evaluate early classification capability, both the ASAL+Wayeb system and the LSTM 

baseline were assessed across trajectory prefixes of increasing length, simulating 

progressively later intervention points. The neurosymbolic approach processes symbolic 

event streams through the learned automaton, with Wayeb computing waiting-time 

distributions and forecast intervals at user-defined confidence threshold θ = 0.5 to predict 

pattern completion timing. The LSTM operates also on discretized gene expression prefixes, 

producing binary classification predictions with associated softmax confidence scores. 

 
Figure 16: Early classification performance of ASAL+Wayeb versus LSTM across increasing 

trajectory prefixes. 

4.2.5.7 Key Findings 

The results reveal distinct performance characteristics and temporal dynamics between the 

two approaches, as shown in the figure above. The LSTM baseline demonstrates slightly 

improved trajectory classification performance across different timepoints in the trajectory. 

Notably, the LSTM reaches the threshold of F1 ≥ 0.90 remarkably early at the timepoint 5-6 

(10-12% of the trajectory) and maintains stable, high performance throughout the remaining 
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sequence. This rapid convergence suggests the neural model efficiently extracts early 

discriminative signals. This indicates that patterns are early detectable.  

The ASAL+Wayeb system achieves competitive but slightly lower performance (F1-macro = 

0.928 at trajectory completion), with a more gradual performance improvement curve. The 

neurosymbolic approach requires observing approximately 8-10 timepoints before crossing 

the F1 ≥ 0.90 threshold.  

Despite the LSTM's improved performance, the ASAL+Wayeb system provides critical 

capabilities absent from the purely neural approach. Wayeb's probabilistic forecasting 

produces explicit confidence intervals for predicted transition timing. This could potentially 

allow for risk-stratified clinical interventions. In this setting high-confidence early warnings 

could trigger immediate action while uncertain forecasts prompt continued monitoring. The 

learned automaton patterns remain fully interpretable and auditable by domain experts, 

allowing validation against known KIRC progression mechanisms and identification of novel 

biomarker dynamics. Furthermore, the symbolic rules can be iteratively refined through 

expert feedback 

The results suggest that hybrid neurosymbolic approaches offer a viable path toward 

trustworthy early-warning systems that balance predictive accuracy with the transparency 

and auditability demanded by high-stakes medical decision-making. 

4.3 Infrastructure Life Cycle Assessment 

4.3.1 Overview 

In this section we apply and evaluate neurosymbolic forecasting techniques on a real-world 

industrial use case provided by EKSO, involving water pipe leakage detection. The raw data 

consist of high-frequency univariate time series recorded from a pressure sensor on a water 

pipe under different “scenarios,” such as all taps closed or individual taps opened abruptly. 

Our goal is twofold: 

● Learn a robust classifier that can map short time windows of the pressure signal to 

high-level “simple events” (the pipe/tap scenario at that time). 

● On top of these learned simple events, build a temporal model that captures how 

scenarios evolve over time and use it to forecast future events in a neurosymbolic 

fashion. 

The approach proceeds in three stages: 

1. Supervised simple-event classification on the original EKSO signal. 

2. Construction of a synthetic temporal dataset, where sequences of high-level events 

follow a controlled Markovian pattern. 

3. Semi-supervised learning of a latent Markov model with a mutual-information 

objective (MiMM - see Chapter 8 of Deliverable D4.2), and use of the learned Markov 

chain in combination with probabilistic model checking for neurosymbolic forecasting. 
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4.3.2 Raw EKSO Dataset and Supervised Classification 

 
Figure 17: Original time series for the EKSO univariate dataset. Background is set based on 
the scenario of the segment. The dominant (orange) scenario for example is when all taps 

are closed. 

4.3.2.1 Raw EKSO Dataset and Supervised Classification 

We work with a univariate time series comprising pressure measurements sampled at 6.67 

kHz from a water pipe. The data are organised into segments, each corresponding to a 

particular scenario. In the original dataset, many scenarios have very few examples, so we 

restrict attention to five classes that have sufficient support: 

● “All taps closed” (ATC) 

● “Tap 1 abrupt” 

● “Tap 2 abrupt” 

● “Tap 3 abrupt” 

● “Tap 4 abrupt” 

An illustration of the original dataset is presented in Figure 17. The “all taps closed” class is 

highly dominant. We split the time series temporally into train/validation/test segments, 

preserving chronological order to mimic a realistic deployment setting: 50% of the data for 

training, 25% for validation and 25% for testing. 

Within each long segment, we cut the time series into non-overlapping windows of duration 

1 second. Since the sampling rate is 6.67 kHz, each window contains 6,670 measurements. 

We refer to these 1-second windows as our basic units for classification. Each window inherits 

the scenario label of the segment from which it was drawn. Some examples of windows are 

presented in Figure 18. 
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Figure 18: Some units from the validation set for each class in the dataset. Each window 

(separated by whitespace) is 6670 measurements. 

The class supports in the training set (in number of 1-second windows) are: 

● All taps closed: 1,518 

● Tap 1 abrupt: 92 

● Tap 2 abrupt: 147 

● Tap 3 abrupt: 124 

● Tap 4 abrupt: 175 

This distribution highlights the strong imbalance in favour of the “all taps closed” class. 

4.3.2.2 Initial attempts with sequential models 

A natural first attempt is to treat the raw signal (or down-sampled versions of it) as a sequence 

and train recurrent neural networks (GRUs, LSTMs) to classify each window. We 

experimented with: 

● Feeding the raw 1-second sequences directly to GRU/LSTM models. 

● Down-sampling each 1-second window by averaging over smaller sub-windows (e.g. 

averaging every 200 samples to produce a sequence of length 34), so that RNNs see a 

shorter sequence of aggregated values. 

Despite these preprocessing steps and hyperparameter tuning, the recurrent models 

achieved unsatisfactory performance in terms of F1-score. In practice, they struggled to learn 

discriminative features for the five classes from raw or lightly processed waveforms. 

4.3.2.3 Frequency-domain representation and CNN classifier 

We obtained substantially better results by moving to a time–frequency representation. Each 

1-second window is transformed using a Short-Time Fourier Transform (STFT), yielding a 2D 
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spectrogram. In our setting, the resulting spectrograms have a shape 129 × 209 (frequency 

bins × time bins). These spectrograms serve as “images” representing the acoustic/pressure 

footprint of each scenario. Some examples of the STFT spectrograms are presented in Figure 

19. 

 
Figure 19: Some units after being processed with STFT. The dimension of the spectrogram is 

129x209. Examples from all 5 classes from left to right. 

On top of this representation, we train a 2D convolutional neural network (CNN) for window-

level classification. The CNN architecture is standard: a stack of convolutional layers with non-

linearities and pooling, followed by fully connected layers that output class logits. Training 

details: Loss: cross-entropy; Class weights: 0.1 for the dominant class (“all taps closed”) and 1 

for each of the other four, to partially counteract class imbalance; Batch size: 32; Learning 

rate: 3e-4; Training for 100 epochs, selecting the best model by validation macro F1. The 

entire CNN architecture used in shown below: 

CNNClassifier( 

  (conv_encoder): Sequential( 

    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1)) 

    (1): ReLU() 

    (2): InstanceNorm2d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) 

    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 

    (4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1)) 

    (5): ReLU() 

    (6): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) 

    (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 

    (8): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1)) 

    (9): ReLU() 

    (10): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 

    (11): AdaptiveAvgPool2d(output_size=(1, 1)) 

    (12): Flatten(start_dim=1, end_dim=-1) 

    (13): Linear(in_features=128, out_features=64, bias=True) 

    (14): ReLU() 

    (15): Dropout(p=0.5, inplace=False) 

    (16): Linear(in_features=64, out_features=5, bias=True) 

  )) 

On the test set, averaged over 5 independent runs, we obtain: 

● Accuracy: 0.91 ± 0.01 

● Macro F1: 0.77 ± 0.04 

This confirms that the combination of STFT preprocessing and CNN classification is adequate 

for mapping raw time series windows to high-level simple events. 
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4.3.3 Synthetic Temporal Dataset and Markovian Sequencing 

4.3.3.1 Motivation 

The original EKSO dataset, as collected, does not encode meaningful temporal structure at 

the level of high-level events: the order in which scenarios occur over time is largely 

determined by the experimental design and is effectively random. For example, operators 

may choose arbitrarily when to open or close specific taps, so there is no consistent pattern 

like “all taps closed is usually followed by tap 1 abrupt” that one could exploit for forecasting. 

However, the forecasting methods developed in EVENFLOW, and in particular our mutual-

information Markov model (MiMM) framework, require sequential structure in terms of high-

level states. We therefore build a synthetic temporal dataset where the high-level events 

(ATC, Tap 1 abrupt, etc.) evolve according to a Markov chain that we design explicitly. The 

Markov chain used is illustrated in Figure 20. 

 
Figure 20: The Markov Chain used to create the synthetic temporal dataset. The chain starts 

from the left-most All taps closed state and moves between the classes as time goes by. 

4.3.3.2 Constructing the Markov chain 

We define a Markov chain over the five states: 

● ATC (All taps closed) 

● T1 (Tap 1 abrupt) 

● T2 (Tap 2 abrupt) 

● T3 (Tap 3 abrupt) 

● T4 (Tap 4 abrupt) 

Initially, we set the transition probabilities so that the stationary distribution of the chain 

roughly matches the empirical class frequencies in the original data. However, the extreme 

dominance of ATC made the resulting chain too imbalanced for learning. We therefore slightly 

rebalance the transition matrix to keep ATC as the most frequent state, but not as 

overwhelming. 
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The resulting stationary distribution is: 

● ATC: 0.55 

● T1: 0.10 

● T2: 0.08 

● T3: 0.06 

● T4: 0.15 

This means that, when we sample a long trajectory from the chain, roughly 55% of the states 

will be ATC, and the rest will be distributed among the T1–T4 states as above. 

4.3.3.3 Generating temporal sequences of windows 

We sample symbolic sequences of length 15 from the Markov chain. A typical sequence might 

look like: 

ATC, T3, ATC, ATC, ATC, T2, T3, ATC, T3, ATC, T1, ATC, T4, T1, ATC 

For each symbolic sequence, we generate a corresponding multistep time series by sampling 

1-second windows from the original EKSO data: For each symbol in the sequence (e.g. ATC, 

T3, T1), we pick a 1-second window from the original dataset that has that label. We 

concatenate these windows in order to form a sequence of 15 seconds; each second 

annotated with its high-level event. We follow the same temporal splitting strategy as before 

to construct train, validation and test sets: Train: 61 sequences; Validation: 24 sequences; 

Test: 23 sequences. 

Each sequence is of length 15, so the training set contains 915 windows in total. Importantly, 

we assume that only 5% of the training windows are labelled; the remaining 95% are treated 

as unlabelled and are used for unsupervised representation learning. 

 

 
Figure 21: A sample generated sequence. Obtained by: (i) Sampling a symbolic sequence 

from the Markov Chain; (ii) Choosing windows from the actual data for each element. Each 
step in the sequence (1s in duration) is color coded based on the label. The sequence length 

here, as in our experiments, is 15. 
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4.3.4 Semi-Supervised Learning with Mutual-Information Markov Models 

(MiMM) 

4.3.4.1 Models and training setting 

We compare two models, M1 and M2, which share the same CNN architecture and differ only 

in how they use the available labelled and unlabelled data. 

● M1 (purely supervised baseline): the CNN is trained only on the small labelled subset 

of the training windows (5% of 915 = 46 windows). After training, we evaluate M1 

directly as a classifier on the test windows. 

● M2 (semi-supervised MiMM model): we first pretrain the CNN on the same 46 

labelled windows as in M1. Then, instead of stopping there, we continue training on 

the full training set (all 915 windows) using an unsupervised objective derived from 

mutual-information maximisation between consecutive latent states. The idea is to 

encourage the CNN to produce discrete latent representations that preserve as much 

information as possible about the next latent state in the sequence. 

In more detail, the MiMM step uses the following intuition: Each 1-second window is mapped 

by the CNN to logits over the five classes (ATC, T1, T2, T3, T4), which we can interpret as a 

distribution over latent states. For a pair of consecutive windows (at times t and t+1) in a 

sequence, we want the latent state at time t to be maximally informative about the latent 

state at time t+1. We therefore train the network to maximise an estimate of the mutual 

information I(Z_t; Z_{t+1}), where Z_t is the discrete latent state at time t. We refer to D4.2 

for further details on the mutual information estimation. 

This mutual-information objective exploits the temporal structure induced by the Markov 

chain: windows that follow each other are likely to correspond to consistent or predictable 

changes in the underlying state. By aligning the CNN’s latent representations with these 

temporal regularities, M2 can “pull” the decision boundaries into better positions, even 

though most of the training windows are unlabelled. 

We evaluate the performance of the CNNs on mapping the data to their correct label on the 

test set (Accuracy). Further we report the induced Markov Chain when passing the whole 

training set from each model and estimating the probability of each transition, e.g. ATC to T1 

for consecutive windows. 

4.3.4.2 Evaluation as a classifier 

We evaluate both M1 and M2 as simple-event classifiers on the held-out test windows. The 

results are: 

● M1 test accuracy: 0.75 

● M2 test accuracy: 0.91 

Thus, by leveraging the mutual-information-based unsupervised objective on the unlabelled 

portion of the data, M2 significantly improves over the purely supervised baseline, effectively 

closing the gap to the fully supervised CNN trained on the original EKSO dataset. The adjusted 
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mutual information (AMI) is 0.6 and 0.82 respectively. AMI measures the information gained 

for inferring the label by knowing the prediction of the model compared to a random model. 

4.3.4.3 Recovering the underlying Markov chain 

Beyond window-level classification, we are interested in how well the learned models capture 

the underlying temporal dynamics. To this end, we first run the trained CNN (M1 or M2) on 

all the training sequences. For each pair of consecutive windows, we record the predicted 

label at time t and at time t+1. Finally, we estimate the empirical transition matrix by counting 

transitions between predicted labels and normalising. We then compare this estimated 

transition matrix to the true Markov chain used to generate the symbolic sequences. The 

comparison is made via the mean absolute error (MAE) over all entries of the transition 

matrix. The results are as follows: 

● M1: MAE per entry ≈ 0.13 

● M2: MAE per entry ≈ 0.07 

Therefore, M2 not only classifies windows more accurately but also recovers a Markov chain 

that is substantially closer to the true generative process. In other words, the mutual-

information training step allows us to learn a high-quality latent Markov model directly from 

raw time series data and a very small number of labels. For completeness, we report the 

different transition matrices. 

[ 0.52, 0.09, 0.17, 0.15, 0.07 ] [0.43, 0.20, 0.05, 0.22, 0.10] [0.62, 0.06, 0.12, 0.12, 0.08] 

[ 0.85, 0.15, 0.00, 0.00, 0.00 ] [0.48, 0.22, 0.07, 0.16, 0.06] [0.84, 0.16, 0.00, 0.00, 0.00] 

[ 0.00, 0.00, 0.56, 0.44, 0.00 ] [0.10, 0.10, 0.23, 0.30, 0.27] [0.13, 0.03, 0.58, 0.21, 0.05] 

[ 0.86, 0.00, 0.00, 0.00, 0.14 ] [0.36, 0.14, 0.03, 0.26, 0.21] [0.88, 0.00, 0.00, 0.02, 0.10] 

[ 0.00, 0.26, 0.00, 0.00, 0.74 ] [0.20, 0.20, 0.06, 0.08, 0.46] [0.05, 0.22, 0.01, 0.00, 0.72] 

 
The leftmost matrix is the original transition matrix, the next one is [M1] and the last is [M2]. 

4.3.5 Neurosymbolic Forecasting 

The final step is to use the learned M2 model in a neurosymbolic forecasting pipeline. This 

involves the following components:  

Neural perception layer: Raw EKSO time series windows (1-second segments) are fed to M2, 

which maps each window to a probability distribution over the five high-level states (ATC, T1, 

T2, T3, T4). For forecasting purposes, we can use the most likely state or the full distribution. 

Latent Markov model: The transition probabilities between states are estimated from the 

predictions of M2, as described above. This yields a Markov chain that approximates the true 

dynamics of the system in the space of high-level events. 

Symbolic probabilistic reasoning: The learned Markov chain is then passed to a probabilistic 

model checker (PRISM). There, we express forecasting queries in temporal logic. 

An overview of the NeSy forecasting system is presented in Figure 22. 
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Figure 22: The NeSy forecasting system. Purple components are learnt. Orange (the model 

checker) is used for reasoning. The input time series is passed through the learnt [M2] 
model. The transition function induced by [M2] along with the predicted states are passed to 

a symbolic model checker. The model checker is used to solve for arbitrary queries. 

For each sequence in the test dataset, we pick a random timestep between 2 and 6 in the 

sequence. We extract the window and then apply the neural network to predict the state. 

Using the induced transition matrix from above (learnt by [M2]) we then call a model checker 

to predict the probability of certain queries. For this experiment we use simple queries. We 

randomly select for each sequence a query like: 

What is the probability of C for each of the next N timesteps? 

where C is a class (randomly selected, e.g. T1 for each sequence) and N is set for 20. We report 

the forecasting curves in Figure 23. 
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Figure 23: NeSy forecasting results. Black lines show the actual correct forecast if we 

correctly mapped the input timeseries to the correct class and used the correct transition 
function for prediction. In the red curve the mapping between timeseries and class are made 
with the learnt neural network and instead of the true transition function we use the induced 

transition function. 

In Figure 22 the y-axis ranges from 0 to 1 and we have a 20s forecast horizon. As can be seen 

in the figure, the results are very accurate with the predicted forecast closely matching the 

actual correct curve.  

As a first step to forecasting, this section studies the task of recognition, i.e. that a deadlock 

has occurred within a given trajectory. Specifically, we show that the constructed temporal 

neurosymbolic system is able to outperform a pure-neural architecture with more 

parameters in an out-of-distribution (OOD) setting. 

The NeSy system consists of a convolutional neural network (CNN) and a deterministic finite 

automaton (DFA). The CNN operates on the robot's POV camera data and predicts the 

position (coordinates) of the other robot (regression problem). The CNN is PyTorch’s 

implementation of efficientnet_b0 (4.0M parameters) pretrained on ImageNet. The 

coordinate prediction is combined with the robot's own position to compute the distance 

between the robots. This distance is z-normalized and bucketized into 40 bins. It is worth 

noting that we attempted to directly predict these 40 symbols from the image (a multiclass 

classification task). However, this approach was significantly less performant than regress → 

compute → normalize → bucketize. These bins are the symbols that are used as input to the 

symbolic DFA which specifies the deadlock pattern. The NeSy system thus performs sequence 

classification, that is, whether the sequence of images in the input contains a deadlock. 
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4.3.5.1 Experimental setup 

100 videos of the two robots executing different trajectories within a factory lab. There exist 

5 plans, consisting of different order of visiting workstations. The resulting data distribution 

is as follows: 

#sequences positive negative total 

train 104 328 432 

test 28 101 129 
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5 Use Case Evaluation 

5.1 Industry 4.0 

The evaluation of the Industry 4.0 use case centred on two tightly connected components: 

the forecasting models, which predict potential deadlocks arising from multi-robot 

interactions, and the navigation controllers, which determine whether robots can avoid or 

resolve conflicts once they emerge. Although these elements operate independently in the 

architecture, they were assessed within the same simulation environment to ensure 

reproducibility and comparability. 

The Controller evaluation measured how well different navigation strategies perform in 

scenarios specifically designed to induce conflict. This included comparing baseline Nav2 

controllers against newly developed liveness-enhanced controllers that enforce continuous 

progress and prevent stalling behaviour. Such evaluations provide a clear quantitative 

understanding of how predictive modelling and proactive control support robust multi-robot 

navigation in dynamic factory environments. 

5.1.1 Evaluation Scope and Methodology 

The evaluation of the Industry 4.0 use case focuses on the end-to-end interaction between 

deadlock forecasting and liveness-based control, with the high-level plan as the central unit 

of analysis. 

Robots operate in a simulated factory environment executing predefined high-level plans, 

each specifying an ordered sequence of workstation visits. The forecasting models are trained 

on executions of a subset of these plans and evaluated on held-out plans, reflecting realistic 

deployment conditions where robots repeatedly execute known task structures with varying 

timing and interactions. 

The controller evaluation therefore answers the following question: Given that a deadlock 

forecaster predicts an upcoming deadlock along a high-level plan, can liveness-based control 

prevent the deadlock and improve execution efficiency? 

5.1.2 Experimental Setup 

● Simulation environment: Isaac Sim factory/warehouse layout 

● Robots: Two differential-drive AMRs (carter1, carter2) 

● High-level plans: Five predefined task plans; evaluation performed on held-out plans 

● Metrics logged: 

○ execution time, 

○ distance travelled, 

○ deadlock count, 

○ recovery actions, 

○ task completion status 

Each experiment corresponds to a full execution of a high-level plan by both robots, including 

all induced interactions. 
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5.1.3 Baseline: Controllers Without Liveness 

When executing high-level plans using standard Nav2 controllers without liveness constraints, 

the following behaviours were observed: 

● frequent deadlocks during plan execution, 

● repeated triggering of recovery behaviours, 

● long execution times despite successful task completion, 

● oscillatory velocity profiles caused by symmetric yielding. 

These effects were especially pronounced in plan segments that induce close robot 

interactions, such as shared workstations or overlapping travel paths. 

Table 6: Baseline DWB controller without liveness performance. 

Experi

ment 

ID 

Robot Total 

Time (s) 

Total 

Distance 

(m) 

Dead-

locks 

Recov-

eries 

Goals 

Comple

ted 

Status 

1 carter1 694.1 83.798 6956 36 6 Completed 

carter2 661.94 77.084 8937 4 6 Completed 

2 carter1 1059.54 93.074 18838 21 6 Completed 

carter2 971.65 76.761 18052 20 6 Completed 

3 carter1 877.08 83.919 14300 6 6 Completed 

carter2 846 50.709 13475 124 6 Completed 

4 carter1 463.22 73.415 2973 0 6 Completed 

carter2 420.49 66.579 2774 8 6 Completed 

 

5.1.4 Liveness-Enhanced Execution 

When the same high-level plans were executed with liveness-based control enabled and 

activated by deadlock forecasts: 

● deadlocks were reduced by orders of magnitude, 

● recovery behaviours were largely eliminated, 

● execution time decreased significantly, 

● robots maintained smooth, continuous motion throughout plan execution. 

Crucially, no changes were made to the high-level plans themselves. The improvements stem 

entirely from proactive, forecast-triggered velocity modulation at the controller level. 
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Table 7: Liveness Enhanced DWB controller performance. 

Experi

ment 

ID 

Robot Total 

Time (s) 

Total 

Distance 

(m) 

Dead-

locks 

Reco-

veries 

Goals 

Comple

ted 

Status 

1 carter1 489.5 78.43 0 0 6 Completed 

carter2 457.22 70.843 7 7 6 Completed 

2 carter1 371.06 70.314 0 0 6 Completed 

carter2 342.95 62.406 0 0 6 Completed 

3 carter1 422.32 73.155 0 0 6 Completed 

carter2 402.02 69.423 7 7 6 Completed 

4 carter1 340.53 68.912 0 0 6 Completed 

carter2 322.09 61.449 3 0 6 Completed 

 

5.1.5 Quantitative Comparison 

The evaluation of high-level plan execution demonstrates that liveness-based control 

significantly improves multi-robot performance across all measured metrics. Table 8 

summarizes the total and average performance for four experimental runs with and without 

liveness integration. 

Table 8: Quantitative Comparison of Reactive and Proactive Deadlock Avoidance. 

Metric Without 

Liveness 

With 

Liveness 

Relative 

Improvement 

Total Execution Time (s) 6252.92 3175.56 49% reduction 

Average Execution Time per Robot (s) 781.62 396.95 49% reduction 

Total Distance Travelled (m) 655.30 496.00 24% reduction 

Average Distance per Robot (m) 81.91 61.99 24% reduction 

Total Deadlocks 88,305 17 99.98% reduction 

Average Deadlocks per Robot 11,038 2.13 99.98% reduction 

Total Recovery Actions 217 21 90% reduction 

Average Recovery Actions per Robot 27.13 2.63 90% reduction 

 
Across the four experiments: 
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● Execution Time: Liveness-based control reduced completion time by approximately 

half, demonstrating faster, more efficient plan execution. 

● Distance Travelled: Robots followed smoother and more direct paths, resulting in 

~24% shorter trajectories on average. 

● Deadlocks: The number of deadlocks dropped from tens of thousands to near zero, 

reflecting the success of forecast-triggered liveness interventions. 

● Recovery Actions: Recovery behaviours were reduced by 90%, indicating that robots 

could maintain continuous motion without stalling. 

These results highlight the effectiveness of the forecast-driven DWB-Liveness controller, 

which ensures proactive conflict resolution, smooth trajectories, and high task completion 

efficiency without modifying the original high-level plans. The improvements confirm that 

integrating predictive deadlock models with liveness constraints is a robust approach for safe 

and efficient multi-robot navigation in complex intralogistics environments. 

5.1.6 Interpretation 

The evaluation demonstrates that deadlock forecasting alone is insufficient unless paired with 

an appropriate control mechanism. Conversely, liveness-based control is most effective when 

guided by anticipatory forecasts tied to high-level plans. 

Together, the forecasting models and liveness-based controllers form a coherent, 

decentralized strategy for deadlock avoidance: 

● forecasting provides when intervention is needed, 

● liveness control determines how to intervene, 

● high-level plans provide the structural context that enables generalization for a factory 

context. 

This alignment confirms the suitability of the EVENFLOW approach for Industry 4.0 

intralogistics environments, where robots repeatedly execute structured plans under 

dynamic interactions. 

5.2 Personalized Medicine 

The evaluation of the Personalized Medicine use case focused specifically on Kidney Renal 

Clear Cell Carcinoma (KIRC), reflecting the intensive interdisciplinary effort invested in this 

cancer type. KIRC was selected because of its clinical significance, well-characterized 

transcriptomic profiles, and structured stage progression, which together provide a rich 

substrate for testing hybrid early-warning systems that integrate machine learning, neural 

sequence modelling, and symbolic reasoning. This cancer-specific focus allowed the team to 

explore the predictive capacity of temporal gene expression patterns while maintaining a 

close connection to biological and clinical knowledge. 

The evaluation leveraged both real patient data from The Cancer Genome Atlas (TCGA) and 

synthetic longitudinal trajectories generated using a Variational Autoencoder trained on the 

KIRC dataset. The TCGA cohort comprised 530 patients with bulk RNA-sequencing profiles and 

clinically annotated stages, which were binarized into early and late-stage categories to 
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reflect meaningful clinical progression thresholds. Following preprocessing to remove genes 

with low expression or variance and patients with incomplete annotations, the dataset 

retained sufficient biological signal for downstream classification. Recognizing the inherent 

class imbalance favouring early-stage patients, macro-averaged F1-score was adopted as the 

primary evaluation metric, providing a more informative measure of discriminative 

performance than accuracy alone. The synthetic trajectories enabled controlled experiments 

by simulating disease progression over 50 discrete time points. Positive trajectories 

represented early-to-late stage transitions, while negative trajectories were generated 

through a combination of latent-space interpolation and Gaussian noise, both in the original 

gene expression space and in the VAE latent space. Among these, the Real-Space Noise 

dataset was selected for early-warning experiments because it offered a challenging yet 

biologically plausible setting in which the classifier had to distinguish progressive from non-

progressive trajectories without relying on trivial distributional differences. 

Before assessing early prediction capabilities, a baseline classification task was conducted to 

establish whether transcriptomic features alone could reliably discriminate KIRC stages. 

Gradient-boosted decision trees (XGBoost) were applied to the full set of 8,516 genes, 

achieving moderate performance with macro-averaged F1-scores around 0.70–0.75. To 

enhance interpretability and reduce the dimensionality of the input space, SHAP-based 

feature selection was performed, resulting in a reduced panel of 45 genes that retained 

maximal discriminative information. This panel improved the test F1-score to approximately 

0.79 and the area under the ROC curve from 0.787 to 0.873. The top-ranked genes, including 

OASL, HUS1B, and SLC22A1, consistently contributed to stage discrimination, reflecting their 

biological relevance and supporting the premise that KIRC stage transitions are governed by 

a focused set of transcriptomic markers. The success of this feature reduction demonstrates 

the importance of combining domain knowledge with algorithmic interpretability to 

concentrate predictive power on meaningful molecular signals, while simultaneously 

simplifying the downstream trajectory modelling task. 

With the feature panel established, full-trajectory classification was performed using an LSTM 

architecture trained on complete synthetic trajectories. The results highlighted substantial 

differences in classification difficulty depending on the method used to construct negative 

trajectories. When negative sequences were generated by interpolating between early-stage 

patients in the latent space, the model achieved near-random performance (F1 ≈ 0.548), 

indicating that these trajectories closely resembled early-to-late transitions. Conversely, 

trajectories constructed with latent-space noise achieved near-perfect discrimination (F1 ≈ 

0.995), but this configuration introduced distributional shifts unlikely to reflect true biological 

variability. The Real-Space Noise dataset produced intermediate results (F1 ≈ 0.938), 

providing a realistic yet challenging benchmark for subsequent early-warning experiments. 

These findings emphasized that careful construction of synthetic trajectories is critical for 

testing early prediction models under conditions that simulate clinical uncertainty without 

artificially simplifying the task. 

The primary evaluation focused on early trajectory classification, which simulates the clinical 

scenario of predicting stage transitions before they are fully observable. Two approaches 
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were compared: a purely neural LSTM baseline and a hybrid neurosymbolic system combining 

ASAL (Answer Set Automata Learning) with Wayeb, a probabilistic complex event forecasting 

framework. The LSTM was trained end-to-end on partial trajectory prefixes, capturing 

temporal dependencies in the gene expression sequences. It demonstrated rapid early 

convergence, achieving an F1-score of 0.90 within the first 10–12% of the trajectory, 

suggesting that discriminative patterns are detectable very early in disease progression. In 

contrast, the ASAL+Wayeb system reached the same threshold after observing approximately 

16–20% of the trajectory, reflecting a more gradual accumulation of predictive evidence. 

Despite this slower initial performance, the hybrid system offers substantial advantages in 

interpretability and clinical trustworthiness. ASAL induces finite-state automata that encode 

temporal gene expression dynamics, allowing domain experts to audit, validate, and refine 

the learned patterns. Wayeb complements this symbolic representation by providing 

probabilistic forecasts and confidence intervals for the timing of predicted stage transitions, 

enabling risk-stratified early-warning strategies that purely neural methods cannot supply. 

This evaluation underscores the importance of integrating predictive accuracy with 

interpretability and uncertainty quantification in high-stakes medical contexts. The 

combination of real and synthetic data, careful feature selection, full-trajectory classification, 

and early-warning neurosymbolic forecasting collectively demonstrates that KIRC stage 

transitions are detectable from temporal transcriptomic patterns, and that these predictions 

can be made actionable while remaining auditable and trustworthy. Moreover, the cancer-

specific focus highlights the substantial interdisciplinary effort required to align 

computational modelling with biological insight and clinical relevance, ensuring that the 

resulting framework is not only technically robust but also meaningful for patient care and 

translational research. 

5.3 Infrastructure Life Cycle Assessment 

The industrial use case provided by EKSO offered a compelling opportunity to apply 

neurosymbolic forecasting techniques to a real-world system characterized by high-frequency 

temporal dynamics. The primary objective of this evaluation was to determine whether a 

hybrid approach, combining supervised neural classification with symbolic temporal 

modelling, could accurately recognize high-level events in the pressure signal of a water pipe 

and reliably forecast future scenarios. This task is particularly challenging due to the strong 

class imbalance inherent in the raw EKSO dataset, as well as the temporal sparsity of 

meaningful transitions, and thus represents a realistic testbed for neurosymbolic methods in 

industrial monitoring. 

The first stage of the evaluation focused on learning a robust classifier capable of mapping 

short time windows of the pressure signal to high-level “simple events,” which correspond to 

the pipe/tap scenario active during the measurement interval. The raw data consist of 

univariate pressure signals sampled at 6.67 kHz, segmented according to scenario labels such 

as “All taps closed” or individual taps opened abruptly. Initial experiments with recurrent 

neural networks, including GRU and LSTM architectures, proved insufficient for capturing 

discriminative patterns directly from the raw waveform, even after extensive hyperparameter 
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tuning and down-sampling. The limitations of these models highlighted the need for feature 

representations that better expose the scenario-specific temporal signatures in the signal. 

Transitioning to a frequency-domain representation proved decisive. Applying a Short-Time 

Fourier Transform (STFT) to each 1-second window of the signal produced spectrograms that 

effectively encoded the temporal and spectral characteristics of each scenario. A 

convolutional neural network (CNN) trained on these spectrograms achieved substantial 

performance improvements, with a test-set accuracy of 0.91 and a macro F1-score of 0.77. 

Importantly, the model successfully handled the extreme class imbalance by weighting the 

loss function, allowing it to recognize rare abrupt-tap events alongside the dominant “All taps 

closed” state. These results confirm that the combination of STFT preprocessing and CNN 

classification is sufficient to extract high-level simple events from raw industrial time series, 

forming a reliable foundation for subsequent temporal modelling. 

However, the original EKSO dataset lacks meaningful temporal structure at the level of high-

level events, limiting its utility for sequence-based forecasting. To address this, a synthetic 

temporal dataset was constructed in which symbolic sequences of events evolve according to 

a controlled Markovian pattern. This procedure enabled the creation of multi-step sequences 

that preserve realistic durations for each event while enforcing temporal dependencies 

suitable for neurosymbolic reasoning. By sampling 1-second windows from the original 

dataset according to the synthetic symbolic sequences, we generated sequences of 15 

seconds in length, reflecting a variety of event transitions. This synthetic dataset allowed the 

evaluation of semi-supervised sequence modelling techniques under realistic constraints: 

only 5% of the training windows were labelled, simulating scenarios where limited expert 

annotation is available in industrial monitoring contexts. 

The semi-supervised stage employed the Mutual-Information Markov Model (MiMM) 

framework to align latent representations with temporal dependencies. By maximizing the 

mutual information between consecutive latent states, the network learned representations 

that both capture the semantics of individual windows and encode the dynamics of event 

transitions. Evaluation of the MiMM-augmented model (M2) against a purely supervised 

baseline (M1) demonstrates the substantial benefits of this approach. On the test set, M2 

achieved a window-level classification accuracy of 0.91, markedly higher than M1’s 0.75, and 

an adjusted mutual information score of 0.82 versus 0.6. Moreover, M2 recovered the 

underlying Markovian transition structure with greater fidelity, as evidenced by the lower 

mean absolute error between the estimated and true transition matrices (0.07 versus 0.13 

for M1). These results confirm that the semi-supervised mutual-information objective 

successfully leverages unlabelled data to improve both classification and sequence modelling 

performance. 

The final evaluation stage integrated the learned CNN and latent Markov model into a full 

neurosymbolic forecasting pipeline. The neural perception layer produces probability 

distributions over the five high-level events for each incoming 1-second window. These 

distributions are used to induce a Markov chain representing the system’s temporal 

dynamics, which is subsequently passed to a probabilistic model checker (PRISM) to answer 

temporal queries. Forecasting experiments demonstrated that the system accurately predicts 
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the probability of future scenarios over a 20-second horizon, closely tracking the actual 

sequences. Importantly, the neurosymbolic approach allows for probabilistic reasoning about 

future events while remaining interpretable and auditable, a critical requirement for 

industrial monitoring applications where risk assessment and operational decisions must be 

justified. The system outperformed pure neural baselines with more parameters in out-of-

distribution settings, further underscoring the advantages of combining neural perception 

with symbolic temporal reasoning. 

Overall, the evaluation highlights the effectiveness of the neurosymbolic framework for 

industrial time-series forecasting. By transforming raw high-frequency signals into high-level 

symbolic events and modelling their temporal evolution with a semi-supervised latent 

Markov approach, the system achieves both high predictive accuracy and interpretable 

probabilistic forecasts. This dual capability (precise recognition of instantaneous events and 

reliable short-term prediction of system evolution) positions the neurosymbolic methodology 

as a robust solution for water pipe leakage detection and other analogous industrial 

monitoring tasks. The results also demonstrate the broader applicability of EVENFLOW 

techniques, confirming that neurosymbolic forecasting can extract structured temporal 

knowledge from unstructured sensor streams, even in settings with severe class imbalance 

and limited labelled data. 
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6 Conclusions 
Across three diverse applications (Industry 4.0 multi-robot navigation, personalized medicine 

for KIRC stage transition, and EKSO water pipe monitoring) the EVENFLOW framework 

consistently validates its core hypothesis: robust complex event forecasting achieves practical 

value when tightly integrated with reasoning-aware, interpretable decision mechanisms. 

In the Industry 4.0 use case, training deadlock forecasters on high-level plan executions and 

feeding their predictions into liveness-enhanced controllers enabled proactive deadlock 

avoidance, reduced execution times, smoother robot trajectories, and fully decentralized 

operation. This demonstrates that combining learning, symbolic reasoning, and control is not 

merely expressive, but operationally effective in real factory environments where task 

structures are known but execution timing and interactions remain uncertain. 

The KIRC use case extends this premise to high-stakes biomedical applications. By uniting 

discriminative machine learning, neural sequence modelling, and symbolic event-based 

forecasting (ASAL+Wayeb), EVENFLOW delivers early detection of disease stage transitions 

from partial longitudinal data, explicit probabilistic forecasts with confidence intervals, and 

interpretable temporal patterns auditable by clinical experts. Even under conditions of limited 

patient data and class imbalance, this hybrid neurosymbolic approach achieves robust 

performance, confirming that the integration of predictive learning and symbolic reasoning is 

not only theoretically sound but practically deployable for trustworthy early-warning systems 

in precision oncology. 

In the EKSO industrial monitoring scenario, the framework demonstrates similar strengths in 

a temporal, high-frequency sensor domain. By combining CNN-based perception of pressure 

signals with semi-supervised latent Markov modelling and symbolic probabilistic reasoning, 

EVENFLOW accurately classifies high-level pipe/tap scenarios, reconstructs underlying 

temporal dynamics from sparse labelled data, and produces reliable probabilistic forecasts. 

The resulting predictions are interpretable, auditable, and operationally actionable, 

underscoring that learning, symbolic reasoning, and temporal modelling together form a 

robust and deployable solution for complex industrial event forecasting. 

Taken together, these results illustrate that EVENFLOW’s neurosymbolic approach provides a 

unified paradigm for complex event prediction: it leverages learning to extract patterns from 

raw data, employs symbolic reasoning to structure and interpret temporal dependencies, and 

produces actionable forecasts suitable for real-world deployment. Whether in robotics, 

healthcare, or industrial monitoring, the framework demonstrates that expressivity, 

interpretability, and operational effectiveness can coexist, enabling practical, high-confidence 

decision-making in dynamic and uncertain environments. 
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Appendix A Wayeb 
Wayeb is an online, probabilistic system designed for Complex Event Forecasting (CEF), 

addressing the challenge of predicting the potential occurrence of a declaratively defined 

Complex Event (CE) pattern (often formulated as a Symbolic Regular Expression (SRE)) within 

an event stream before it is actively detected by a Complex Event Recognition (CER) engine. 

Wayeb converts an SRE into a Deterministic Symbolic Finite Automaton (DSFA), which, when 

consuming the input stream, is functionally analogous (via isomorphism) to a classical 

deterministic automaton operating over the minterms of the DSFA predicates. 

To model the statistical properties of the stream, Wayeb employs Variable-order Markov 

Models (VMMs), specifically, Prediction Suffix Trees (PST), which capture long-term 

dependencies, while avoiding the computational explosion associated with exhaustive 

enumeration in fixed-order models. The probabilistic model is constructed by learning the PST 

from the minterms derived from the DSFA, using an approach that either involves creating an 

embedding of a probabilistic automaton within the DSFA by taking their Cartesian product, 

or, for superior memory efficiency, by directly estimating waiting-time distributions through 

recursive traversal of the PST, thereby bypassing the construction of the probabilistic 

automaton. 

These calculated waiting-time distributions, based on the theory of absorbing Markov chains, 

allow Wayeb to output forecasts, typically in the form of intervals [start, end], representing 

the predicted number of future events until pattern completion with a user-defined 

confidence threshold θ. Wayeb has been demonstrated to achieve high throughput and 

competitive accuracy compared to state-of-the-art solutions, often leveraging its ability to 

accommodate higher-order models for enhanced performance [REF-04]. 
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