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Executive Summary

Deliverable D3.3 presents the final results of the use cases in the EVENFLOW project, detailing
the development and validation of a unified technological framework for complex event
forecasting. This framework integrates machine learning, symbolic reasoning, and
probabilistic temporal modelling to deliver forecasts that are accurate, interpretable, and
deployable.

Its effectiveness is demonstrated across three real-world use cases. In Industry 4.0,
EVENFLOW enables proactive deadlock avoidance and smoother multi-robot navigation
through forecast-driven, liveness-aware controllers. In personalized oncology, it supports
early detection of cancer stage transitions, uncovers interpretable temporal patterns, and
generates confidence-calibrated probabilistic forecasts even when patient data is limited. In
industrial monitoring, the framework achieves accurate classification of pipe and tap
scenarios, reconstructs underlying temporal dynamics, and reliably predicts future events
from high-frequency sensor measurements.

Across these domains, EVENFLOW proves both theoretically expressive and operationally
robust, highlighting the practical impact of integrating learning, symbolic reasoning, and
temporal forecasting in dynamic, high-stakes environments.
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Acronym/ Title
Abbreviation

AMI Adjusted Mutual Information

AMR Autonomous Mobile Robot

ASA Answer Set Automaton

ASAL Answer Set Automata Learning

ATC All taps closed (EKSO dataset scenario)
AUC Area Under the Curve

BRCA Breast Invasive Carcinoma

CEF Complex Event Forecasting

CE Complex Event

CER Complex Event Recognition

CNN Convolutional Neural Network

csv Comma-Separated Values (data file format)
DFA Deterministic Finite Automaton

DSFA Deterministic Symbolic Finite Automaton
G3/G4 Medulloblastoma subgroups Group 3 / Group 4
GRU Gated Recurrent Unit

KIRC Kidney Renal Clear Cell Carcinoma

LSTM Long Short-Term Memory network

MAE Mean Absolute Error

MiMM Mutual-Information Markov Model

Nav2 Navigation 2 (ROS2 navigation framework)
NAR Nucleic Acids Research (journal)

NeSy Neurosymbolic forecasting system

ooD Out-of-Distribution

POV Point of View

PST Prediction Suffix Tree

RGB Red, Green, Blue (color channels in images)
SAX Symbolic Aggregate approXimation

SFA Symbolic Finite Automaton

SHAP SHapley Additive exPlanations

STFT Short-Time Fourier Transform

SRE Symbolic Regular Expression

VAE Variational Autoencoder

VMM Variable-order Markov Model

ksps Kilo-samples per second (sensor sampling rate)
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1 Introduction

1.1 Project Information

EVENFLOW develops hybrid learning techniques for complex event forecasting, which
combine deep learning with logic-based learning and reasoning into neuro-symbolic
forecasting models. This approach combines neural representation learning techniques that
construct event-driven features from streams of perception-level data with powerful
symbolic learning and reasoning tools, which utilize such features to synthesize high-level,
interpretable patterns for forecasting critical events.

To deal with the brittleness of neural predictors and the high volume/velocity of temporal
data flows, the EVENFLOW techniques rely on novel, formal verification techniques for
machine learning, in addition to a suite of scalability algorithms for training based on data
synopsis, federated training and incremental model construction. The learnt forecasters will
be interpretable and scalable, allowing for explainable and robust insights, delivered in a
timely fashion and enabling proactive decision making.

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting in
healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart
factories and (3) reliable life cycle assessment of critical infrastructure.

Table 1: The EVENFLOW consortium.

Number! Name Country Short name

1(CO) NETCOMPANY-INTRASOFT Belgium INTRA

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU

2 NATIONAL CENTER FOR SCIENTIFIC Greece NCSR
RESEARCH "DEMOKRITOS"

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS Greece ARC

STIS TECHNOLOGIES TIS PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS

4 BARCELONA SUPERCOMPUTING CENTER- Spain BSC
CENTRO NACIONAL DE SUPERCOMPUTACION

5 DEUTSCHES FORSCHUNGSZENTRUM FUR Germany DFKI
KUNSTLICHE INTELLIGENZ GMBH

6 EKSO SRL Italy EKSO

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY  United ICL
AND MEDICINE Kingdom

1.1 Document scope

The EVENFLOW project tackles the challenge of forecasting rare and complex events across
three key domains: Industry 4.0, Personalized Medicine, and Infrastructure Management. By
integrating neuro-symbolic reasoning with reproducible, data-driven modelling, EVENFLOW
delivers actionable predictive intelligence:

'CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner.
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e Industry 4.0: Enables proactive safety through efficient multi-robot navigation in
dynamic industrial environments.

o Personalized Medicine: Supports clinical precision by forecasting critical events and
adverse outcomes in oncology.

e Infrastructure Management: Enhances asset resilience via advanced predictive
maintenance and lifecycle assessment of infrastructure.

Together, these applications illustrate EVENFLOW’s potential as a scalable, accurate, and
interpretable solution for complex, real-world predictive challenges. This document provides
a follow-up to the previous deliverable, D3.2, detailing progress and refinements in the
project’s methodologies and applications.

1.2 Document Structure

This document is structured as follows:

Chapter 1: Introduction — Outlines the scope, objectives, and overall context of the
deliverable.

Chapter 2: Use Case Objectives — Defines the goals and expected outcomes for each use case,
covering Industry 4.0, Personalized Medicine, and Infrastructure Life Cycle Assessment.

Chapter 3: Use Case Developments — Describes the development of each use case, including
experimental platforms, datasets, predictive models, and control or forecasting strategies.

Chapter 4: EVENFLOW Technology Applied to Use Cases — Presents the practical application
of the EVENFLOW framework, showcasing neurosymbolic deadlock recognition for Industry
4.0, hybrid approaches for early kidney cancer transition detection in Personalized Medicine,
and infrastructure life cycle assessment methodologies.

Chapter 5: Use Case Evaluation — Details the evaluation methodology, experimental setup,
guantitative results, and their interpretation for all use cases.

Chapter 6: Conclusions — Summarizes key outcomes, insights, and lessons learned from the
project.

Dissemination level: PU - Public, fully open Page 10
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2 Use Case Objectives

2.1 Industry 4.0

The main objectives of the Industry 4.0 use case are centred on predictive and proactive robot
navigation within an intralogistics system. At the core, the project seeks to develop
mechanisms that allow robots to forecast potential conflicts, including deadlocks (a condition
in which robots mutually obstruct each other, halting task execution), and adjust their
navigation strategies to prevent them. The objectives can be summarized as follows:

e Generate reproducible datasets to support model training, validation, and
performance assessment.

e Predict potential deadlocks and collisions between robots using both time-series and
neuro-symbolic models.
Enable proactive navigation that minimizes operational delays and ensures safety.
Evaluate forecasting and control strategies both at the individual robot level and
across the multi-robot system.

These objectives aim to ensure that AMRs can operate efficiently and safely even in complex
industrial settings, where multiple robots interact and the environment is highly dynamic.

2.2 Personalized Medicine

This use case leverages EVENFLOW technology to forecast critical tumor evolution and
adverse pharmacological reactions within oncological "virtual patient" environments. By
synthesizing data-driven deep learning with neuro-symbolic reasoning, the project aims to
transform early clinical indicators into proactive, actionable decision support.

The specific objectives are to:

1. Develop reliable and reproducible virtual patient datasets for model benchmarking,
utilizing advanced deep generative architectures such as Variational Autoencoders
(VAEs).

2. Learn explainable latent representations that map unobserved biological variables to
transparent generative factors, with special emphasis on disease progression stages.

3. Infer pseudo-temporal patient trajectories from latent spaces to represent the
evolution of tumors throughout stages.

4. Identify temporally correlated event sequences within these trajectories, specifically
focusing on the molecular biomarkers.

5. Integrate synthetic data and discovered patterns into the EVENFLOW online neuro-
symbolic learning engine to facilitate the early forecasting of high-impact clinical
events.

Through these objectives, the use case provides an interpretable and forward-looking
framework for managing the dynamic complexities of oncological care and patient evolution.
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2.3 Infrastructure Life Cycle Assessment

The primary objective of this use case is to develop a digital twin for pipe networks that can
accurately identify and forecast lifecycle assessment (LCA) states and critical incidents. At its
core, the initiative seeks to shift infrastructure management from a predominantly reactive
approach to a predictive and proactive one, enabling earlier intervention and more informed
decision-making. By anticipating key lifecycle events, the digital twin will provide data-driven
intelligence to support maintenance planning, service optimization, and timely refurbishment
actions.

To achieve this, the use case focuses on creating a continuously updated digital
representation of the pipe network that captures both real-time conditions and historical LCA
states. It aims to forecast rare yet high-impact events, such as defects, malfunctions, and
degradation processes that compromise performance and reliability. In addition, the
approach supports the early prediction of End-of-Life conditions, allowing repairs,
replacements, or refurbishments to be planned well in advance. The digital twin will also
identify lifecycle states associated with inefficient operation or increased CO, emissions,
enabling targeted interventions that improve both performance and sustainability. By
leveraging EVENFLOW'’s advanced forecasting capabilities, the system is designed to learn
from sparse historical data and reliably predict infrequent but critical events. Collectively,
these efforts aim to enhance the resilience, sustainability, and cost-effectiveness of pipe
network management in the face of highly consequential lifecycle risks.
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3 Use Case Developments

3.1 Industry 4.0

3.1.1 Experimental Platform and Dataset Generation

The evaluation relied primarily on a high-fidelity simulation environment, as the physical
Festo Robotino robots proved less reliable for repeatable testing due to hardware limitations
and navigation inefficiencies with the default Nav2 stack. The simulation environment was
enhanced to support multi-robot scenarios, high-level planning, and dynamic task
assignments (Figure 1).

=
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Figure 1: Multi-Robot Simulation Pipeline.

In the simulation, two robots operate simultaneously across a set of six factory
stations, representing machine  modules or  workstations. Each station may
provide additional contextual information through RGB images corresponding to the tasks
being executed. Robots follow high-level plans that define the sequential order of station
visits, ensuring that the trajectories encompass realistic interactions and potential conflict
situations.

The simulation generates comprehensive datasets for model development and evaluation.
These datasets include robot positions, velocities, goal completion status, deadlock and
collision flags, and RGB images from robot-mounted cameras. By providing a reproducible
environment and detailed data capture, the simulation allows for rigorous evaluation of both
forecasting models and control strategies under diverse operational conditions.
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3.1.2 Predictive Models and Forecasting

Two approaches to deadlock forecasting were explored. The first and primary method uses
the “Wayeb” time-series forecaster from NCSR, which leverages trajectory data and robot
motion dynamics to calculate the probability of entering a deadlock state at a future time
step. This model identifies patterns in the relative distances and movement between robots,
providing an early warning system for potential conflicts.

The second approach explored neuro-symbolic forecasting, which analyses RGB image
streams from robots to infer the intended path of observed robots. This method predicts not
only the trajectory of other robots but also their high-level plan, allowing the system
to anticipate deadlocks and potential bottlenecks. While this method was investigated, the
final evaluation primarily focused on the Wayeb forecaster due to its robustness, reliability,
and simplicity for real-time deployment in multi-robot scenarios.

3.1.3 Control and Deadlock Resolution

The control and deadlock resolution component of the EVENFLOW Industry 4.0 use case is
designed to operationalize deadlock forecasts produced by the predictive models, translating
early warnings into proactive motion adjustments at the robot level.

Unlike traditional reactive navigation approaches, which respond only after a deadlock has
materialized, the EVENFLOW control stack assumes that deadlocks can be forecast at the level
of high-level task plans. Each robot follows a predefined high-level plan consisting of an
ordered sequence of workstation visits. These plans induce characteristic interaction patterns
between robots, including potential deadlock configurations. The forecasting models
described in Section 3.1.2 are trained on executions of such plans and provide early
predictions when a currently executing plan prefix is likely to lead to a deadlock.

The role of the controller is therefore not to detect deadlocks directly, but to maintain
liveness once a deadlock risk is forecast, ensuring that robots continue to make progress and
do not enter mutually blocking configurations.

3.1.3.1 Liveness-Based Control Concept

Deadlocks in multi-robot navigation typically emerge from symmetric interactions, where
robots slow down simultaneously or repeatedly yield to each other. To prevent this,
EVENFLOW enforces liveness constraints that guarantee forward progress while preserving
efficiency.

Let v4(t)and v, (t)denote the linear velocities of two interacting robots at time t. When the
forecaster predicts an upcoming deadlock along the currently executing high-level plan, the
controller enforces a velocity asymmetry constraint:

max((v1(t),v2(t)) = a(pg) - min(vl(t), v2(t))

where a(p,)is a risk-adaptive liveness parameter based on the deadlock probability p,; €
[0,1] predicted by the forecaster. In the experiments reported here, @ = 2 is used as a
nominal value. More generally, @ can be adjusted according to the strength of the forecast:

a(pg) =1+ (tmax — 1) * Da
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e Low forecast probability (pg = 0): minimal deviation, a(py) = 1
e High forecast probability (pg = 1): stronger asymmetry, a(pg) = Xmax

To minimize control effort, the robot which adjusts its speed (either slows down or speeds
up) is chosen to require minimal deviation from its nominal planner velocity v;**™(t).
Formally, the liveness-adjusted target velocities vi””e(t) solve:

||w{¥e () = v (o)1
i€{1,2}

subject to:

(vive ), v87e(®) = alpa) - (vie (), vi*e ()

This ensures smooth, minimal-effort intervention, breaking symmetry only as much as
necessary to maintain forward motion.

3.1.3.2 Integration with Nav2 Controllers (DWB Only)

The liveness mechanism was integrated into the Dynamic Window Approach (DWB) local
planner. The liveness constraint acts as a lightweight velocity modulation layer, applied after
the planner computes candidate velocity commands. This design preserves compatibility with
the standard DWB stack and allows the controller to operate at high frequency (30 Hz) in a
fully decentralized manner.

Key features of the DWB integration:

e continuous forward motion,

e symmetry breaking in conflict situations,

e forecast-driven activation based on deadlock probability,

e minimal deviation from nominal path-following behaviour, ensuring smooth and
efficient trajectories.

Implementation Concept:

e FEach robot evaluates a deadlock potential function based on predicted robot
interactions and applies a liveness constraint if forward progress is threatened.

e Velocity commands are modulated in real time to prevent stalling while maintaining
goal-directed motion.

e Constraints operate in a decentralized manner, requiring no centralized coordination.

3.2 Personalized Medicine

3.2.1 Use case scope and approach

The EVENFLOW Personalized Medicine use case has focused on advancing computational
approaches to interpret temporal omics data in cancer, bridging cutting-edge machine
learning techniques with clinically relevant insights. The project explored innovative
strategies for both data augmentation and dynamic process reconstruction, leveraging
Variational Autoencoders (VAEs) and their extensions to address the complex heterogeneity
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of cancer progression. The overall strategy combines a solid assessment of the state of the
art with two complementary methodological application areas: data augmentation and
dynamic process reconstruction.

3.2.2 State of the art survey

As a foundation for the use case, a systematic review on the application of Variational
Autoencoders (VAEs) to temporal omics inference in cancer has been conducted and is
currently under review in NAR Genomics & Bioinformatics. A pre-print is available at biorXiv
[REF-01]. The paper provides a comprehensive review of the application of VAEs in cancer
research over the past decade, with a particular emphasis on studies leveraging omics data.
The work focuses on how VAEs have been employed to model complex, high-dimensional
biological data and support cancer-related tasks (Figure 2). The review shows that VAEs have
been widely and successfully applied to static analyses, including cancer subtyping, diagnosis,
and prognosis. However, it also reveals that the use of VAEs to explicitly model temporal
tumor evolution remains limited. Most existing studies rely on cross-sectional datasets, and
only a small fraction attempt to capture time-dependent processes such as disease
progression or staging. A key limitation identified is the scarcity of longitudinal omics datasets,
which constrains the development and validation of models aimed at dynamic inference. As
a result, important biological questions related to cancer evolution and temporal trajectories
remain underexplored within the current VAE literature. We propose that future research
should more fully exploit the generative capabilities of VAEs to model cancer dynamics over
time. Such approaches could enable improved reconstruction of disease trajectories, facilitate
the study of stage transitions, and ultimately provide deeper insights into tumor evolution.

VAE Reconstruction

| @Fo%o

Data Alignment
and
Out-of-Sample Inference

Single Cell g N

o| (M) @
- . QLY e
‘ ) Survival Analysis Q Q

Tumor Subtyping

Multiomics

&

Pseuditome Inference

Figure 2: Common representation learning approaches in cancer research. VAEs encode
diverse omics data into a latent space mainly used for subtyping, prognosis, and pseudo-
time inference. In contrast, decoder-based applications for data reconstruction and temporal
cancer progression remain largely underexplored.
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3.2.3 Application 1: Data Augmentation

The first application area of the EVENFLOW Personalized Medicine use case focuses on the
use of VAEs to generate realistic synthetic omics data for cancer research. This approach
addresses data sparsity and imbalance while enabling controlled exploration of biological
variability. Special emphasis is placed on model transparency and robustness through the
integration of explainable Al (XAl), fairness metrics, and comparisons with alternative
modelling paradigms, including multilayer networks and multiscale mechanistic simulations.
Results on medulloblastoma, a childhood brain tumour, are reported in the pre-print
available in biorXiv and bound to be submitted shortly to Nature Communications [REF-02].

This work investigates molecular heterogeneity in medulloblastoma using VAEs, refining the
canonical subgroup stratification (groups WNT, SHH, Group 3 or G3 and Group 4 or G4) and
identifies an intermediate subgroup between G3 and G4. Leveraging the largest available
medulloblastoma transcriptomics cohort, we employ a VAE-based pipeline to generate high-
quality synthetic data, enabling detailed exploration of the G3—G4 boundary. Explainability
methods are integrated to interpret latent representations and uncover gene expression
patterns driving subgroup separation. The key contributions include the identification of an
intermediate G3—G4 subgroup and the characterization of genes underpinning distinctions
among the four canonical medulloblastoma subgroups (WNT, SHH, G3, and G4). Moreover, a
three-class classifier that explicitly accounts for the putative G3-G4 subgroup among patients
traditionally labelled as G3 or G4 achieves performance comparable to the conventional
binary classifier when trained on synthetically balanced data (Figure 3A). Notably, this model
also exhibits the lowest equal opportunity gap, indicating fairer performance across groups
(Figure 3B). This is particularly relevant because misclassification between G3 and G4 can
directly affect treatment decisions, as G3 patients typically receive more aggressive therapy
than G4 patients, and the inclusion of a third subgroup may enable the development of more
personalized treatment strategies. Overall, the work demonstrates how generative modelling
combined with explainable Al can improve interpretability and clinical relevance of generative
Al approaches in paediatric brain tumor research.
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Figure 3: (A) Performance metrics of four classifiers applied to patients traditionally labelled
as G3 or G4: binary models trained on unbalanced real data (2RD) and balanced synthetic
data (25D), and three-class models trained on unbalanced real data (3RD) and balanced
synthetic data (3SD). (B) Weighted macro true positive rate (TPR) for the four classifiers
across three patient groups (more aggressive, less aggressive, and intermediate). Equal
opportunity gap values for each classifier are shown on the right.

3.2.4 Application 2: Dynamic Process Reconstruction

The second application area focuses on reconstructing temporal and pseudo-temporal
dynamics from cross-sectional or partially aligned omics datasets. By combining VAEs, rule
learning, and probabilistic event forecasting, this work aims to infer latent trajectories,
identify key transitions in disease progression, and enable predictive modelling of cancer
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evolution. We investigated these approaches in breast invasive carcinoma (BRCA) and kidney
renal clear cell carcinoma (KIRC). In both cases, the corresponding synthetic datasets are
publicly available on Zenodo [REF-03]. For KIRC, a manuscript is currently in preparation for
submission to Nature Machine Intelligence. Additional details on the KIRC results are provided
in Section 4.2.

3.3 Infrastructure Life Cycle Assessment

The Infrastructure Life Cycle Assessment use case is developing the datasets analysis gathered
from a pipe section (Figure 4), with the aim of identifying states and incidents ahead of time
and with high accuracy. In particular the LAB testing (at UNIPA), and the small scale pilot at
EKSO premises (with preliminary Al processing) had led to the definition of the best set of
technology (vibration sensors) already deployed in a full scale pilot on a real potable water
pipe section, in operations and at present producing data continuously.

3.3.1 Experimental Platform and Dataset Generation

The main features of the Small-scale Pilot are the following:

Vibration time series from 1 sensor (event labelled) locally registered;
Frequency: 6,6 ksps;

Magnitude: 800MB on compressed CSV file;

Limited time frame measurements: 1 hour;

Different simulated leakage in distance and size.

A wWwN e

The main features of the Full scale Pilot are the following:

e Vibration time series from 10 sensors (event labelled) remotely registered;
e Frequency:1,6 ksps (each sensor-BUS main constraint);

e Magnitude: 14MB/10min. (all sensors) in Binary format (Numpy zipped)

e Continuous measurement: 24/7

e Sigle leakage simulation.

Figure 4: Aerial view of the full-scale pilot potable water pipeline equipped with vibration
sensors.

This is enabling EKSO to make educated, data-driven analysis regarding some major relevant
phenomenons/defects, operational or structural that could affect the pipe efficiency:

* General Anomaly detection
* |eak presence
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* sizing leak
* |ocating leak

* Signal evolution in time
* Ageing phenomenons

These are the main KPIs to base real time evaluation of the efficiency of the pipe status and
operations to consequently make decisions about maintenance, service, and repairs of the
pipes, including the implementation of refurbishment operations when required sizing and
locating them at the best.

First results on the Full Scale Pilot, on the Leak detection and location tell us that one sensor’s
recordings analysis alone are confirming that it is not enough: Pre-processing one sensor’s
recordings gives accuracy from 60% to 97%. Progressing on a major complex scenario using
the closest sensor, the model increases accuracy to 98.5%; if we use all 10 sensors, we
increase accuracy to 99.8 %.

Regarding the short term target related to the leak detection and sizing, data classification
issues under consideration are the following:

e During training: Create a model for each sensor that answers the relevant question “Is
there a leakage X meters to my right/left?”

e During inference: Run each produced model on each sensor’s test dataset. Compute
leakage location as the average location of the locations given by the 100 models.

e During visualization: When detecting a leakage, if the leakage is not consistently (all
the sensors together) detected for the next 1 minute or so, consider it FALSE ALARM.

e Prepare more data to train the models using leakages observed from different
locations.

Dissemination level: PU - Public, fully open Page 20



E\/HNFL-(;‘\.W D3.3 - Final Use Case Evaluation

Horizon Europe Agreement No 101070430

4 Application of the EVENFLOW framework to the Use Cases

4.1 Industry 4.0: Neurosymbolic Deadlock Recognition

A deadlock refers to a situation in which a robot is unable to proceed due to obstacles,
including unforeseen interactions with another robot. Such scenarios can lead to unexpected
delays within the industrial setting, and it is thus desirable to be able to forecast and
consequently avoid them. We would like to achieve the above in a decentralised manner, in
which each robot is tasked to forecast its own deadlock given only data streams from its own
sensors, such as image streams from a mounted camera and tabular streams from mobility
sensors (e.g. position, orientation, velocity, etc.).

Because the deadlock condition intuitively depends on quantities that change over time, such
as speed and acceleration, it is natural to express it as a temporal specification. This
formulation is also instrumental for the aim of forecasting such situations. In particular, we
model deadlock as a deterministic finite automaton (DFA) which operates on the distance
between the two robots. Conceptually, we think of this specification as domain knowledge,
i.e. it could be constructed by a domain expert. In reality, this automaton is learnt from
sequences of mobility data from the two robots, including positive (including deadlock) and
negative (not including deadlock) trajectories.

High-Level Plans on XY Grid
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Plan 4 2-56—-101-5—-STG4 -3

Plan 5 6-55-52-8STG4—-101—-3

5 high Level Plans

Figure 5: Simple multi-robot scenario and high-level plans illustrating decentralized deadlock
forecasting.

We construct an out-of-distribution train/test split, wherein we train using sequences from
trajectories following Plans 1-4, and test on sequences taken from Plan 5. This is an 80/20
train/test split. Initially we perform 5-fold cross-validation on the 80 trajectories in order to
tune an early stopping parameter. Using this parameter, we then train on all 80 trajectories
and test on the held-out set of 20 trajectories.
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Table 2: Models, tasks, and performance metrics on training and test datasets.

Performance Metrics
Model Task
train test
— MAPE* MAPE
CNN oor |n.a e
regression
3.43% 3.65%
s Accuracy F1-Score Accuracy F1-Score
CNN+LSTM equence
classification
99.1% 98.4% 87.9% 81.3%
s Accuracy F1-Score Accuracy F1-Score
CNN+DFA e
classification
92.3% 80.0% 93.8% 84.0%

* Mean Absolute Percentage Error

We see that while a neural system trained end-to-end on sequence classification for
deadlocks outperforms the NeSy system in the training set, these roles flip when tested on a
OO0D setting. It is worth noting that conceptually the OOD setting is not adversarial, in fact
the images are quite similar (the robots are still moving in the same space but are simply
following different paths). It is precisely this type of generalisation that is achieved from the
introduction of domain knowledge into the system, encoded here as a temporal specification
through an automaton.

4.1.1 Early Deadlock Recognition

4.1.1.1 Summary

We evaluate early deadlock recognition, event forecasting, on a shared dataset using three
method families: (1) a purely neural LSTM classifier that maps prefixes, early events in the
sequence, directly to labels, (2) Forward Recognition, a modular generative + symbolic
pipeline that samples suffixes and applies a symbolic DFA to detect deadlocks in the
generated sequence, and (3) Wayeb, a symbolic probabilistic forecasting tool. All methods
operate on the same trajectories and are compared across a sweep of observation earliness
(prefix length k) using metrics, such as precision, recall and F1 score.

4.1.1.2 Introduction

Early classification asks: given an observed prefix X1k of a discretized trajectory, can we
reliably predict whether the unobserved continuation will lead to a deadlock. This task trades
off earliness and reliability: smaller k gives earlier warnings but less information. Our
evaluation measures performance as a function of k to identify practical operating points for
proactive interventions.
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4.1.1.3 Data and preprocessing
Experiments use logged robot trajectories whose continuous inter-robot distances are
discretized with SAX into 40 symbols. Each trajectory, which contains 20 timepoints, is split
into an observed prefix, e.g. 8, and a target suffix, e.g. 12 respectively. For the variable-length
generator we sample multiple prefix lengths per example to improve robustness to different
observation horizons.

In the figure below we see a sample of 100 trajectories and the values they take at each
timepoint. We observe that positive sequences (depicted in orange) have a decreasing trend,
which means that the distance between the two robots decreases as time passes in the
positive trajectories.

Sample of 100 trajectories

2
=]

= label=0
— — label=1

symbol / value
. ™ ~ w w
o S & 8 &

.
5}

o
\
[I\

0.0 2.5 5.0 75 10.0 12,5 15.0 17.5
time

Figure 6: Sample of 100 discretized robot trajectories over time, showing that positive
sequences (orange) exhibit a decreasing inter-robot distance trend compared to negative
sequences (blue).

The dataset is imbalanced. The training split contains 833 sequences (715 negative / no-
deadlock, 118 positive / deadlock), while the test split contains 208 sequences (181 negative,
27 positive). Because the positive (deadlock) class is the minority, accuracy alone can be
misleading. Therefore we focus on precision, recall and the F1 score for the positive class as
primary evaluation metrics.
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Figure 7: Mean discretized trajectory per label over time, with shaded regions indicating the
25th-75th percentile range, highlighting the decreasing inter-robot distance trend in positive
sequences.

The core objective is early and reliable deadlock detection. This means maximizing the F1
(macro) score as early as possible (small k). We report metrics across prefix lengths and
compare error modes (precision vs recall) and robustness to prefix variability. To find the best
method for this task, we apply the following methods.

4.1.2 Methods

4.1.2.1 Purely Neural

The purely neural method implements? an end-to-end LSTM classifier that maps a
fixed-length observed prefix directly to a binary deadlock label. Input sequences are encoded
over the 40-symbol vocabulary and the model consists of a single LSTM layer
(hidden_size=128), whose final hidden state is projected to two logits corresponding to the
positive / negative classes. Models are trained with cross-entropy loss using the Adam
optimizer (default learning rate 1e-3) and configurable epochs and batch size.

The purely neural design is attractive for its simplicity and for avoiding hand-coded rules: a
single model learns discriminative features directly from prefixes. This simplicity comes with
trade-offs, such as that the classifier can be sensitive to the class imbalance and that this is a
black-box architecture with no information being able to be given to the system manager, in
order to do replanning.

4.1.2.2 Forward Recognition Methodology

With this methodology we study? early deadlock forecasting for mobile robots by combining
generative sequence prediction with symbolic recognition. The pipeline predicts future
discrete distance values from partial observations and evaluates whether the completed
trajectory satisfies a deadlock pattern encoded as a deterministic finite automaton (DFA). We
compare four generators, a second-order Markov chain, a sequence to sequence LSTM, an

2 GitHub private repository: https://qithub.com/EVENFLOW-project-EU/dfki-forward-
recognition/blob/main/methods/Istm classification.py
3 GitHub private repository: https://qithub.com/EVENFLOW-project-EU/dfki-forward-recognition
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autoregressive LSTM trained on fixed-length prefixes, and a variable-length autoregressive
LSTM, and quantify recognition performance (accuracy, precision, recall, F1) as a function of
observation earliness. The results show a clear earliness—accuracy trade-off: neural
autoregressive approaches attain the highest F1 at early prefixes, while variable-length
training improves scores at late prefixes.

4.1.3 Introduction

Being able to forecast deadlocks before they occur enables proactive replanning and safer
operation in multi-robot systems. We frame the task as forward recognition: given an
observed prefix of discretized inter-robot distances, predict whether the unobserved
continuation will lead to a deadlocked configuration. Our methodology separates prediction
and recognition: a generative model hypothesizes suffixes, and a symbolic DFA determines
whether the hypothesized full trajectory matches the deadlock pattern.

4.1.4 Problem formulation

Let X1.x denote the observed prefix of discrete tokens. The goal is to decide whether the
concatenated sequence Xi:k | | Sk+1:1, where Sks1.1is a suffix sampled from a generative model

conditioned on Xi., is accepted by the deadlock SFA. We study how classification quality
varies with k to quantify how early reliable forecasts can be made.

4.1.5 Architecture

4.1.5.1 Generator Component
We evaluated four generators with different inductive biases and computational costs.

> Second-order Markov chain: This baseline estimates next-token probabilities by
counting observed triplet transitions and normalizing with a small additive smoothing
constant. Training is a simple fit of empirical counts. There is no gradient-based loss.

> Seq2Seq LSTM: A single-layer encoder processes the prefix and a dense projection
produces logits for the whole suffix. Training minimizes cross-entropy aggregated over
suffix positions. This model captures if there is a summary/encoding of the prefix
useful for multi-step prediction.

> Autoregressive LSTM (fixed-length): The encoder LSTM consumes a fixed-length
prefix and an LSTMCell decoder generates the suffix one step at a time. Training uses
teacher forcing and token-level cross-entropy, while at inference the model decodes
autoregressively with greedy sampling.

> Variable-length autoregressive LSTM: Architecturally similar to the fixed-length
autoregressive model but trained on many prefix lengths sampled from full
sequences. The loss ignores padded positions in the suffix and is therefore robust to
variable-target lengths. This training strategy vyields better performance when
inference prefixes vary in length.

4.1.5.2 Recognition (symbolic) component

Recognition is performed by a deterministic finite automaton that encodes domain
knowledge about deadlock configurations. The automaton’s acceptance of a generated full
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sequence is interpreted as a positive deadlock forecast. This design isolates symbolic decision
rules from generative errors and supports interpretable failure analysis.

To generate the automaton we use Answer Set Automata Learning (ASAL). ASAL is a
framework for learning and revising complex event patterns represented as symbolic finite
automata (SFA) from labelled streams of multivariate event-based data. In ASAL, a symbolic
temporal model that accepts or rejects the input event traces is encoded as an answer set
automaton (ASA), i.e., an answer set program that combines a generic automata interpreter,
a specification of the automaton’s structure (states and transitions), background predicates
that operate over event tuples (e.g., trends, thresholds, attribute comparisons etc), and
transition guard rules, defined as Boolean combinations of the background predicates.

A high-level diagram of the whole pipeline - methodology described above:
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Figure 8: High-level diagram of the ASAL pipeline.

We also compare the above methods with a purely symbolic one. For this symbolic method
we just use the automaton for the prefix sequences only. If the automaton does not reach an
accepting state by the end of the prefix sequence, we consider the at hand sequence, a
sequence with no deadlock and label it as such, otherwise we label it as 1, because the
accepting state has been reached.

This method serves as a proof that the deadlock does not happen that early in the sequence
and that the automaton alone is not sufficient for forecasting.

4.1.6 Methodology

We sweep prefix lengths k from small (very early observations) to large (near-complete
trajectories) and report recognition accuracy, precision, recall and F1 for the positive
(deadlock) class at each k. Each generator is trained using standard cross-entropy
optimization (except the Markov baseline, which is fitted via counts), with hyperparameters
chosen to balance convergence and computational cost.

Dissemination level: PU - Public, fully open Page 26



EVHNFL‘“’:’W D3.3 - Final Use Case Evaluation
Horizon Europe Agreement No 101070430

4.1.7 Results

The experiments reveal consistent patterns across models. At early prefixes (k small, e.g., 2-
6), predictions are highly uncertain and recognition F1s are low (roughly 0.3-0.5). As more of
the trajectory is observed, performance improves. This is mostly a sanity check, because our
primary interest is actually earlyness. Therefore, we focus our analysis on prefix lengths k in
the range 5-14.

Within the earliness window the autoregressive LSTM attains the highest average F1 and
consistently outperforms seq2seq and the Markov baseline on average. The variable-length
autoregressive model narrows the gap and provides better robustness across earlier prefixes
(it shows smaller drops at smaller k). The Markov chain shows a high single-point peak at
k=11,14, likely reflecting a favourable alignment between simple generative predictions and
the DFA at that prefix length m but its mean performance across the earliness window is lower
than the neural autoregressive approaches.

Table 3: F1 scores show that autoregressive models outperform others in the earliness
window.

Type of

conent | wakovchain | S | pregese | e
/ Prefix

k=3 0.308 0.42 0.452 0.4

k=5 0.414 0.491 0.518 0.441

k=8 0.525 0.557 0.570 0.557

k=10 0.59 0.592 0.588 0.591

k=13 0.635 0.623 0.655 0.669

k=15 0.764 0.664 0.693 0.731

k=17 0.778 0.78 0.881 0.834

In the plot below the Fl-score vs prefix-length plot shows the earliness-accuracy trade-off
directly: each curve corresponds to one generative+recognizer pipeline and the vertical axis
reports F1 for the positive (deadlock) class at each observed prefix length.
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Figure 9: F1 scores for the positive class versus prefix length, illustrating the earliness-
accuracy trade-off for each generative+recognizer pipeline.

Precision/recall plots expose differences in error modes: some models trade precision for
recall at particular prefix lengths, while others remain more balanced.
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Figure 10: Precision—recall plots highlight differences in error trade-offs across models at
varying prefix lengths.

Finally, plotting the generative loss (cross-entropy) across prefixes shows that prediction
confidence and sharpness generally increase with prefix length. Inspecting loss together with
recognition metrics helps distinguish cases where lower loss does (or does not) translate into
better symbolic recognition.
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Figure 11: Generative loss (cross-entropy) across prefixes, showing increasing prediction
confidence with longer prefixes and its relationship to recognition performance.

4.1.7.1 Method comparison

We compare three approaches for early deadlock recognition: the purely neural LSTM

classifier, Forward Recognition with

autoregressive generation, and Wayeb (in this setting,

Wayeb uses the discretized SAX data and the same ASAL-generated automaton as in the
method Forward Recognition). All methods operate on the same discretized SAX trajectories
and are evaluated across varying prefix lengths.
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Figure 12: Comparison of early deadlock recognition methods (LSTM classifier, Forward
Recognition with autoregressive generation, and Wayeb) across prefix lengths on discretized

SAX trajectories.
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The purely neural method achieves the highest average F1-score, benefiting from its end-to-

end discriminative learning. However, it provides no interpretability or uncertainty
guantification, and predictions are opaque binary classifications.

Forward Recognition offers modularity and interpretability: the DFA acceptance provides an
explainable decision tied to symbolic domain knowledge. The autoregressive generator
achieves competitive performance, particularly at early prefix lengths (k=5-10), though its
reliance on generated suffixes introduces error propagation from the generative component.

Wayeb provides probabilistic forecasts with uncertainty estimates via confidence intervals,
enabling risk-aware decision-making. Its use of variable-order Markov models captures long-
term dependencies efficiently, though performance depends on the quality of the learned
PST and the automaton structure.

In summary, we can conclude that the purely neural approach maximizes F1 on average but
sacrifices transparency, while Forward Recognition balances performance with
interpretability. Wayeb uniquely offers uncertainty quantification alongside symbolic
reasoning, but worse average performance overall.

4.2 Personalized Medicine: Hybrid Methods for early KIRC transition
recognition
4.2.1 Summary

This work investigates hybrid methods for recognizing and forecasting stage transitions in
Kidney Renal Clear Cell Carcinoma (KIRC) from transcriptomic time series. By utilizing
discriminative machine learning, neural sequence models, and symbolic event-based
forecasting we aim to characterize predictive signals in both patient-derived and synthetic
longitudinal data. In collaboration with the Barcelona Supercomputing Center (BSC), we first
establish baseline stage classification capabilities on the KIRC dataset. We then evaluate
trajectory classification methods on VAE-generated synthetic sequences, demonstrating that
purely neural network methods achieve strong full-trajectory discrimination performance.
For the critical early-warning task, we compare a purely neural baseline against a
neurosymbolic approach that combines ASAL, a framework for learning interpretable finite-
state automata from discretized gene expression streams, with Wayeb, a probabilistic
complex event forecasting system that produces confidence-calibrated temporal predictions.
While the neural method achieves improved performance with rapid early convergence, the
ASAL+Wayeb system delivers competitive scoring alongside explicit uncertainty
guantification, interpretable symbolic patterns auditable by clinical experts, and probabilistic
forecast intervals for transition timing. These capabilities are essential for developing
trustworthy, deployable early-warning systems in high-stakes medical contexts.

4.2.2 Goal

The primary objective is to evaluate and compare methods for detecting and forecasting stage
transition-related events in patient transcriptomic time series data derived from real KIRC
samples. The work focuses on following tasks:
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e The development of a baseline classification performance for KIRC stage
discrimination and the identification of a minimal, interpretable gene panel that
improves this performance

e The implementation of a time-series model that separates trajectories that proceed
to late-stage from those that remain early and finally,

e The investigation of symbolic forecasting approaches that provide early-warning
predictions with explicit uncertainty for disease progression.

4.2.3 Data and Preprocessing

4.2.3.1 Static TCGA Dataset

The core dataset comprises bulk RNA-sequencing gene expression profiles and corresponding
clinical annotations for 530 KIRC patients obtained from The Cancer Genome Atlas (TCGA) via
the UCSC Xena browser. The original data encompass expression measurements for 8,516
genes following preprocessing steps that removed genes with zero expression in at least 20%
of patients and genes exhibiting both mean and variance below 0.5. Clinical metadata include
pathological stage classifications (Stages |, Il, I, and V), which were binarized into "early"
(Stages | and Il) and "late" (Stages Ill and V) categories to reflect clinically meaningful
progression thresholds. The dataset exhibits class imbalance, with a higher proportion of
early-stage patients, necessitating the use of macro-averaged Fl-score as the primary
evaluation metric rather than accuracy. The data were partitioned into training (424 patients,
80%) and test (106 patients, 20%) sets with stratified sampling to preserve class proportions,
following the same split used in the collaborative VAE training to prevent information leakage.

4.2.3.2 Synthetic Trajectories Dataset

Synthetic longitudinal gene expression trajectories were generated by BSC using a Variational
Autoencoder trained on the TCGA KIRC dataset. The VAE architecture learns a low-
dimensional latent representation of patient gene expression profiles and employs a decoder
to generate synthetic samples. To simulate disease progression, positive trajectories
representing early-to-late stage transitions were constructed by interpolating between early-
stage and late-stage patient embeddings in the latent space over 50 discrete time points.
Multiple negative-trajectory construction strategies were explored to provide contrasting
non-progressive patterns: (1) latent-space interpolation between pairs of early-stage patients
(early-to-early trajectories), (2) augmentation of early-stage patient expression profiles with
additive Gaussian noise in the original gene expression space, and (3) augmentation with
Gaussian noise applied in the latent space. These synthetic datasets enable controlled
evaluation of classification methods under varying degrees of class separability and noise
characteristics. All synthetic trajectory datasets preserved the original train-test patient
partition to maintain experimental consistency and avoid contamination between training
and evaluation phases.

4.2.3.3 Preprocessing Pipeline

Gene expression values were subjected to standard normalization using MinMaxScaler to
ensure all features occupy comparable numeric ranges, mitigating the influence of genes with
extreme expression magnitudes. For classification experiments, we initially retained all 8,516
genes, then systematically reduced the feature space through iterative SHAP-based feature
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importance ranking. Patient samples with missing clinical stage annotations were excluded,
reducing the dataset from an initial pool to the final 531 annotated patients. The
preprocessing workflow prioritized maintaining the biological signal while removing technical
artifacts and uninformative features, as evidenced by subsequent classification performance
improvements following dimensionality reduction.

4.2.4 Methods

4.2.4.1 Stage Classification with XGBoost

We employed gradient-boosted decision trees via the XGBoost framework as the primary
classification model due to its robust performance on high-dimensional tabular data and built-
in handling of feature interactions. The classifier was configured with standard
hyperparameters including 50—300 boosting rounds, maximum tree depths of 3—10, learning
rates between 0.001 and 0.2, and subsample ratios of 0.5—1.0. Given the class imbalance in
the dataset, we explored the scale_pos_weight parameter to adjust the contribution of
minority-class samples during training. Model training employed 5-fold stratified cross-
validation to ensure robust performance estimation and mitigate overfitting risks.
Hyperparameter optimization was conducted using the Optuna framework with a Tree-
structured Parzen Estimator to maximize macro-averaged F1-score on validation folds. The
final model was trained on the full training set and evaluated on the held-out test set using
multiple metrics: F1-score (macro), accuracy, precision (macro), recall (macro), and confusion
matrices to assess both overall performance and class-specific discriminative capacity.

4.2.4.2 Feature Selection via SHAP

To identify a minimal gene panel that retains maximal discriminative information for stage
classification, we applied SHapley Additive exPlanations (SHAP), a model-agnostic
interpretability method grounded in cooperative game theory. SHAP values quantify the
marginal contribution of each feature to individual predictions by computing the average
change in model output when a feature is included versus excluded across all possible feature
coalitions. We employed the TreeExplainer algorithm, which provides exact SHAP values for
tree-based models with computational efficiency. The feature importance ranking was
derived by computing the mean absolute SHAP value for each gene across all validation
samples, capturing both the magnitude and consistency of each gene's contribution to stage
discrimination. The feature selection procedure proceeded iteratively: (1) train a baseline
XGBoost classifier on the full gene panel, (2) compute SHAP values on an independent
validation set (20% of training data), (3) rank genes by mean absolute SHAP values, (4)
evaluate classification performance using top-k gene subsets for varying k, and (5) select the
k that maximizes validation F1-score. This process identified a panel of 45 genes that achieved
improved performance compared to the full 8,516-gene feature space. The selected genes
exhibit high discriminative capacity as evidenced by their SHAP importance scores, with the
top-ranked genes including OASL (mean |SHAP| = 0.842), HUS1B (0.766), C9orf129 (0.533),
HPDL (0.515), and SLC22A1 (0.444). The reduced gene panel seems to improve model
generalization.

Dissemination level: PU - Public, fully open Page 32



EVHNFL"':'W D3.3 - Final Use Case Evaluation
Horizon Europe Agreement No 101070430
4.2.4.3 Trajectory classification

Prior to implementing early-warning forecasting, we establish a fundamental capability
assessment through full-trajectory classification. This task evaluates whether a model can
discriminate complete disease progression sequences, distinguishing trajectories that
transition from early to late-stage cancer from those that remain stable, when provided with
the entire temporal observation window. Full-trajectory classification serves as an upper-
bound performance benchmark, representing the ideal scenario where all temporal
information is available before prediction is required.

For this task, we employ a purely neural approach using an LSTM architecture. The network
processes complete synthetic gene expression trajectories spanning all 50 discrete time
points, with the model's recurrent layers capturing temporal dependencies across the full
sequence before producing a final binary classification. Training and evaluation follow the
same stratified train-test partitions used throughout the experimental pipeline, with
performance measured via macro-averaged Fl-score, accuracy, precision, and recall to
account for potential class imbalance between progressive and non-progressive trajectories.

The baseline expectation for this task is straightforward: given access to the complete
trajectory, the model should minimally achieve performance equivalent to a static classifier
operating solely on the terminal time point. That’s true, because the final observed state
alone suffices to determine whether a patient has progressed to late-stage disease. Superior
performance would indicate that temporal patterns embedded throughout the trajectory,
such as rate of change, inflection points, or sequential gene expression dynamics, carry
additional discriminative signal beyond the endpoint state. This full-trajectory baseline
establishes the performance ceiling against which early-warning methods must be evaluated,
qguantifying the predictive cost of operating with incomplete temporal information in realistic
clinical scenarios.
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4.2.4.4 Early Trajectory classification
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Figure 13: Overview of the hybrid neurosymbolic framework for early trajectory
classification, combining ASAL for interpretable pattern discovery with Wayeb for
probabilistic forecasting of disease progression from partial longitudinal data.

The early trajectory classification task extends beyond static-stage discrimination to detect
impending transitions from early to late-stage disease using only partial temporal
observations. Given a prefix of a patient's longitudinal trajectory, the objective is to forecast
whether the sequence will ultimately progress to late-stage cancer or remain stable, thereby
enabling proactive clinical intervention before irreversible progression occurs. To address this
challenge, we employ a hybrid neurosymbolic approach that combines ASAL (Answer Set
Automata Learning) for pattern discovery with Wayeb for probabilistic forecasting of
transition events.

ASAL (Answer Set Automata Learning) serves as the pattern induction component, learning
interpretable finite-state automata from discretized time-series data. Operating on symbolic
representations generated with K-bins discretizer, ASAL uses Monte Carlo Tree Search over
an Answer Set Programming-encoded hypothesis space to discover temporal state-transition
rules that discriminate progressive from non-progressive trajectories. The framework
expresses complex event recognition operators, including sequence, iteration, and filtering,
through answer set automata that combine a generic automaton interpreter with learnable
guard conditions defined as Boolean combinations of background predicates such as trends,
thresholds, and attribute comparisons. This formulation enables ASAL to extract clinically
interpretable temporal patterns while maintaining predictive accuracy through constraint-
driven abductive learning.
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Wayeb complements ASAL by providing probabilistic forecasting capabilities for the learned
patterns. Wayeb is an online, probabilistic system designed for Complex Event Forecasting
(CEF), addressing the challenge of predicting the potential occurrence of a declaratively
defined Complex Event (CE) pattern (often formulated as a Symbolic Regular Expression (SRE))
within an event stream before it is actively detected by a Complex Event Recognition (CER)
engine. Given a symbolic finite automaton specification and an incoming event stream,
Wayeb constructs Variable-order Markov Models, specifically Prediction Suffix Trees, to
capture long-term statistical dependencies without the computational burden of exhaustive
state enumeration. By modelling waiting-time distributions through the theory of absorbing
Markov chains, Wayeb produces forecasts in the form of confidence intervals [start, end] that
predict the number of future events until pattern completion occurs with user-defined
confidence threshold 0. This integration enables our system to not only detect early warning
signals but also quantify uncertainty around predicted transition timing.

The complete framework is shown in Figure 13.

4.2.4.5 Neural Comparison

To establish a purely data-driven baseline for trajectory classification, we implemented a Long
Short-Term Memory (LSTM) network trained directly on the synthetic gene expression time
series. The LSTM architecture comprises a single recurrent layer with 128 hidden units
followed by a fully connected classification head, designed to capture temporal dependencies
in the last timepoint trajectories without relying on explicit symbolic abstraction or event
detection. The model operates on variable-length trajectory prefixes, enabling assessment of
classification performance as a function of observed sequence length-a critical consideration
for early-warning scenarios where predictions must be made with limited temporal context.

The LSTM was evaluated using the same train-test splits as the symbolic methods with the
discretized data, with performance measured via macro-averaged Fl-score, accuracy,
precision, and recall. This neural baseline serves as a comparative reference point for
assessing whether explicit symbolic pattern extraction and probabilistic forecasting offer
advantages over end-to-end learned representations, particularly in terms of interpretability,
sample efficiency, uncertainty quantification for transition prediction tasks and performance.

4.2.5 Results

4.2.5.1 Static TCGA Classification

Baseline classification on the static TCGA dataset using the full 8,516-gene panel yielded
moderate performance with macro-averaged Fl1-scores ranging between 0.70—0.75 across
cross-validation folds, reflecting the inherent difficulty of stage discrimination from high-
dimensional gene expression data. Application of SHAP-based feature selection to identify
the top 45 genes resulted in improved performance, with test-set Fl-score increasing to
approximately 0.79 and AUC rising from 0.787 to 0.873. This improvement demonstrates that
dimensionality reduction via explainability-guided feature selection effectively removes
noisy, irrelevant features and concentrates the model's capacity on biologically informative
transcriptomic markers. Precision and recall metrics exhibited balanced performance across
early and late classes, with confusion matrices indicating relatively symmetric error
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distributions. The classifier achieved accuracy values exceeding 0.80, though this metric s less

informative given the class imbalance favouring early-stage patients.
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Figure 14: Baseline and SHAP-guided feature selection performance on the TCGA dataset,
showing improved F1-score and AUC after reducing to the top 45 informative genes.

4.2.5.2 Feature Importance

The SHAP-based feature ranking revealed a compact set of genes with substantial
discriminative capacity. The top 45 genes span diverse biological pathways, including immune
response (OASL, CD1C), cell cycle regulation (MCM2, MYCN), metabolic processes (CYP3A4,
CYP17A1), and developmental signalling (GATA6, FOXF2, HOXBS8). Notably, genes such as
OASL and HUS1B exhibited mean absolute SHAP values exceeding 0.75, indicating their
consistent and substantial contribution to stage predictions across the patient cohort. The
feature importance distribution exhibits a long-tailed pattern, with a small subset of genes
contributing disproportionately to model decisions, while the majority of the 8,516 genes
provide minimal discriminative signal. This finding validates the feature selection strategy and
suggests that KIRC stage transitions are governed by a relatively focused transcriptomic
signature rather than diffuse genome-wide alterations.

The full list of the 45 genes is the below:

OASL HUS1B C90rf129 HPDL SLC22A1 C10orf41 LOC10013235 FGF12

4
TRIM36 CD1C DNASE1L3 HS3ST1 LOC653113 CYP3A4 KIF17 FOXF2
GJB1 JAKMIP3 NUPR1 GATA6 OTOF CES8 MCM2 MYCN
HOXB8 MYH7B EPHB4 CYP17A1 CABYR MADCAM1 CCDC146 KIAA0802
MASP1 DACT3 CTAGES MXRA7 KIAA1024 Cdorfé LRRIQ1 PLEKHH2
KLC3 AFAP1L1 FAM186B SLC22A16 HSD17B3

In the table below, we also compare with an average of 10 experiments executed each time
with a different random reduced gene subset. This shows that feature reduction alone does
not suffice to improve performance.
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Table 4: Comparison of classifier performance using the full gene panel, random 45-gene
subsets, and SHAP-selected 45 genes.

# of genes F1-macro Accuracy Precision Recall
8.516 0.684 0.708 0.657 0.548
45 (random) 0.6479 0.6736 0.6036 0.5143
45 (SHAP) 0.799 0.811 0.789 0.714

4.2.5.3 Synthetic Trajectory Evaluation

As established in the Methodology section, demonstrating full-trajectory classification
capability is a prerequisite before implementing early-warning forecasting systems. This
evaluation serves dual purposes: first, to confirm that complete temporal sequences contain
sufficient discriminative signals for stage progression prediction, and second, to inform
dataset selection for subsequent early classification experiments. We present results across
three synthetic dataset configurations that vary systematically in their construction of
negative trajectories, those representing patients who remain in early-stage disease without
progression to late-stage cancer. Positive trajectories, representing early-to-late stage
transitions, are constructed identically across all datasets through latent-space interpolation
between early-stage and late-stage patient embeddings over 50 discrete time points.
Moreover, all datasets include only the 45-genes established in the above experiments.

e Synthetic Trajectory Data Type A (Latent-to-Latent): Negative trajectories are
generated via latent-space interpolation between pairs of early-stage patients,
producing smooth transitions that remain within the early-stage manifold.

e Synthetic Trajectory Data Type B (Noise-Augmented): Negative trajectories are
constructed by augmenting early-stage patient profiles with additive Gaussian noise,
introducing stochastic variability while preserving the fundamental early-stage
characteristics. This dataset includes two subtypes based on the space in which noise
is applied:

o Subtype B1 (Real-Space Noise): Gaussian noise is applied directly to gene
expression values in the original 8,516-dimensional feature space, simulating
measurement variability and biological stochasticity at the transcriptomic
level.

o Subtype B2 (Latent-Space Noise): Gaussian noise is applied within the VAE's
learned latent representation before decoding back to gene expression space,
introducing controlled perturbations that respect the statistical structure
captured by the generative model.
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Table 5: Trajectories classification scores.

Dataset Types Latent-to-Latent Real-Space Noise Latent-Space Noise

F1-macro score 0.5481 0.9382 0.9951

The full-trajectory LSTM classifier exhibits markedly different performance across the three
synthetic dataset configurations, revealing fundamental differences in task difficulty that
arise from the negative trajectory construction strategies.

The Latent-to-Latent dataset yields near-random performance (F1 = 0.5481), indicating that
trajectories constructed through latent-space interpolation between early-stage patients are
virtually indistinguishable from those interpolating between early and late-stage patients.

Conversely, the Latent-Space Noise configuration achieves nearly perfect discrimination (F1
= 0.9951), likely because noise perturbations in the learned latent representation create
distributional shifts that are easily exploited by the classifier but do not reflect realistic
biological variability.

The Real-Space Noise dataset occupies an intermediate difficulty regime (F1 = 0.9382),
demonstrating strong but imperfect separability. The classification errors suggest the task
remains challenging enough to stress-test early-warning methods without being artificially
trivial or impossibly difficult. Therefore, we select the Real-Space Noise dataset for all
subsequent early trajectory classification experiments.

4.2.5.4 Early Trajectory classification Evaluation

Having established the feasibility of full-trajectory discrimination, we now address the
primary objective: early classification of disease progression from incomplete temporal
observations. This task requires predicting whether a patient will transition to late-stage
cancer using only a prefix of their longitudinal trajectory, simulating realistic clinical scenarios
where intervention decisions must precede observable progression.

The evaluation compares our hybrid approach, combining ASAL for pattern discovery with
Wayeb for probabilistic forecasting, against the purely neural LSTM baseline to assess the
trade-offs between interpretability, uncertainty quantification, and predictive performance.

4.2.5.5 Learned Symbolic Automaton

A key advantage of the ASAL framework is its production of human-interpretable temporal
patterns that can be audited and validated by domain experts. Operating on the top-45 gene
panel identified through SHAP-based feature selection and discretized data, ASAL induced the
following finite-state automaton from the Real-Space Noise training trajectories.

The learned automaton structure encodes temporal rules that discriminate progressive from
non-progressive trajectories through Boolean combinations of gene expression thresholds.
For instance, specific state transitions may be guarded by conditions such as "SLC22A1
expression increases above threshold t; for consecutive time steps". This symbolic
representation enables clinical experts to evaluate whether the discovered patterns align
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with known biological mechanisms of KIRC progression and also and most importantly modify
the automaton based on expert knowledge.

Below is the automaton generated based on the gene SLC22A1 with ASAL:

gl<0.1517

gl<0.1517 0.1189<g1 <0506 0.118%9<g1=0.506

O<gl<0.506

gl<0.1517

0.118%9<g1<0.506

g1<0.1517 0.1189<g1<0.506

Figure 15: Finite-state automaton induced by ASAL from discretized SLC22A1 expression
trajectories.

4.2.5.6 Comparative Performance Results

To evaluate early classification capability, both the ASAL+Wayeb system and the LSTM
baseline were assessed across trajectory prefixes of increasing length, simulating
progressively later intervention points. The neurosymbolic approach processes symbolic
event streams through the learned automaton, with Wayeb computing waiting-time
distributions and forecast intervals at user-defined confidence threshold 8 = 0.5 to predict
pattern completion timing. The LSTM operates also on discretized gene expression prefixes,
producing binary classification predictions with associated softmax confidence scores.

LSTM vs Wayeb - Early classification Task Performance
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Figure 16: Early classification performance of ASAL+Wayeb versus LSTM across increasing
trajectory prefixes.

4.2.5.7 Key Findings

The results reveal distinct performance characteristics and temporal dynamics between the
two approaches, as shown in the figure above. The LSTM baseline demonstrates slightly
improved trajectory classification performance across different timepoints in the trajectory.
Notably, the LSTM reaches the threshold of F1 > 0.90 remarkably early at the timepoint 5-6
(10-12% of the trajectory) and maintains stable, high performance throughout the remaining
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sequence. This rapid convergence suggests the neural model efficiently extracts early
discriminative signals. This indicates that patterns are early detectable.

The ASAL+Wayeb system achieves competitive but slightly lower performance (F1-macro =
0.928 at trajectory completion), with a more gradual performance improvement curve. The
neurosymbolic approach requires observing approximately 8-10 timepoints before crossing
the F1 > 0.90 threshold.

Despite the LSTM's improved performance, the ASAL+Wayeb system provides critical
capabilities absent from the purely neural approach. Wayeb's probabilistic forecasting
produces explicit confidence intervals for predicted transition timing. This could potentially
allow for risk-stratified clinical interventions. In this setting high-confidence early warnings
could trigger immediate action while uncertain forecasts prompt continued monitoring. The
learned automaton patterns remain fully interpretable and auditable by domain experts,
allowing validation against known KIRC progression mechanisms and identification of novel
biomarker dynamics. Furthermore, the symbolic rules can be iteratively refined through
expert feedback

The results suggest that hybrid neurosymbolic approaches offer a viable path toward
trustworthy early-warning systems that balance predictive accuracy with the transparency
and auditability demanded by high-stakes medical decision-making.

4.3 Infrastructure Life Cycle Assessment

4.3.1 Overview

In this section we apply and evaluate neurosymbolic forecasting techniques on a real-world
industrial use case provided by EKSO, involving water pipe leakage detection. The raw data
consist of high-frequency univariate time series recorded from a pressure sensor on a water
pipe under different “scenarios,” such as all taps closed or individual taps opened abruptly.

Our goal is twofold:

® Learn a robust classifier that can map short time windows of the pressure signal to
high-level “simple events” (the pipe/tap scenario at that time).

e On top of these learned simple events, build a temporal model that captures how
scenarios evolve over time and use it to forecast future events in a neurosymbolic
fashion.

The approach proceeds in three stages:

1. Supervised simple-event classification on the original EKSO signal.

2. Construction of a synthetic temporal dataset, where sequences of high-level events
follow a controlled Markovian pattern.

3. Semi-supervised learning of a latent Markov model with a mutual-information
objective (MiMM - see Chapter 8 of Deliverable D4.2), and use of the learned Markov
chain in combination with probabilistic model checking for neurosymbolic forecasting.
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4.3.2 Raw EKSO Dataset and Supervised Classification

Figure 17: Original time series for the EKSO univariate dataset. Background is set based on
the scenario of the segment. The dominant (orange) scenario for example is when all taps
are closed.

4.3.2.1 Raw EKSO Dataset and Supervised Classification

We work with a univariate time series comprising pressure measurements sampled at 6.67
kHz from a water pipe. The data are organised into segments, each corresponding to a
particular scenario. In the original dataset, many scenarios have very few examples, so we
restrict attention to five classes that have sufficient support:

“All taps closed” (ATC)
“Tap 1 abrupt”
“Tap 2 abrupt”
“Tap 3 abrupt”
“Tap 4 abrupt”

An illustration of the original dataset is presented in Figure 17. The “all taps closed” class is
highly dominant. We split the time series temporally into train/validation/test segments,
preserving chronological order to mimic a realistic deployment setting: 50% of the data for
training, 25% for validation and 25% for testing.

Within each long segment, we cut the time series into non-overlapping windows of duration
1 second. Since the sampling rate is 6.67 kHz, each window contains 6,670 measurements.
We refer to these 1-second windows as our basic units for classification. Each window inherits
the scenario label of the segment from which it was drawn. Some examples of windows are
presented in Figure 18.
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Figure 18: Some units from the validation set for each class in the dataset. Each window
(separated by whitespace) is 6670 measurements.

The class supports in the training set (in number of 1-second windows) are:

All taps closed: 1,518
Tap 1 abrupt: 92

Tap 2 abrupt: 147
Tap 3 abrupt: 124
Tap 4 abrupt: 175

This distribution highlights the strong imbalance in favour of the “all taps closed” class.

4.3.2.2 Initial attempts with sequential models

A natural first attempt is to treat the raw signal (or down-sampled versions of it) as a sequence
and train recurrent neural networks (GRUs, LSTMs) to classify each window. We
experimented with:

Feeding the raw 1-second sequences directly to GRU/LSTM models.

Down-sampling each 1-second window by averaging over smaller sub-windows (e.g.
averaging every 200 samples to produce a sequence of length 34), so that RNNs see a
shorter sequence of aggregated values.

Despite these preprocessing steps and hyperparameter tuning, the recurrent models
achieved unsatisfactory performance in terms of F1-score. In practice, they struggled to learn
discriminative features for the five classes from raw or lightly processed waveforms.

4.3.2.3 Frequency-domain representation and CNN classifier
We obtained substantially better results by moving to a time—frequency representation. Each
1-second window is transformed using a Short-Time Fourier Transform (STFT), yielding a 2D
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spectrogram. In our setting, the resulting spectrograms have a shape 129 x 209 (frequency
bins x time bins). These spectrograms serve as “images” representing the acoustic/pressure

footprint of each scenario. Some examples of the STFT spectrograms are presented in Figure
19.

Figure 19: Some units after being processed with STFT. The dimension of the spectrogram is
129x209. Examples from all 5 classes from left to right.

On top of this representation, we train a 2D convolutional neural network (CNN) for window-
level classification. The CNN architecture is standard: a stack of convolutional layers with non-
linearities and pooling, followed by fully connected layers that output class logits. Training
details: Loss: cross-entropy; Class weights: 0.1 for the dominant class (“all taps closed”) and 1
for each of the other four, to partially counteract class imbalance; Batch size: 32; Learning
rate: 3e-4; Training for 100 epochs, selecting the best model by validation macro F1. The
entire CNN architecture used in shown below:

CNNClassifier (
(conv_encoder) : Sequential (
(0) : Conv2d(l, 32, kernel size=(3, 3), stride=(1, 1))
(1) : ReLU()
(2) : InstanceNorm2d (32, eps=le-05, momentum=0.1, affine=False, track running stats=False)

(3) : MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(4): Conv2d(32, 64, kernel size=(3, 3), stride=(1, 1))

(5): ReLU()

(6) : InstanceNorm2d (64, eps=le-05, momentum=0.1, affine=False, track running stats=False)
(7) : MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(8): Conv2d (64, 128, kernel size=(3, 3), stride=(1, 1))

(9) : ReLU()

(10) : MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(11) : AdaptiveAvgPool2d (output size=(1, 1))

(12) : Flatten(start dim=1, end dim=-1)

(13) : Linear (in_features=128, out features=64, bias=True)
(14) : ReLU()

(15) : Dropout (p=0.5, inplace=False)

(16) : Linear (in features=64, out features=5, bias=True)

))

On the test set, averaged over 5 independent runs, we obtain:

® Accuracy: 0.91+0.01
® MacroF1:0.77 £0.04

This confirms that the combination of STFT preprocessing and CNN classification is adequate
for mapping raw time series windows to high-level simple events.
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4.3.3 Synthetic Temporal Dataset and Markovian Sequencing

4.3.3.1 Motivation

The original EKSO dataset, as collected, does not encode meaningful temporal structure at
the level of high-level events: the order in which scenarios occur over time is largely
determined by the experimental design and is effectively random. For example, operators
may choose arbitrarily when to open or close specific taps, so there is no consistent pattern
like “all taps closed is usually followed by tap 1 abrupt” that one could exploit for forecasting.

However, the forecasting methods developed in EVENFLOW, and in particular our mutual-
information Markov model (MiMM) framework, require sequential structure in terms of high-
level states. We therefore build a synthetic temporal dataset where the high-level events
(ATC, Tap 1 abrupt, etc.) evolve according to a Markov chain that we design explicitly. The
Markov chain used is illustrated in Figure 20.

All taps closed

Figure 20: The Markov Chain used to create the synthetic temporal dataset. The chain starts
from the left-most All taps closed state and moves between the classes as time goes by.

4.3.3.2 Constructing the Markov chain
We define a Markov chain over the five states:

ATC (All taps closed)
T1 (Tap 1 abrupt)
T2 (Tap 2 abrupt)
T3 (Tap 3 abrupt)
T4 (Tap 4 abrupt)

Initially, we set the transition probabilities so that the stationary distribution of the chain
roughly matches the empirical class frequencies in the original data. However, the extreme
dominance of ATC made the resulting chain too imbalanced for learning. We therefore slightly
rebalance the transition matrix to keep ATC as the most frequent state, but not as
overwhelming.
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The resulting stationary distribution is:

ATC: 0.55
T1:0.10
T2:0.08
T3:0.06
T4:0.15

This means that, when we sample a long trajectory from the chain, roughly 55% of the states
will be ATC, and the rest will be distributed among the T1-T4 states as above.

4.3.3.3 Generating temporal sequences of windows
We sample symbolic sequences of length 15 from the Markov chain. A typical sequence might
look like:

ATC, T3, ATC, ATC, ATC, T2, T3, ATC, T3, ATC, T1, ATC, T4, T1, ATC

For each symbolic sequence, we generate a corresponding multistep time series by sampling
1-second windows from the original EKSO data: For each symbol in the sequence (e.g. ATC,
T3, T1), we pick a 1-second window from the original dataset that has that label. We
concatenate these windows in order to form a sequence of 15 seconds; each second
annotated with its high-level event. We follow the same temporal splitting strategy as before
to construct train, validation and test sets: Train: 61 sequences; Validation: 24 sequences;
Test: 23 sequences.

Each sequence is of length 15, so the training set contains 915 windows in total. Importantly,
we assume that only 5% of the training windows are labelled; the remaining 95% are treated
as unlabelled and are used for unsupervised representation learning.

Figure 21: A sample generated sequence. Obtained by: (i) Sampling a symbolic sequence
from the Markov Chain; (ii) Choosing windows from the actual data for each element. Each
step in the sequence (1s in duration) is color coded based on the label. The sequence length

here, as in our experiments, is 15.
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4.3.4 Semi-Supervised Learning with Mutual-Information Markov Models
(MiMM)
4.3.4.1 Models and training setting

We compare two models, M1 and M2, which share the same CNN architecture and differ only
in how they use the available labelled and unlabelled data.

e M1 (purely supervised baseline): the CNN is trained only on the small labelled subset
of the training windows (5% of 915 = 46 windows). After training, we evaluate M1
directly as a classifier on the test windows.

e M2 (semi-supervised MiMM model): we first pretrain the CNN on the same 46
labelled windows as in M1. Then, instead of stopping there, we continue training on
the full training set (all 915 windows) using an unsupervised objective derived from
mutual-information maximisation between consecutive latent states. The idea is to
encourage the CNN to produce discrete latent representations that preserve as much
information as possible about the next latent state in the sequence.

In more detail, the MiMM step uses the following intuition: Each 1-second window is mapped
by the CNN to logits over the five classes (ATC, T1, T2, T3, T4), which we can interpret as a
distribution over latent states. For a pair of consecutive windows (at times t and t+1) in a
sequence, we want the latent state at time t to be maximally informative about the latent
state at time t+1. We therefore train the network to maximise an estimate of the mutual
information I(Z_t; Z_{t+1}), where Z_t is the discrete latent state at time t. We refer to D4.2
for further details on the mutual information estimation.

This mutual-information objective exploits the temporal structure induced by the Markov
chain: windows that follow each other are likely to correspond to consistent or predictable
changes in the underlying state. By aligning the CNN’s latent representations with these
temporal regularities, M2 can “pull” the decision boundaries into better positions, even
though most of the training windows are unlabelled.

We evaluate the performance of the CNNs on mapping the data to their correct label on the
test set (Accuracy). Further we report the induced Markov Chain when passing the whole
training set from each model and estimating the probability of each transition, e.g. ATCto T1
for consecutive windows.

4.3.4.2 Evaluation as a classifier
We evaluate both M1 and M2 as simple-event classifiers on the held-out test windows. The
results are:

® M1 test accuracy: 0.75
e M2 test accuracy: 0.91

Thus, by leveraging the mutual-information-based unsupervised objective on the unlabelled
portion of the data, M2 significantly improves over the purely supervised baseline, effectively
closing the gap to the fully supervised CNN trained on the original EKSO dataset. The adjusted
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mutual information (AMI) is 0.6 and 0.82 respectively. AMI measures the information gained
for inferring the label by knowing the prediction of the model compared to a random model.

4.3.4.3 Recovering the underlying Markov chain

Beyond window-level classification, we are interested in how well the learned models capture
the underlying temporal dynamics. To this end, we first run the trained CNN (M1 or M2) on
all the training sequences. For each pair of consecutive windows, we record the predicted
label at time t and at time t+1. Finally, we estimate the empirical transition matrix by counting
transitions between predicted labels and normalising. We then compare this estimated
transition matrix to the true Markov chain used to generate the symbolic sequences. The
comparison is made via the mean absolute error (MAE) over all entries of the transition
matrix. The results are as follows:

e M1: MAE per entry =0.13
e M2: MAE per entry = 0.07

Therefore, M2 not only classifies windows more accurately but also recovers a Markov chain
that is substantially closer to the true generative process. In other words, the mutual-
information training step allows us to learn a high-quality latent Markov model directly from
raw time series data and a very small number of labels. For completeness, we report the
different transition matrices.

[ 0.52, 0.09, 0.17, 0.15, 0.07 ] [0.43, 0.20, 0.05, 0.22, 0.10] [0.62, 0.06, 0.12, 0.12, 0.08]
[ 0.85, 0.15, 0.00, 0.00, 0.00 ] [0.48, 0.22, 0.07, 0.16, 0.06] [0.84, 0.16, 0.00, 0.00, 0.00]
[ 0.00, 0.00, 0.56, 0.44, 0.00 ] [0.10, 0.10, 0.23, 0.30, 0.27] [0.13, 0.03, 0.58, 0.21, 0.05]
[ 0.86, 0.00, 0.00, 0.00, 0.14 ] [0.36, 0.14, 0.03, 0.26, 0.21] [0.88, 0.00, 0.00, 0.02, 0.10]
[ 0.00, 0.26, 0.00, 0.00, 0.74 1 [0.20, 0.20, 0.06, 0.08, 0.46] [0.05, 0.22, 0.01, 0.00, 0.72]

The leftmost matrix is the original transition matrix, the next one is [M1] and the last is [M2].

4.3.5 Neurosymbolic Forecasting

The final step is to use the learned M2 model in a neurosymbolic forecasting pipeline. This
involves the following components:

Neural perception layer: Raw EKSO time series windows (1-second segments) are fed to M2,
which maps each window to a probability distribution over the five high-level states (ATC, T1,
T2, T3, T4). For forecasting purposes, we can use the most likely state or the full distribution.

Latent Markov model: The transition probabilities between states are estimated from the
predictions of M2, as described above. This yields a Markov chain that approximates the true
dynamics of the system in the space of high-level events.

Symbolic probabilistic reasoning: The learned Markov chain is then passed to a probabilistic
model checker (PRISM). There, we express forecasting queries in temporal logic.

An overview of the NeSy forecasting system is presented in Figure 22.

Dissemination level: PU - Public, fully open Page 47



E\/HNFL-(;‘\.W D3.3 - Final Use Case Evaluation

Horizon Europe Agreement No 101070430

/

Markov Transition
Forecast
[0.62, 0.06,0.12, 0.12, 0.08] Model
[0.84, 0.16, 0.00, 0.00, 0.00]
[0.13, 0.03, 0.58, 0.21, 0.05] Checker
[0.88, 0.00, 0.00, 0.02, 0.10] 'y
[0.05, 0.22, 0.01, 0.00, 0.72]
0
Predicted
neural network
State
-

Figure 22: The NeSy forecasting system. Purple components are learnt. Orange (the model
checker) is used for reasoning. The input time series is passed through the learnt [M2]
model. The transition function induced by [M2] along with the predicted states are passed to
a symbolic model checker. The model checker is used to solve for arbitrary queries.

For each sequence in the test dataset, we pick a random timestep between 2 and 6 in the
sequence. We extract the window and then apply the neural network to predict the state.
Using the induced transition matrix from above (learnt by [M2]) we then call a model checker
to predict the probability of certain queries. For this experiment we use simple queries. We
randomly select for each sequence a query like:

What is the probability of C for each of the next N timesteps?

where Cis a class (randomly selected, e.g. T1 for each sequence) and N is set for 20. We report
the forecasting curves in Figure 23.
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Figure 23: NeSy forecasting results. Black lines show the actual correct forecast if we
correctly mapped the input timeseries to the correct class and used the correct transition
function for prediction. In the red curve the mapping between timeseries and class are made
with the learnt neural network and instead of the true transition function we use the induced
transition function.

In Figure 22 the y-axis ranges from 0 to 1 and we have a 20s forecast horizon. As can be seen
in the figure, the results are very accurate with the predicted forecast closely matching the
actual correct curve.

As a first step to forecasting, this section studies the task of recognition, i.e. that a deadlock
has occurred within a given trajectory. Specifically, we show that the constructed temporal
neurosymbolic system is able to outperform a pure-neural architecture with more
parameters in an out-of-distribution (OOD) setting.

The NeSy system consists of a convolutional neural network (CNN) and a deterministic finite
automaton (DFA). The CNN operates on the robot's POV camera data and predicts the
position (coordinates) of the other robot (regression problem). The CNN is PyTorch’s
implementation of efficientnet_b0O (4.0M parameters) pretrained on ImageNet. The
coordinate prediction is combined with the robot's own position to compute the distance
between the robots. This distance is z-normalized and bucketized into 40 bins. It is worth
noting that we attempted to directly predict these 40 symbols from the image (a multiclass
classification task). However, this approach was significantly less performant than regress -
compute - normalize - bucketize. These bins are the symbols that are used as input to the
symbolic DFA which specifies the deadlock pattern. The NeSy system thus performs sequence
classification, that is, whether the sequence of images in the input contains a deadlock.
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4.3.5.1 Experimental setup

D3.3 - Final Use Case Evaluation

100 videos of the two robots executing different trajectories within a factory lab. There exist
5 plans, consisting of different order of visiting workstations. The resulting data distribution

is as follows:
#sequences positive negative total
train 104 328 432
test 28 101 129
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5 Use Case Evaluation

5.1 Industry 4.0

The evaluation of the Industry 4.0 use case centred on two tightly connected components:
the forecasting models, which predict potential deadlocks arising from multi-robot
interactions, and the navigation controllers, which determine whether robots can avoid or
resolve conflicts once they emerge. Although these elements operate independently in the
architecture, they were assessed within the same simulation environment to ensure
reproducibility and comparability.

The Controller evaluation measured how well different navigation strategies perform in
scenarios specifically designed to induce conflict. This included comparing baseline Nav2
controllers against newly developed liveness-enhanced controllers that enforce continuous
progress and prevent stalling behaviour. Such evaluations provide a clear quantitative
understanding of how predictive modelling and proactive control support robust multi-robot
navigation in dynamic factory environments.

5.1.1 Evaluation Scope and Methodology

The evaluation of the Industry 4.0 use case focuses on the end-to-end interaction between
deadlock forecasting and liveness-based control, with the high-level plan as the central unit
of analysis.

Robots operate in a simulated factory environment executing predefined high-level plans,
each specifying an ordered sequence of workstation visits. The forecasting models are trained
on executions of a subset of these plans and evaluated on held-out plans, reflecting realistic
deployment conditions where robots repeatedly execute known task structures with varying
timing and interactions.

The controller evaluation therefore answers the following question: Given that a deadlock
forecaster predicts an upcoming deadlock along a high-level plan, can liveness-based control
prevent the deadlock and improve execution efficiency?

5.1.2 Experimental Setup

Simulation environment: Isaac Sim factory/warehouse layout
Robots: Two differential-drive AMRs (carter1, carter2)
High-level plans: Five predefined task plans; evaluation performed on held-out plans
Metrics logged:
O execution time,
distance travelled,
deadlock count,
recovery actions,
task completion status

o
(@)
(@)
(@)

Each experiment corresponds to a full execution of a high-level plan by both robots, including
all induced interactions.
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5.1.3 Baseline: Controllers Without Liveness

When executing high-level plans using standard Nav2 controllers without liveness constraints,
the following behaviours were observed:

frequent deadlocks during plan execution,

repeated triggering of recovery behaviours,

long execution times despite successful task completion,
oscillatory velocity profiles caused by symmetric yielding.

These effects were especially pronounced in plan segments that induce close robot
interactions, such as shared workstations or overlapping travel paths.

Table 6: Baseline DWB controller without liveness performance.

Experi | Robot Total Total Dead- Recov- | Goals Status

ment Time (s) | Distance | locks eries Comple

ID (m) ted

1 carterl 694.1 83.798 6956 36 6 Completed
carter2 661.94 77.084 8937 4 6 Completed

2 carterl 1059.54 | 93.074 18838 | 21 6 Completed
carter2 971.65 76.761 18052 | 20 6 Completed

3 carterl 877.08 83.919 14300 |6 6 Completed
carter2 846 50.709 13475 | 124 6 Completed

4 carterl 463.22 73.415 2973 0 6 Completed
carter2 420.49 66.579 2774 8 6 Completed

5.1.4 Liveness-Enhanced Execution

When the same high-level plans were executed with liveness-based control enabled and
activated by deadlock forecasts:

deadlocks were reduced by orders of magnitude,

recovery behaviours were largely eliminated,

execution time decreased significantly,

robots maintained smooth, continuous motion throughout plan execution.

Crucially, no changes were made to the high-level plans themselves. The improvements stem
entirely from proactive, forecast-triggered velocity modulation at the controller level.
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Table 7: Liveness Enhanced DWB controller performance.

Experi Robot Total Total Dead- | Reco- Goals Status

ment Time (s) | Distance | locks | veries Comple

ID (m) ted

1 carterl 489.5 78.43 0 0 6 Completed
carter2 457.22 70.843 7 7 6 Completed

2 carterl 371.06 70.314 0 0 6 Completed
carter2 342.95 62.406 0 0 6 Completed

3 carterl 422.32 73.155 0 0 6 Completed
carter2 402.02 69.423 7 7 6 Completed

4 carterl 340.53 68.912 0 0 6 Completed
carter2 322.09 61.449 3 0 6 Completed

5.1.5 Quantitative Comparison

The evaluation of high-level plan execution demonstrates that liveness-based control
significantly improves multi-robot performance across all measured metrics. Table 8
summarizes the total and average performance for four experimental runs with and without
liveness integration.

Table 8: Quantitative Comparison of Reactive and Proactive Deadlock Avoidance.

Metric Without With Relative
Liveness Liveness Improvement
Total Execution Time (s) 6252.92 3175.56 49% reduction
Average Execution Time per Robot (s) | 781.62 396.95 49% reduction
Total Distance Travelled (m) 655.30 496.00 24% reduction
Average Distance per Robot (m) 81.91 61.99 24% reduction
Total Deadlocks 88,305 17 99.98% reduction
Average Deadlocks per Robot 11,038 2.13 99.98% reduction
Total Recovery Actions 217 21 90% reduction
Average Recovery Actions per Robot 27.13 2.63 90% reduction

Across the four experiments:
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e Execution Time: Liveness-based control reduced completion time by approximately
half, demonstrating faster, more efficient plan execution.

e Distance Travelled: Robots followed smoother and more direct paths, resulting in
~24% shorter trajectories on average.

e Deadlocks: The number of deadlocks dropped from tens of thousands to near zero,
reflecting the success of forecast-triggered liveness interventions.

® Recovery Actions: Recovery behaviours were reduced by 90%, indicating that robots
could maintain continuous motion without stalling.

These results highlight the effectiveness of the forecast-driven DWB-Liveness controller,
which ensures proactive conflict resolution, smooth trajectories, and high task completion
efficiency without modifying the original high-level plans. The improvements confirm that
integrating predictive deadlock models with liveness constraints is a robust approach for safe
and efficient multi-robot navigation in complex intralogistics environments.

5.1.6 Interpretation

The evaluation demonstrates that deadlock forecasting alone is insufficient unless paired with
an appropriate control mechanism. Conversely, liveness-based control is most effective when
guided by anticipatory forecasts tied to high-level plans.

Together, the forecasting models and liveness-based controllers form a coherent,
decentralized strategy for deadlock avoidance:

forecasting provides when intervention is needed,

liveness control determines how to intervene,

high-level plans provide the structural context that enables generalization for a factory
context.

This alignment confirms the suitability of the EVENFLOW approach for Industry 4.0
intralogistics environments, where robots repeatedly execute structured plans under
dynamic interactions.

5.2 Personalized Medicine

The evaluation of the Personalized Medicine use case focused specifically on Kidney Renal
Clear Cell Carcinoma (KIRC), reflecting the intensive interdisciplinary effort invested in this
cancer type. KIRC was selected because of its clinical significance, well-characterized
transcriptomic profiles, and structured stage progression, which together provide a rich
substrate for testing hybrid early-warning systems that integrate machine learning, neural
sequence modelling, and symbolic reasoning. This cancer-specific focus allowed the team to
explore the predictive capacity of temporal gene expression patterns while maintaining a
close connection to biological and clinical knowledge.

The evaluation leveraged both real patient data from The Cancer Genome Atlas (TCGA) and
synthetic longitudinal trajectories generated using a Variational Autoencoder trained on the
KIRC dataset. The TCGA cohort comprised 530 patients with bulk RNA-sequencing profiles and
clinically annotated stages, which were binarized into early and late-stage categories to
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reflect meaningful clinical progression thresholds. Following preprocessing to remove genes
with low expression or variance and patients with incomplete annotations, the dataset
retained sufficient biological signal for downstream classification. Recognizing the inherent
class imbalance favouring early-stage patients, macro-averaged F1-score was adopted as the
primary evaluation metric, providing a more informative measure of discriminative
performance than accuracy alone. The synthetic trajectories enabled controlled experiments
by simulating disease progression over 50 discrete time points. Positive trajectories
represented early-to-late stage transitions, while negative trajectories were generated
through a combination of latent-space interpolation and Gaussian noise, both in the original
gene expression space and in the VAE latent space. Among these, the Real-Space Noise
dataset was selected for early-warning experiments because it offered a challenging yet
biologically plausible setting in which the classifier had to distinguish progressive from non-
progressive trajectories without relying on trivial distributional differences.

Before assessing early prediction capabilities, a baseline classification task was conducted to
establish whether transcriptomic features alone could reliably discriminate KIRC stages.
Gradient-boosted decision trees (XGBoost) were applied to the full set of 8,516 genes,
achieving moderate performance with macro-averaged Fl-scores around 0.70-0.75. To
enhance interpretability and reduce the dimensionality of the input space, SHAP-based
feature selection was performed, resulting in a reduced panel of 45 genes that retained
maximal discriminative information. This panel improved the test F1-score to approximately
0.79 and the area under the ROC curve from 0.787 to 0.873. The top-ranked genes, including
OASL, HUS1B, and SLC22A1, consistently contributed to stage discrimination, reflecting their
biological relevance and supporting the premise that KIRC stage transitions are governed by
a focused set of transcriptomic markers. The success of this feature reduction demonstrates
the importance of combining domain knowledge with algorithmic interpretability to
concentrate predictive power on meaningful molecular signals, while simultaneously
simplifying the downstream trajectory modelling task.

With the feature panel established, full-trajectory classification was performed using an LSTM
architecture trained on complete synthetic trajectories. The results highlighted substantial
differences in classification difficulty depending on the method used to construct negative
trajectories. When negative sequences were generated by interpolating between early-stage
patients in the latent space, the model achieved near-random performance (F1 = 0.548),
indicating that these trajectories closely resembled early-to-late transitions. Conversely,
trajectories constructed with latent-space noise achieved near-perfect discrimination (F1 =
0.995), but this configuration introduced distributional shifts unlikely to reflect true biological
variability. The Real-Space Noise dataset produced intermediate results (F1 = 0.938),
providing a realistic yet challenging benchmark for subsequent early-warning experiments.
These findings emphasized that careful construction of synthetic trajectories is critical for
testing early prediction models under conditions that simulate clinical uncertainty without
artificially simplifying the task.

The primary evaluation focused on early trajectory classification, which simulates the clinical
scenario of predicting stage transitions before they are fully observable. Two approaches
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were compared: a purely neural LSTM baseline and a hybrid neurosymbolic system combining
ASAL (Answer Set Automata Learning) with Wayeb, a probabilistic complex event forecasting
framework. The LSTM was trained end-to-end on partial trajectory prefixes, capturing
temporal dependencies in the gene expression sequences. It demonstrated rapid early
convergence, achieving an Fl-score of 0.90 within the first 10-12% of the trajectory,
suggesting that discriminative patterns are detectable very early in disease progression. In
contrast, the ASAL+Wayeb system reached the same threshold after observing approximately
16—20% of the trajectory, reflecting a more gradual accumulation of predictive evidence.
Despite this slower initial performance, the hybrid system offers substantial advantages in
interpretability and clinical trustworthiness. ASAL induces finite-state automata that encode
temporal gene expression dynamics, allowing domain experts to audit, validate, and refine
the learned patterns. Wayeb complements this symbolic representation by providing
probabilistic forecasts and confidence intervals for the timing of predicted stage transitions,
enabling risk-stratified early-warning strategies that purely neural methods cannot supply.

This evaluation underscores the importance of integrating predictive accuracy with
interpretability and uncertainty quantification in high-stakes medical contexts. The
combination of real and synthetic data, careful feature selection, full-trajectory classification,
and early-warning neurosymbolic forecasting collectively demonstrates that KIRC stage
transitions are detectable from temporal transcriptomic patterns, and that these predictions
can be made actionable while remaining auditable and trustworthy. Moreover, the cancer-
specific focus highlights the substantial interdisciplinary effort required to align
computational modelling with biological insight and clinical relevance, ensuring that the
resulting framework is not only technically robust but also meaningful for patient care and
translational research.

5.3 Infrastructure Life Cycle Assessment

The industrial use case provided by EKSO offered a compelling opportunity to apply
neurosymbolic forecasting techniques to a real-world system characterized by high-frequency
temporal dynamics. The primary objective of this evaluation was to determine whether a
hybrid approach, combining supervised neural classification with symbolic temporal
modelling, could accurately recognize high-level events in the pressure signal of a water pipe
and reliably forecast future scenarios. This task is particularly challenging due to the strong
class imbalance inherent in the raw EKSO dataset, as well as the temporal sparsity of
meaningful transitions, and thus represents a realistic testbed for neurosymbolic methods in
industrial monitoring.

The first stage of the evaluation focused on learning a robust classifier capable of mapping
short time windows of the pressure signal to high-level “simple events,” which correspond to
the pipe/tap scenario active during the measurement interval. The raw data consist of
univariate pressure signals sampled at 6.67 kHz, segmented according to scenario labels such
as “All taps closed” or individual taps opened abruptly. Initial experiments with recurrent
neural networks, including GRU and LSTM architectures, proved insufficient for capturing
discriminative patterns directly from the raw waveform, even after extensive hyperparameter

Dissemination level: PU - Public, fully open Page 56



E\/HNFL.“’:'W D3.3 - Final Use Case Evaluation
Horizon Europe Agreement No 101070430

tuning and down-sampling. The limitations of these models highlighted the need for feature
representations that better expose the scenario-specific temporal signatures in the signal.

Transitioning to a frequency-domain representation proved decisive. Applying a Short-Time
Fourier Transform (STFT) to each 1-second window of the signal produced spectrograms that
effectively encoded the temporal and spectral characteristics of each scenario. A
convolutional neural network (CNN) trained on these spectrograms achieved substantial
performance improvements, with a test-set accuracy of 0.91 and a macro Fl-score of 0.77.
Importantly, the model successfully handled the extreme class imbalance by weighting the
loss function, allowing it to recognize rare abrupt-tap events alongside the dominant “All taps
closed” state. These results confirm that the combination of STFT preprocessing and CNN
classification is sufficient to extract high-level simple events from raw industrial time series,
forming a reliable foundation for subsequent temporal modelling.

However, the original EKSO dataset lacks meaningful temporal structure at the level of high-
level events, limiting its utility for sequence-based forecasting. To address this, a synthetic
temporal dataset was constructed in which symbolic sequences of events evolve according to
a controlled Markovian pattern. This procedure enabled the creation of multi-step sequences
that preserve realistic durations for each event while enforcing temporal dependencies
suitable for neurosymbolic reasoning. By sampling 1-second windows from the original
dataset according to the synthetic symbolic sequences, we generated sequences of 15
seconds in length, reflecting a variety of event transitions. This synthetic dataset allowed the
evaluation of semi-supervised sequence modelling techniques under realistic constraints:
only 5% of the training windows were labelled, simulating scenarios where limited expert
annotation is available in industrial monitoring contexts.

The semi-supervised stage employed the Mutual-Information Markov Model (MiMM)
framework to align latent representations with temporal dependencies. By maximizing the
mutual information between consecutive latent states, the network learned representations
that both capture the semantics of individual windows and encode the dynamics of event
transitions. Evaluation of the MiMM-augmented model (M2) against a purely supervised
baseline (M1) demonstrates the substantial benefits of this approach. On the test set, M2
achieved a window-level classification accuracy of 0.91, markedly higher than M1’s 0.75, and
an adjusted mutual information score of 0.82 versus 0.6. Moreover, M2 recovered the
underlying Markovian transition structure with greater fidelity, as evidenced by the lower
mean absolute error between the estimated and true transition matrices (0.07 versus 0.13
for M1). These results confirm that the semi-supervised mutual-information objective
successfully leverages unlabelled data to improve both classification and sequence modelling
performance.

The final evaluation stage integrated the learned CNN and latent Markov model into a full
neurosymbolic forecasting pipeline. The neural perception layer produces probability
distributions over the five high-level events for each incoming 1-second window. These
distributions are used to induce a Markov chain representing the system’s temporal
dynamics, which is subsequently passed to a probabilistic model checker (PRISM) to answer
temporal queries. Forecasting experiments demonstrated that the system accurately predicts
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the probability of future scenarios over a 20-second horizon, closely tracking the actual
sequences. Importantly, the neurosymbolic approach allows for probabilistic reasoning about
future events while remaining interpretable and auditable, a critical requirement for
industrial monitoring applications where risk assessment and operational decisions must be
justified. The system outperformed pure neural baselines with more parameters in out-of-
distribution settings, further underscoring the advantages of combining neural perception
with symbolic temporal reasoning.

Overall, the evaluation highlights the effectiveness of the neurosymbolic framework for
industrial time-series forecasting. By transforming raw high-frequency signals into high-level
symbolic events and modelling their temporal evolution with a semi-supervised latent
Markov approach, the system achieves both high predictive accuracy and interpretable
probabilistic forecasts. This dual capability (precise recognition of instantaneous events and
reliable short-term prediction of system evolution) positions the neurosymbolic methodology
as a robust solution for water pipe leakage detection and other analogous industrial
monitoring tasks. The results also demonstrate the broader applicability of EVENFLOW
techniques, confirming that neurosymbolic forecasting can extract structured temporal
knowledge from unstructured sensor streams, even in settings with severe class imbalance
and limited labelled data.
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6 Conclusions

Across three diverse applications (Industry 4.0 multi-robot navigation, personalized medicine
for KIRC stage transition, and EKSO water pipe monitoring) the EVENFLOW framework
consistently validates its core hypothesis: robust complex event forecasting achieves practical
value when tightly integrated with reasoning-aware, interpretable decision mechanisms.

In the Industry 4.0 use case, training deadlock forecasters on high-level plan executions and
feeding their predictions into liveness-enhanced controllers enabled proactive deadlock
avoidance, reduced execution times, smoother robot trajectories, and fully decentralized
operation. This demonstrates that combining learning, symbolic reasoning, and control is not
merely expressive, but operationally effective in real factory environments where task
structures are known but execution timing and interactions remain uncertain.

The KIRC use case extends this premise to high-stakes biomedical applications. By uniting
discriminative machine learning, neural sequence modelling, and symbolic event-based
forecasting (ASAL+Wayeb), EVENFLOW delivers early detection of disease stage transitions
from partial longitudinal data, explicit probabilistic forecasts with confidence intervals, and
interpretable temporal patterns auditable by clinical experts. Even under conditions of limited
patient data and class imbalance, this hybrid neurosymbolic approach achieves robust
performance, confirming that the integration of predictive learning and symbolic reasoning is
not only theoretically sound but practically deployable for trustworthy early-warning systems
in precision oncology.

In the EKSO industrial monitoring scenario, the framework demonstrates similar strengths in
a temporal, high-frequency sensor domain. By combining CNN-based perception of pressure
signals with semi-supervised latent Markov modelling and symbolic probabilistic reasoning,
EVENFLOW accurately classifies high-level pipe/tap scenarios, reconstructs underlying
temporal dynamics from sparse labelled data, and produces reliable probabilistic forecasts.
The resulting predictions are interpretable, auditable, and operationally actionable,
underscoring that learning, symbolic reasoning, and temporal modelling together form a
robust and deployable solution for complex industrial event forecasting.

Taken together, these results illustrate that EVENFLOW’s neurosymbolic approach provides a
unified paradigm for complex event prediction: it leverages learning to extract patterns from
raw data, employs symbolic reasoning to structure and interpret temporal dependencies, and
produces actionable forecasts suitable for real-world deployment. Whether in robotics,
healthcare, or industrial monitoring, the framework demonstrates that expressivity,
interpretability, and operational effectiveness can coexist, enabling practical, high-confidence
decision-making in dynamic and uncertain environments.
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Appendix A Wayeb

Wayeb is an online, probabilistic system designed for Complex Event Forecasting (CEF),
addressing the challenge of predicting the potential occurrence of a declaratively defined
Complex Event (CE) pattern (often formulated as a Symbolic Regular Expression (SRE)) within
an event stream before it is actively detected by a Complex Event Recognition (CER) engine.
Wayeb converts an SRE into a Deterministic Symbolic Finite Automaton (DSFA), which, when
consuming the input stream, is functionally analogous (via isomorphism) to a classical
deterministic automaton operating over the minterms of the DSFA predicates.

To model the statistical properties of the stream, Wayeb employs Variable-order Markov
Models (VMMs), specifically, Prediction Suffix Trees (PST), which capture long-term
dependencies, while avoiding the computational explosion associated with exhaustive
enumeration in fixed-order models. The probabilistic model is constructed by learning the PST
from the minterms derived from the DSFA, using an approach that either involves creating an
embedding of a probabilistic automaton within the DSFA by taking their Cartesian product,
or, for superior memory efficiency, by directly estimating waiting-time distributions through
recursive traversal of the PST, thereby bypassing the construction of the probabilistic
automaton.

These calculated waiting-time distributions, based on the theory of absorbing Markov chains,
allow Wayeb to output forecasts, typically in the form of intervals [start, end], representing
the predicted number of future events until pattern completion with a user-defined
confidence threshold 6. Wayeb has been demonstrated to achieve high throughput and
competitive accuracy compared to state-of-the-art solutions, often leveraging its ability to
accommodate higher-order models for enhanced performance [REF-04].
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