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Executive Summary
Deliverable D4.2 reports the WP4 progress during EVENFLOW’s second half (M19-M39) on neuro-
symbolic (NeSy) learning and reasoning techniques for Complex Event Recognition and forecasting
(CER/F). The technical outcomes in WP4 in the 2nd half of the project are summarized as follows:

(i) We present NeSyA (Neuro-Symbolic Automata), a formal probabilistic framework for joint
NeSy training of neural and symbolic temporal models; We present progress on learning complex event
patterns from perceptual data, in order to use them for NeSy CER/F. The reported contributions are:
(ii) NeurASAL (Neural Answer Set Automata Learning), a combination of NeSyA and ASAL (which
was presented in Deliverable D4.1) logical structure of event patterns, while simultaneously training
a neural component to map percepts to symbols that these patterns use; (iii) ∂SFA (Differentiable
Symbolic Automata), a fully differentiable, NeSy event pattern learning method that can learn from
perceptual sequences and alleviates the combinatorial complexity of purely symbolic methods, such
as ASAL; (iv) we present approaches on using active learning principles and data programming
techniques with NeSy temporal learning, in order to compensate for the lack of dense ground in event-
based applications. (v) we present MiMM (Mutual-Information Markov Models), a novel method
for discovering discrete latent states and transition dynamics directly from high-dimensional Markov
data (e.g., image streams) without reconstructing the observations, and using these models for NeSy
forecasting.
All contributions reported in this deliverable are directly related to the WP4 tasks and objectives. In
particular: NeurASAL and ∂SFA are part of T4.2, “Online Neuro-Symbolic Learning of Complex
Event Forecasting Patterns”, since they are NeSy learners for event structure discovery and they
are inherently online, supporting continuous revision of such patterns on incoming data; the active
learning and data programming techniques are part of T4.4 “Reasoning-Assisted Data Programming”,
aiming to account for limited ground truth availability and assist NeSy training in scarse and indirect
supervision training settings. NeSyA and MiMM are also directly related to T4.2. Although NeSyA
is not concerned with learning novel patterns, it provides the formal NeSy reasoning machinery that
is utilized by our structure discovery methods. MiMM learns interpretable structure in the form of
latent states of a Markov Chain that captures domain dynamics. It also supports interpretable NeSy
forecasting, therefore, realizing T4.3 “Forecast Explainability”.

In addition to the above, a substantial amount of WP4 work related to the application of WP4
techniques to the EVENFLOW’s use cases is not included in this deliverable, but it is instead reported
in D3.3 “Final Use Case Evaluation”. This work involves: (i) applying NeSyA, ASAL and ∂SFA for
NeSy training and NeSy event pattern learning on the Personalized Medicine (BSC) and Industry 4.0
(DFKI) use cases; (ii) combining use case-specific perception neural networks, developed in the context
of the WP4 task T4.1 Neural Learning for Simple Event Extraction, with learned and hand-crafted event
patterns and with Wayeb, our benchmark event forecasting tool [3], for interpretable event forecasting
in these domains. The purpose was to both detect in a post-hoc fashion, and also forecast ahead of
time cancer progression in the BSC use case and robot deadlock incidents in the DFKI use case. Our
results in D3.3 show that the NeSy techniques achieve comparable, or even superior performance in
comparison to purely neural, black box techniques; (iii) applying MiMM for demonstrating a NeSy
forecasting scenario on water pipe leakage incidents in the EKSO use case.
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1 Introduction
1.1 Project Information
EVENFLOW develops hybrid learning techniques for complex event forecasting, which combine
deep learning with logic-based learning and reasoning into neuro-symbolic forecasting models. This
approach combines neural representation learning techniques that construct event-driven features from
streams of perception-level data with powerful symbolic learning and reasoning tools, which utilize
such features to synthesize high-level, interpretable patterns for forecasting critical events.

To deal with the brittleness of neural predictors and the high volume/velocity of temporal data
flows, the EVENFLOW techniques rely on novel, formal verification techniques for machine learning,
in addition to a suite of scalability algorithms for training based on data synopsis, federated training
and incremental model construction. The learnt forecasters will be interpretable and scalable, allowing
for explainable and robust insights, delivered in a timely fashion and enabling proactive decision
making.

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting in healthcare,
(2) safe and efficient behaviour of autonomous transportation robots in smart factories and (3) reliable
life cycle assessment of critical infrastructure.

Table 1: The EVENFLOW consortium.

Number Role Name Country Short name

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA
1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU
2 NATIONAL CENTER FOR SCIENTIFIC RE-

SEARCH “DEMOKRITOS”
Greece NCSR

3 ATHINA-EREVNITIKO KENTRO KAIN-
OTOMIAS STIS TECHNOLOGIES TIS
PLHROFORIAS, TON EPIKOINONION
KAI TIS GNOSIS

Greece ARC

4 BARCELONA SUPERCOMPUTING
CENTER–CENTRO NACIONAL DE SU-
PERCOMPUTACION

Spain BSC

5 DEUTSCHES FORSCHUNGSZENTRUM
FÜR KÜNSTLICHE INTELLIGENZ GMBH

Germany DFKI

6 EKSO SRL Italy EKSO
7 (AP) IMPERIAL COLLEGE OF SCIENCE TECH-

NOLOGY AND MEDICINE
United Kingdom ICL

Dissemination level: PU – Public, fully open Page 9
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1.2 Document Scope
This document presents the advancements made in WP4 within the scope of EVENFLOW in the second
half of the project (M18-M36). WP4 in EVENFLOW focuses on the development of neuro-symbolic
(NeSy) learning and reasoning techniques in temporal domains, towards building event recognition
and forecasting systems that are able to operate on sub-symbolic, perceptual input, and integrate
symbolic predictive models with neural networks. This deliverable elaborates on the generic learning,
reasoning and forecasting techniques developed in the second half of the project and their evaluation
on challenging surrogate and EVENFLOW data.

1.3 Document Structure
This document consists of the following chapters:

• Chapter 2 presents a recap of Complex Event Recognition, Forecasting and Neuro-Symbolic AI.

• Chapter 3 presents an outline of the material presented in this deliverable.

• Chapter 4 presents NeSyA, our novel neural/probabilistic framework for scalable NeSy learning
and reasoning in temporal domains.

• Chapter 5 presents an application of NeSyA on ROAD-R, a challenging real-world autonomous
driving dataset .

• Chapter 6 presents our novel NeSy event pattern learning techniques, in particular, NeurASAL,
a combination of ASAL and NeSyA with active learning, and ∂SFA, our differentiable event
pattern learning method.

• Chapter 7 presents results on using data programming tools for compensating for the lack of
ground truth data in indirect supervision NeSy training.

• Chapter 8 presents MiMM our novel technique for NeSy forecasting based on learning discrete
latent states and transition dynamics directly from high-dimensional Markov data and using
them for NeSy forecasting.
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2 Recap of Complex Event Recognition/Forecasting and Neuro-
Symbolic AI
In this section we review some basic notions from CER/F and NeSy AI that are necessary for what
follows. Complex Event Recognition [41] and Forecasting [3] (CER/F) systems seek to detect, or even
forecast ahead of time, occurrences of special events of interest, across a set of input data streams. The
input streams consist of simple events, which are time-stamped pieces of information, and the output
are the detected/forecast instances of the target situations, which are called complex events and are
usually defined as spatio-temporal combinations of the simple events.

CER/F systems typically rely on a set of complex event patterns, which are declarative specifications
of the interesting situations to be monitored across the input datastreams. Such situations usually
involve sets of correlated events that are expected to occur in a sequential fashion. Due to the sequential
nature of such complex event patterns, the computational objects that correspond to such patterns are
some type of automata (finite state machines), typically, symbolic automata, where the transitions are
guarded by predicates, rather than by mere symbols from a finite alphabet. The recognition process
then amounts to matching such automata-based patterns against the simple event input, i.e. reaching
an accepting state in the automaton during processing the input stream. The forecasting task amounts
to deriving probabilistic estimates of future full pattern matches from partial matches that have been
observed so far.

Figure 1: Neuro-symbolic Complex Event Recognition & Forecasting.

The symbolic nature of CER/F systems restricts their applicability to symbolic input. However,
numerous applications deal with sub-symbolic, perceptual level input, such as sequences of images, or
high-dimensional time series. A typical baseline approach in such cases is to train a neural predictor to
map the sub-symbolic input to a set of symbols, corresponding to the simple events in our case, which
are then passed to the symbolic model that handles the downstream CER/F task. Such approaches are
of neuro-symbolic (NeSy) nature, since they combine neural and symbolic components, albeit in a
loosely coupled fashion, and are thus often sub-optimal: the neural predictors are trained in isolation,
ignoring the downstream task and the symbolic components ignore the stochastic, error-prone nature
of the neural grounding process that produces its input symbols. They are also often infeasible, since
they require large amounts of simple event-labeled data, which are usually difficult to obtain.

In contrast, tightly integrated NeSy AI approaches treat perception and symbolic reasoning as a
single, coupled learning problem, allowing the CER/F model to shape how symbols are grounded and,
conversely, allowing uncertainty in the grounding process to propagate through the temporal reasoning
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layer. Neural components can be trained under losses derived from temporal logics and automata that
define complex events, so that they learn to align their predictions with the requirements of temporal
reasoning. At the same time, symbolic components can be extended with probabilistic semantics to
account for the graded, error-prone outputs of neural predictors, enabling robust probabilistic forecasts
over streams of noisy simple events. This tighter NeSy integration promises CER/F systems that
require far fewer simple-event labels, generalize better to out-of-distribution temporal patterns, and
provide explanations in terms of human-understandable patterns (rules, automata) that remain anchored
to the underlying perceptual data.
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3 Outline of the Contributions in this Deliverable
In this section we provide an overview of the techniques presented in this deliverable and link them to
specific challenges in temporal NeSy AI.

Temporal NeSy Learning and Reasoning. A central challenge in temporal NeSy AI is to couple
perception models with rich temporal knowledge for reasoning over long, noisy data streams (video,
multivariate time series) and answer queries that are naturally probabilistic and counterfactual – e.g.,
“what is the probability that this pattern will occur within the next ten steps?”. To address this
problem we present NeSyA (Neuro-Symbolic Automata), a novel NeSy technique for seamlessly
integrating perception neural networks with symbolic temporal knowledge, first steps towards which
were presented in D4.1. NeSyA is a formal probabilistic framework for joint NeSy training of neural
and symbolic temporal models. It allows for exact probabilistic inference over the neural predictions
across sequences of perceptual data, supporting queries that are directly related to explainability, such
as marginals and most likely explanations for observed events. Despite the fact that such queries are
intractable, we get them “for free” in NeSyA, thanks to its backbone of knowledge compilation and
probabilistic circuits, which allow for answering such queries in time linear in the circuit size. NeSyA
has been thoroughly evaluated on both EVENFLOW and surrogate data, including a challenging,
real-world autonomous driving application, which we present in detail in this deliverable.

NeSy Event Pattern Learning. In many temporal, event-based applications, the complex patterns
that we care about are not fully specified in advance, evolve over time, or differ across environments.
This makes necessary the development of techniques for the induction of temporal structure from data,
and for grounding this structure in perceptual input when only sparse supervision is available, as it is
typically the case in event-based applications. To address such issues we present two novel techniques
for event pattern learning. The first contribution is a method for learning the logical structure of event
patterns, while simultaneously training a neural component to map percepts to symbols that these
patterns use. To compensate for the lack of dense supervision in terms of such symbols’ ground truth,
we use active learning principles that allow to query an oracle (typically, human annotator) for the most
informative points to label. Our new technique, which we call NeurASAL, is essentially a combination
of NeSyA with ASAL, a symbolic event pattern learner, which was presented in Deliverable D4.1, tied
together via active learning.

Secondly, aiming to improve the scalability of the ASAL learner, we present a novel, fully
differentiable approach to learning symbolic automata-based complex event patterns via gradient-based
techniques. Our new method, which we call ∂SFA, learns the guards of such automata in the form of
neural rules in Disjunctive Normal Form (DNF), using fuzzy conjunction and disjunction operators,
and their temporal structure via a differentiable forward recursion scheme. The learned neural models
can be discretized into crisp automata via weight pruning, thresholding and automata revision via
ASAL. We show that our new approach is significantly more scalable than learning from scratch with
ASAL from the symbolic (argmaxed) sequences predicted by a perception network, and learns fully
interpretable models without compromizing their predictive performance.

Data Programming for NeSy Training with Weak Supervision. When NeSy models are trained
primarily from indirect supervision (e.g., only complex event labels over entire sequences), they are
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prone to reasoning shortcuts: they can have high accuracy by learning to map percepts to symbols in a
way that, despite being wrong, happens to work adequately for the downstream task. This undermines
both interpretability and out-of-distribution robustness.The most straightforward mitigation strategy
is using dense latent concept supervision, which beats the whole purpose of NeSy training and is
practically infeasible in high volume/velocity event-based applications.

We show how to strengthen the standard indirect-supervision setting by combining “strong” but
indirect sequence-level labels (complex events) with weak, programmatically generated latent labels
(simple events) obtained via data programming. Concretely, we construct multiple noisy labelling
functions for simple events in the form of a pool diverse CNNs with varying architectures and
regularization schemes, aggregate their outputs into probabilistic labels using an off-the-shelf labelling
model, and inject these labels into the NeSy training loop alongside the complex-event supervision. We
demonstrate that this hybrid supervision strategy significantly improves the performance of the trained
models, both on latent concept prediction and on the target complex event detection task, thereby
mitigating shortcut behaviour and leading to better grounded, more robust NeSy models.

NeSy Markov Chain Learning and Forecasting. Many temporal phenomena in CER/F can be
seen as Markov processes over abstract states. Learning interpetable Markov abstractions directly
from high-dimensional streams is an important open problem with clear links to forecasting: good
abstractions should encapsulate the temporal information needed to accurately predict future events.
Existing techniques, such as HMMs, and their extensions (including neural extensions) attempt to
generatively model the data, which assume a process of reconstructing the observations given the states.
However, this reconstruction process is at odds with interpretability, since it requires to encapsulate into
the states a large amount of otherwise irrelevant data characteristics. In this context, we present Mutual-
Information Markov Models (MiMM), a novel NeSy method for discovering discrete latent states
and transition dynamics directly from high-dimensional Markov data (e.g., image streams), without
reconstructing the observations. A neural network maps each observation to a probabilistic assignment
over a finite set of latent states, and its parameters are trained to maximize the mutual information
between successive latent states, yielding an abstract Markov chain that preserves the essential temporal
structure of the original process, while remaining low-dimensional and interpretable. Prior knowledge
about the system’s dynamics (e.g., a PRISM model) can be injected by regularizing the learned
transition matrix towards a symbolic prior, ensuring that the discovered states and transitions respect
known behaviour. MiMM provides a way to derive such latent Markov models from raw data and then
use probabilistic model checking to answer forecasting queries, such as the probability of reaching
a critical or goal state within a given time horizon, thereby directly supporting the EVENFLOW’s
objectives on neuro-symbolic complex event forecasting and robust, explainable decision support.

Dissemination level: PU – Public, fully open Page 14



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

4 NeSyA: Neurosymbolic Automata

4.1 Introduction
Sequence classification/tagging is a ubiquitous task in AI. Purely neural models, including LSTMs [49]
and Transformers [96], have shown exemplary performance in processing sequences with complex
high-dimensional inputs. Nonetheless, various shortcomings still exist in terms of generalization, data-
efficiency, explainability and compliance to domain or commonsense knowledge. NeSy AI [37] aims
to integrate neural learning and symbolic reasoning, possibly aiding in the aforementioned limitations
of purely neural systems. Recently, various NeSy systems have been developed for sequential/temporal
problems [99, 31, 89], with large differences among them, in terms of semantics, inference procedures,
and scalability of the proposed hybrid models.

In this work, we identify symbolic automata as an attractive low-level representation of complex
temporal properties. These differ from classical automata as they support symbolic transitions between
states (defined in propositional logic), thus combining temporal reasoning (through the automaton)
and atemporal reasoning (through the logical transitions). We show that symbolic automata can be
efficiently integrated with neural-based perception and thereby extended to subsymbolic domains.
Figure 2 illustrates the core NESYA architecture in a running example, which is used throughout the
paper.

The key characteristics of NESYA that can be used for comparison to existing NeSy systems, are:
[C1] its focus on temporal domains, [C2] its probabilistic semantics, [C3] its capacity to integrate
static logical reasoning into temporal patterns, [C4] its efficient and exact inference scheme based on
matrices and knowledge compilation [29].

The closest system to our work is FUZZYA [89] which attempts to address the NeSy integration
of LTL_f with neural networks. That system differs from NESYA primarily in terms of [C2], as it is
based on fuzzy logic and specifically on Logic Tensor Networks [15]. As we shall show in this paper,
probabilistic semantics can provide significant benefits, in terms of predictive accuracy, over fuzzy
logic, as used in FUZZYA.

On the other hand, NESYA differs from approaches like the Semantics Loss (SL) [103] and
DEEPPROBLOG [67], in terms of [C1], as they are not tailored to temporal reasoning. In this paper,
we shall show that this makes them scale considerably worse than NESYA when faced with problems
with a temporal component.

The more recent DEEPSTOCHLOG system [99] is based on unification grammars and therefore
differs from NESYA in terms of both [C1] but mostly [C4]. Our experiments show that this difference
makes DEEPSTOCHLOG orders of magnitude slower than NESYA.

Further, systems based on neural networks and classical automata, such as [87, 88] differ from
NESYA in terms of [C3], since classical automata lack symbolic transitions and support for atemporal
reasoning.

Lastly, [31] is based on very expressive models in mixed discrete and continuous domains. It is
based on approximate inference, thus differing from NESYA in terms of [C4].
Our contributions are as follows:

• We introduce NESYA a probabilistic NeSy system for sequence classification and tagging, which
combines automata, logic and neural networks.
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q0start q1 q2

¬tired ∧ ¬blocked

tired ∨ blocked

¬fast ∧ (tired ∨ blocked)

¬tired ∧ ¬blocked ∧ ¬fast

fast

true

P(accept | , , ) = 0.78

neural extraction

differentiable inference

Figure 2: Symbolic automata (middle) are used to reason over sequences of subsymbolic inputs (top)
from which information is extracted with the aid of a neural network, performing multilabel classifica-
tion. For instance, for the image , the correct symbol grounding is {tired,¬blocked,¬fast}.
The symbolic automaton shown captures the following logic: If the driver is tired or the road is blocked,
then in the next timestep they should not be going fast. NESYA computes the probability of the SFA
accepting the input sequence (bottom), which is then used for learning.

• We introduce an efficient algorithm for inference in NESYA, utilizing matrix-based automata
inference and knowledge compilation based approaches for logical inference [29].

• On a synthetic sequence classification domain, we show that NESYA leads to large performance
benefits over FUZZYA [89] and scales orders of magnitude better than DEEPSTOCHLOG [99],
which is also based on a probabilistic semantics.

• On a real-world event recognition domain we show that NESYA can lead to a more accurate
event recognition system, compared to purely neural approaches.

4.2 Background
4.2.1 Propositional Logic and Traces
We shall use lowercase to denote propositional variables, e.g. blocked. A propositional formula ϕ over
a set of variables V is defined as:

ϕ ::= V | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2.

These connectives are sufficient to then define→, etc. An interpretation ω ⊆ V assigns a truth value
to each variable. We use subsets to denote interpretations. For instance for V = {tired, blocked, fast}
the interpretation ω = {tired, blocked} is shorthand for {tired, blocked,¬fast}. If an interpretation ω

satisfies a formula ϕ we write ω |= ϕ and ω is called a model of ϕ.
The semantics of propositional logic are given in terms of interpretations. Traces generalize

interpretations for temporal domains. A trace over variables V , π = (ω1, ω2, . . . , ωn) is a sequence of
interpretations, with ωi ⊆ V . We use πt to denote the interpretation ωt at timestep t.
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4.2.2 SFA: Symbolic Automata
A symbolic automaton (SFA) is defined as:

A = (V,Q, q0, δ, F ),

where V is a set of variables, Q a set of states, q0 ∈ Q the initial state, δ : Q × Q → B(V ) is the
transition function and F ⊂ Q is the set of accepting states. B(V ) is used to denote the set of all
valid formulae in propositional logic over variables V . The difference between an SFA and a classical
automaton is that δ is given in a factored form, e.g. δ(q0, q1) = tired ∨ blocked in Figure 2. One can
always convert the SFA to a classical automaton by replacing each transition δ(q, q′) with multiple
ones representing all models ω |= δ(q, q′). This approach does not scale to complex formulae and
large sets of variables, as the number of resulting transitions can be exponential in V . This factored
transition function is also common in the Markov Decision Process literature [43] with the goal being
to exploit the symbolic nature of the transitions without “propositionalizing".

A symbolic automaton reads traces, i.e. sequences of interpretations (ω1, . . . , ωn) (ωi ⊆ V ) over
the variables V . We shall consider deterministic SFAs, in which:

∀q ∈ Q,ω ∈ 2V : ∃! q′ : ω |= δ(q, q′).

That is, for any state q ∈ Q and any interpretation ω ∈ 2V exactly one transition outgoing from state q

will be satisfied by ω. For the SFA in Figure 2 consider the transitions outgoing from state q0. For any
interpretation, either (¬tired ∧ ¬blocked) or (tired ∨ blocked) will be true. If the SFA ends up in an
accepting state after reading the trace π we write π |= A.

4.2.3 Probabilistic Logical Inference
Probabilistic logical inference is the task of computing the probability of a logical formula under
uncertain input. For a propositional formula ϕ over variables V , let p denote a probability vector over
the same variables. Each element p[i] therefore denotes the probability of the ith symbol in V being
true. The probability of the formula given p is then defined as:

P(ϕ | p) =
∑
ω|=ϕ

P(ω | p),

with P(ω | p) =
∏
i∈ω

p[i]
∏
i/∈ω

1− p[i].
(1)

This task is reducible to weighted model counting (WMC), one of the most widely-used approaches
to probabilistic logical inference [22]. As computing WMC involves summing over all models of
a propositional formula, it lies in the #P complexity class of counting problems [91]. Knowledge
Compilation (KC) [29] is a common approach to solve WMC problems. It involves transforming
a logical formula to a tractable representation, on which WMC queries can be cast in linear time.
Importantly, once a formula has been compiled to a tractable representation, WMC cannot only be
computed in linear time but also differentiably. The computational complexity of the problem is
effectively shifted to an initial compilation phase but can be amortized, since multiple queries can be
cast on the compiled representation. Consider for example the formula ϕ = ¬fast ∧ (tired ∨ blocked),
i.e. the transition q1 → q1 in Figure 2. Its compiled form as a d-DNNF circuit [27], one of the
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¬fast ∧ (blocked ∨ tired)

¬fast

tired

blocked¬tired

0.344
∗

+

∗

0.4

0.8

0.2 0.3

Figure 3: A d-DNNF circuit for the formula ϕ = ¬fast ∧ (blocked ∨ tired) (left) and an arithmetic
circuit produced from the d-DNNF circuit (right). The computation of WMC is shown for the vector
p = [0.8, 0.3, 0.6] for the symbols {tired, blocked, fast} respectively.

tractable KC representations, and the computation of WMC can be seen in Figure 3. The logical
circuit in Figure 3 (left) is converted to an arithmetic circuit Figure 3 (right) by replacing AND gates
with multiplication and OR gates with addition. The weighted model count for the probability vector
in Figure 3 can be verified to be correct by:

P(¬fast ∧ (tired ∨ blocked) | p = [0.8, 0.3, 0.6])

= P({tired}|p) + P({blocked}|p)
+ P({tired, blocked}|p)

= 0.8× 0.7× 0.4 + 0.2× 0.3× 0.4 + 0.8× 0.3× 0.4

= 0.344.

Recall that interpretations are given in shorthand, e.g. {tired} is shorthand for {tired,¬blocked,¬fast}.

4.3 Method
4.3.1 Formulation and Inference
We introduce NESYA as a NeSy extension of the SFAs introduced earlier. Rather than assuming
a trace of propositional interpretations π = (ω1, ω2, . . . , ωn) we assume a sequence of subsymbolic
observations o = (o1, o2, . . . , on) with oi ∈ Rm. NESYA is defined as a tuple (A, fθ), with A an SFA
over variables V and fθ : Rm → [0, 1]|V | a neural network, which computes a probability vector fθ(ot)
over the variables V from the observation ot. Therefore fθ(ot)[i] denotes the probability of the ith

variable in V being true given the observation ot. The neural network is used to bridge between the
discrete representation of the SFA and the continuous representation of the observations.

The resulting model is depicted in graphical model notation in Figure 4, where qt denotes a discrete
random variable over the states of the SFA and ot the input observation at time t. Following [70], we
define

αt(q) = P (q | o1, ..., ot)

as the probability of being in state q at timestep t after seeing the observations (o1, ..., ot). αt can be
computed recursively (using dynamic programming) as follows:
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q0 q1 q2

o1 o2

Figure 4: Graphical model for NESYA. Following the approach used in [70], it resembles a Hidden
Markov Model with the arrows between states and observations reversed. The random variables
qt take values from Q, the state space of the SFA, and the random variables ot take values from
high-dimensional continuous spaces.

α0(q0) = 1; α0(q) = 0 ∀q ̸= q0

αt+1(q) =
∑
q′∈Q

P(q | q′, ot+1) αt(q
′),

where P(q | q′, ot+1) = P(δ(q′, q) | fθ(ot+1))

=
∑

ω|=δ(q′,q)

P(ω | fθ(ot+1)).

(2)

Thus, to update the probability of being in each state, one must first compute the probabilities of
the logical formulae in the SFA’s transitions given the outputs of the neural network for the current
observation. Instead of naively summing over all models of each formula, we use KC to make the
computation efficient. The state update, which is similar to the one in Hidden Markov Models, can be
captured via matrix operations and is therefore amenable to parallelization and execution on GPUs. It
is well-known that αt can be represented with a vector of size |Q|, whose elements are the probabilities
of being in each state at timestep t. In what follows we adopt this notation.

Running example computation:
Consider the SFA in Figure 2. Let the first observation be o1 = and let fθ(o1) = [0.8, 0.3, 0.6]

the output of the neural network. We define the transition matrix T (oi) where T (oi)[q
′, q] =

P(δ(q′, q) | fθ(oi)). We thus have:

T ( ) =

 0.14 0.86 0

0.056 0.344 0.6

0 0 1

 .

The calculation of the entry T ( )[q1, q1] was shown in Section 4.2.3. Similarly, the computation
of other entries is performed by propagating an arithmetic circuit for each transition, given the neural
network predictions for the current observation. Observe that the sum of each row in the transition
matrix, i.e. the total mass out of each state is 1. This is a direct consequence of the deterministic
property of the SFA, where exactly one outgoing transition from each state will be true for any possible
interpretation. It also ensures that

∑
q∈Q αt[q] = 1 for all t.

We start with α0, where α0[q0] = 1 and α0[q] = 0 for all q ∈ Q, q ̸= q0, We then recursively
compute αt for each subsequent timestep. Let o = (o1 = , o2 = ). Consider the neural
network predictions for o1 as above and let fθ(o2) = [0.7, 0.9, 0.3]. We calculate:
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α2 = α1 × T (o2)

= α0 × T (o1)× T (o2)

=
[
1 0 0

]
×

 0.14 0.86 0

0.056 0.344 0.6

0 0 1

× T (o2)

=
[
0.14 0.86 0

]
×

 0.03 0.97 0

0.021 0.679 0.3

0 0 1


=

[
0.023 0.7197 0.258

]
.

Depending on the task, the α-recursion can be used in various ways. For sequence classification, one
only cares about the state probabilities in the final timestep and would aggregate over accepting states
to get the probability of accepting the sequence. Concretely:

Paccept(o) =
∑
f∈F

αn(f).

where n is the length of the sequence. In this case Paccept(o) = 0.023 + 0.7179 = 0.742. In other
applications, such as sequence tagging, one is interested about the α values in every timestep.

4.3.2 Learning
For ease of exposition we shall consider the sequence classification task, in which NESYA is given
a subsymbolic sequence o and computes Paccept(o). The computation of Paccept(o) is differentiable
with respect to the neural network outputs as the only operations necessary to compute the acceptance
probability are: (a) the computation of WMC which, as shown in Section 4.2.3, reduces to propagating
an arithmetic circuit comprised of addition, multiplication and subtraction, (b) the α-recursion which
is implemented via standard matrix operations, and (c) a summation over the final α values.

Therefore, given a dataset of pairs (o, L), where L ∈ {0, 1} is a binary label for the sequence o,
one can train the neural component of NESYA by minimizing a standard supervised learning loss, e.g.

L(o, L) = BCE(Paccept(o), L),

where BCE stands for the standard binary cross entropy. This amounts to training the neural network
via weak supervision, where no direct labels are given for the symbol grounding of each observation,
but rather for the sequence as a whole. This weak-supervision learning setup is common and can
be found in [67, 105, 99, 89]. More concretely, observe that we don’t require examples of the
form ( , {tired,¬blocked,¬fast}), as we would in a fully supervised multilabel problem, but
rather of the form (( , , ), 0). Such high-level labels are in general much fewer in
number and more easily attained. Given the differentiability of the model, explained at the start of this
subsection, the neural component fθ is trained via standard gradient descent on the distant labels.

4.3.3 Semantics and Discussion
Consider a sequence of probability vectors (p1, p2, . . . , pn) with each vector pt assigning a probability
to each proposition v ∈ V at timestep t. In NESYA pt = fθ(ot), i.e. these probability vectors
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are computed via a neural network conditioned on the observation at each timestep, but we ignore
the neural component at this stage of the analysis. Given (p1, . . . , pn), the probability of trace π, a
sequence of interpretations, is then:

P(π | (p1, p2, . . . , pn)) =
n∏

t=1

P(πt | pt)

To elaborate, the probability of a sequence of interpretations is the product of the probability of each
interpretation πt given pt.

Theorem 4.1 (α-semantics). It holds that:

αt[q] =
∑

π∈traces(q,t)

P(π | (p1, p2, . . . , pt)).

where traces(q, t) is the set of all traces which cause the SFA to end up in state q starting from q0 in t

timesteps. The probability of being in state q at timestep t is then the sum of all such traces (sequences
of interpretations) weighted by the probability of each trace given (p1, . . . , pt).

Proof. The result directly follows from the graphical model but we provide a proof from first principles.
We focus on the meaning of αt(q), from which we can also draw further conclusions. Consider an
SFA over propositions V . Let traces(q, t) denote all traces over V which starting from state q0 cause
the SFA to end up in state q after t timesteps. Further, consider a sequence of probability vectors
(p1, p2, . . . , pn) with each vector pi assigning a probability to each proposition v ∈ V at timestep i.
Refer to Section 4.2.3 for an example of pi. The probability of a trace π is then:

P(π) =
n∏

t=1

P(πt | pt),

Theorem 4.1 states that
αt(q) =

∑
π∈traces(q,t)

P(π).

We shall prove Theorem 4.1 by induction. For t = 1 we have:

α1(q) =
∑

ω|=δ(q0,q)

P(ω|p1) =
∑

π∈traces(q,1)

P(π),

recalling that α0(q) = 1 if q = q0 and 0 otherwise and from Equation 1 and 2. Assuming the hypothesis
holds for t, we can prove it for t+ 1, as follows:

αt+1(q) =
∑
q′∈Q

P(q | q′, pt+1) αt(q
′)

=
∑
q′∈Q

∑
ω|=δ(q′,q)

P(ω | pt+1)
∑

π∈traces(q′,t)

P(π)

=
∑

π∈traces(q,t+1)

P(π).
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Pattern

Sequence Length Method
1 2 3

Accuracy Time Accuracy Time Accuracy Time

10
NESYA 1.0 0.8 0.98± 0.03 1.1 1.0 2.3
FUZZYA 0.91± 0.06 10.8 0.70± 0.13 22.5 0.78± 0.04 29.9

20
NESYA 1.0 1.2 0.99± 0.01 1.7 0.99± 0.01 3
FUZZYA 0.77± 0.22 21.4 0.69± 0.14 43.7 0.7± 0.1 57.7

30
NESYA 1.0 1.7 0.94± 0.11 2.3 0.97± 0.03 3.8
FUZZYA 0.98± 0.01 31.7 0.55± 0.1 55.9 0.5 86.6

Table 2: Accuracy results on a test set, and timings (in minutes) for NESYA against FUZZYA averaged
across 5 runs, as well as standard deviation (when over 0.01). Both systems are trained with a learning
rate of 0.001 following [89]

.

The last step follows from:

traces(q, t+ 1) =
⋃
q′∈Q

{π.ω | ω |= δ(q′, q), π ∈ traces(q′, t)}

with the concatenation of an interpretation ω with a trace π, i.e π.ω = (π1, . . . , πt, ω). To elaborate,
the set of traces which end in state q in t + 1 timesteps is the union over all traces which ended in
state q′ in t timesteps concatenated with each interpretation ω causing the SFA to transition from q′ to
q.

An immediate consequence of Theorem 4.1 is that:∑
π|=A

P(π) =
∑
f∈F

αT (f)

for an SFA A.
A direct consequence is that for an SFA A and the sequence (p1, . . . , pn) of symbol probabilities:∑

f∈F

αn[f ] =
∑
π|=A

P(π | (p1, p2, . . . , pn)). (3)

Once the logical transitions of the SFA have been compiled to a tractable form, see Section 4.2.3, this
computation is polynomial in the number of nodes of the compiled circuits and the number of states of
the SFA. This makes the compiled SFA, a tractable device for performing computations over uncertain
symbolic sequences.

This result is important for extending NeSy systems to the temporal domain. Consider the symbolic
component of a NeSy system, e.g. DEEPPROBLOG. It eventually reduces to a propositional formula ϕ
and relies on the computation of

∑
ω|=ϕ P(ω | p), where p is usually the output of a neural network

conditioned on an observation. For temporal NeSy systems if the symbolic component can be captured
by an SFA A, then

∑
π|=A P(π|p1, p2, . . . , pt) is computable as shown in Equation 3. To further

motivate the potential efficacy of SFAs as promising low-level representations in the context of NeSy,
we note that they are known to capture STRIPS domains as well as temporal logics [30] and are
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Figure 5: Scalability results for NESYA (solid) and DEEPSTOCHLOG (dashed) for each of the three
patterns tested. The y-axis represents the update time for a single batch of 16 sequences in logarithmic
scale and the x-axis the sequence length. The systems were benchmarked for three different patterns of
varying complexity both in terms of symbols, as well as states of the automaton.

thus quite expressive. Hence, it is possible, that SFAs can serve as an efficient compilation target for
temporal NeSy systems, much like d-DNNF and similar representations have done for atemporal NeSy
systems.

4.4 Results
In this section we provide empirical results for the performance of NESYA and its comparison to other
NeSy systems, as well as to purely neural ones. We aim to answer the following questions:

[Q1] Scalability: How does NESYA compare to DEEPSTOCHLOG and FUZZYA in terms of runtime
on the same NeSy learning task?

[Q2] Accuracy: How does NESYA compare to FUZZYA in terms of accuracy on the same NeSy
learning task? 1

[Q3] Generalization: How does NESYA compare to purely neural solutions in terms of generalization?

All experiments were run on a machine with an AMD Ryzen Threadripper PRO 3955WX 16-Core
processor, 128GB of RAM, and 2 NVIDIA RTX A6000 with 50GB of VRAM of which only one was
utilized.

All experiments were implemented in Pytorch and Python 3.11. For the experiment in Section 4.4.1
we use the implementation of FUZZYA provided by the authors2 with minimal changes. Both NESYA
and FUZZYA were trained for a fixed amount of 100 epochs. For the second experiment (Section 4.4.2)
we use an LSTM with a single layer and a 128 dimensional hidden state. The Transformer architecture
has 3 attention heads per layer, 4 layers and an hidden state dimensionality of 129 (same with the input
dimensions). Both architectures utilize the same CNN to extract visual embeddings of the bounding

1The accuracy of DEEPSTOCHLOG is not compared against that of NESYA, as they generate the same results on the
same input.

2https://github.com/whitemech/grounding_LTLf_in_image_sequences
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boxes.

4.4.1 Synthetic Driving
We first benchmarked NeSy systems on a synthetic task, which allowed us to control the complexity.
In particular, we used the domain introduced as a running example, in which a sequence of images
must be classified according to a temporal pattern. Each image represents a set of binary symbols. In
the example from Figure 2 the symbols were {tired, blocked, fast}, however we test for sets of up to
five symbols. Their truth value is represented via two emojis, one corresponding to the value true and
one false. Random Gaussian noise is added to each image to make the mapping between an image and
its symbolic interpretation less trivial. We generate three patterns (different SFAs) with 3, 4 and 6 SFA
states and 3, 4 and 5 symbols respectively. For each pattern, we generated 100 random trajectories
which satisfy the pattern (positive) and 100 negative ones. We use the same setup for generating a
training and a testing set.

The neural component of all systems is a CNN. The learning task is as described in Section 4.3.2,
where the neural component must perform symbol grounding without direct supervision. Instead
supervision is provided at the sequence level and the neural component is trained weakly. We
benchmarked against DEEPSTOCHLOG [99] and DEEPPROBLOG [67] in terms of scalability and
with FUZZYA [89] both in terms of scalability and accuracy. Figure 5 shows the comparison of
NeSyA against the DEEPSTOCHLOG system on temporal patterns of ranging complexity in the
synthetic driving benchmark. The DEEPPROBLOG system lagged behind the other two considerably
and therefore is omitted from the results for brevity. Accuracy results are also omitted here, since all
three systems are equivalent in their computation and learning setup and therefore perform identically
in terms of accuracy. In terms of computational performance, NESYA does significantly better than
DEEPSTOCHLOG, being on average two orders of magnitude faster. As an indication, for the most
complex task and a sequence length of 30, NESYA takes 0.08 seconds for a single batch update and
DEEPSTOCHLOG takes about 30 seconds, rendering the latter system of limited practical use. As an
indication of the difference against DEEPPROBLOG, for the simplest pattern and a single sequence of
length 15, the update time for DEEPPROBLOG is 140 seconds compared to 0.02 seconds for NESYA.

Next, in Table 2 we show accuracy and scalability results of NESYA against the FUZZYA system.
NESYA, which interfaces between the SFA and the neural representations using probability, seems to
offer a much more robust NeSy solution. FUZZYA delivers significantly lower accuracy compared
to NESYA, especially as sequence length grows. Further FUZZYA lags significantly in terms of
scalability.

The results on our synthetic benchmark allow us to affirmatively answer [Q1] and [Q2]. NESYA
seems to scale better than both DEEPSTOCHLOG and FUZZYA for even the simplest patterns considered
here, often by very large margins. Further, our system is more accurate than FUZZYA, with the
difference in performance becoming very large for large sequence lengths and complex patterns.

4.4.2 Event Recognition
In our second experiment we compared NESYA against pure neural solutions on an event recognition
task from the CAVIAR benchmark dataset3. The task was to recognize events performed by pairs
of people in raw video data. We focused on two of the events present in CAVIAR, namely moving

and meeting, which appear more frequently in the data, and a third no_event class. We present three

3https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Figure 6: Sample of the CAVIAR data. Models are given the two bounding boxes per timestep instead
of the complete image, in order to make the task simpler for the neural component. Along with the
pair of bounding boxes, a close(p1, p2) feature is provided, which captures whether the two people are
close to each other. The CNN for NESYA must ground one bounding box to the symbols walking(p1),
running(p1), active(p1), inactive(p1) and correspondingly to p2 for the second bounding box. The
correct grounding for this image is active(p1) and walking(p2). These are the low-level activities
performed by each person. The high-level activities performed by the pair are annotated for each image
in one of the three classes no_event, meeting, moving. For the image shown here the annotation is
moving.

methods; NESYA a CNN-LSTM and a CNN-Transformer. The data consists of 8 training and 3 testing
sequences. The label distribution for the training data is 1183 frames of no_event, 851 frames of
moving and 641 frames of meeting. For the test set, these are 692, 256 and 894 respectively. The
mean sequence length is 411 with a minimum length of 82 and a maximum length of 1054. We use the
macro F1 score for evaluation of all models.

The CAVIAR data is annotated at a frame level with bounding boxes of the people in the scene, as
well as with low-level activities they perform, such as walking and running. From the raw data, we
extract sequences of two bounding boxes per timestep, as well as a Boolean feature of whether the
distance between the bounding boxes is smaller than some threshold. Refer to Figure 6 for an overview.
The symbolic component of NESYA in this case is a three-state automaton, capturing a variant of the
Event Calculus [59] programs for CAVIAR found in [13] and can be seen in Figure 7. We use the
SFA to label the sequence with the current high-level event in each frame given the ground truth labels

no_event moving

meeting

initiated(moving)←
walking(p1) ∧ walking(p2) ∧ close(p1, p2)

. . .

terminated(meeting)←
¬close(p1, p2) ∧ (walking(p1) ∨ walking(p2))

∨ running(p1) ∨ running(p2)

initiated(moving)

terminated(moving)

in
iti

at
ed

(m
ee

tin
g)

te
rm
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(m
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Figure 7: The SFA used for the CAVIAR experiments. It defines transitions between two classes
meeting and moving and a third no-event class. Only a subset of the transition logic is shown for
brevity. In the case that no outgoing transition from a state is satisfied the SFA loops in its current
state.
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Learning rate

10−3 10−4 10−5

#Params Train Test Train Test Train Test

NESYA 26K 0.81± 0.13 0.60± 0.18 0.87± 0.03 0.85± 0.20 0.86± 0.10 0.81± 0.18
CNN-LSTM 400K 0.70± 0.23 0.56± 0.21 0.84± 0.08 0.35± 0.19 0.17± 0.05 0.15± 0.06
CNN-Transformer 2.5M 0.72± 0.26 0.40± 0.10 1.00± 0.00 0.68± 0.16 0.97± 0.02 0.78± 0.14

Table 3: Results for the CAVIAR dataset. Performance is averaged over 10 random seeds. The metric
reported is macro F1 score. We present results for 3 different learning rates as the dataset is small and
constructing a validation split to tune for the learning rate would further reduce the size of the training
data. For all systems training is stopped by monitoring the training loss with a patience of 10 epochs.
Best test results for each method are underlined.

for the low level activities. The true high-level events are also given in the CAVIAR data, but the
labels are noisy, i.e. there is some disagreement between the start and end points of the high-level
events generated by the logic and those provided by human annotators. Using the labels generated by
the SFA, we assume perfect knowledge, i.e. that the symbolic component of NESYA can perfectly
retrieve the high-level events, given the low-level activities. Learning with a label noise is beyond the
scope of this work.

The task in CAVIAR is therefore to tag a sequence of pairs of bounding boxes, along with a
Boolean distance feature, with the high-level event being performed in each timestep. For NESYA
each bounding box is processed by a CNN which gives a probability for each of the low-level activities
(walking, running, active and inactive). Combining this with the feature close(p1, p2), these are then
passed through the SFA which outputs the probability of each high-level event per timestep. As a
baseline, we drop the final linear projection of the CNN used for NESYA. The resulting CNN computes
a 64-dimensional embedding for each bounding box. We concatenate the embeddings of the bounding
boxes along with the distance feature finally producing a 129-dimensional embedding per frame. This
embedding is then given to either an LSTM or a Transformer, whose hidden state is projected to
the three high-level event classes. All systems are trained by computing a cross entropy loss on the
high-level event predictions in every timestep of each sequence. The supervision is therefore in the
frame level contrary to the experiment in Section 4.4.1 where supervision was on the sequence level.
For NESYA the loss in the CAVIAR dataset is:

L(o, L) =
∑

t∈{1,...,n}

CE(αt, Lt),

where n denotes the sequence length, αt the probabilities of being in each state of SFA at timestep t

(and therefore of emitting each label) and Lt denotes the true high-level event label for that timestep,
e.g. meeting. For the pure neural solutions αt is replaced with the output of a linear projection on the
LSTM/Transformer hidden state at timestep t. The performance of the three systems can be seen in
Table 3.

The results in Table 3 allow us to also answer [Q3] affirmatively. The inclusion of knowledge
about the structure of the high-level events based on the low-level activities aids in generalization and
the discrepancy between train and test performance is generally small for NESYA and larger for purely
neural solutions in this low data regime. The Transformer baseline is able to compete with NESYA,
albeit with an order of magnitude more parameters. It is interesting that 2.5 million parameters (the
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difference between NESYA and the CNN-Transformer) are necessary to find a solution that delivers
comparable performance with the three state SFA and simple transition logic used by NESYA as
background knowledge. The results in CAVIAR are to be taken with a grain of salt as standard
deviations are high due to the small size of the data which causes outlier runs for all methods.

4.5 Future Work
Recently, [104] used the DEEPPROBLOG system to integrate logical constraints in the training of
Reinforcement Learning (RL) agents in subsymbolic environments. We believe NESYA can aid in this
direction, by allowing for the specification of more complicated temporal constraints, which require
memory, i.e. some notion of state to be remembered from the execution of the environment so far,
while being more scalable. A large class of systems is based on constraints for RL agents [6, 52] often
using LTL. This seems a promising avenue for NeSyA which can extend such methods to subsymbolic
RL domains. Further, NESYA can be used to extend systems where automata are used to specify
tasks and reward structures for RL agents [51] and their NeSy extension [87] to incorporate logical
transitions.

Of significant interest is also the work of [2], who define a pseudo-semantic loss for autoregressive
models with constraints and [108], who similarly address the problem of incorporating constraints is
LLMs. Both approaches assume a flat vocabulary. We believe NESYA can be beneficial for constrained
autoregressive models when the output structure includes many features, i.e. the model generates
structured traces, instead of natural language.

Perhaps the most natural avenue for future work is the definition of a high-level NeSy language for
the specification of temporal programs which utilizes NESYA as a compilation target. Automata are
generally low-level devices, cumbersome to define by hand, motivating the creation of a human-centric
interface.
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5 Neuro-symbolic Complex Event Recognition in Autonomous
Driving
5.1 Introduction
In this section we apply the Neurosymbolic Automata framework (NeSy), presented in Section 4 to the
task of complex event recognition for autonomous driving and evaluate our approach on a challenging,
real world dataset from that domain.

Many applications require processing of continuously streaming data from geographically dispersed
sources. Complex event recognition (CER) involves identifying events within these streams, enabling
the implementation of both reactive and proactive actions [40]. Beyond their time efficiency, CER
systems are valued for their emphasis on trustworthy decision-making. This is achieved through
well-defined theoretical frameworks, such as logic specifications and automata, and machine learning
methods like Inductive Logic Programming and structure learning, which provide symbolic pattern
definitions, sound pattern learning and efficient inference.

However, in applications involving sub-symbolic input, such as video data, there is a need to
integrate these symbolic methods with sub-symbolic models to maintain performance. This necessity
motivates the introduction of Neuro-Symbolic Artificial Intelligence (NeSy) into the CER domain.
NeSy systems integrate neural-based learning with logic-based reasoning, combining sub-symbolic data
processing with symbolic knowledge representation. This integration aims to enhance interpretability,
robustness, and generalization of sub-symbolic methods, particularly improving their capacity to
handle out-of-distribution data.

A relevant domain for the integration of NeSy methods and CER is autonomous driving, since
–given the mission-critical nature of this domain– event recognition must be both efficient and reliable.
In this context, vehicles must interpret data from cameras and sensors to quickly identify events that
may require action. Many events in this domain can be formally described using rules and enriched
with background knowledge, which can be effectively defined and leveraged through CER methods.

In this setting, simple event predictors can be modeled using sub-symbolic structures, while complex
event recognition is addressed through established symbolic CER frameworks. Several NeSy works
have been proposed that handle temporal dynamics present in data sequences [102, 10, 97, 11, 9], but
they are application specific and do not offer a generalized framework that learns over a formalization
of simple events. On the other hand, generalizable NeSy frameworks such as DeepStochLog [100],
DeepProbLog [68], and NeurASP [105] are not inherently designed to model temporal events and
need to be enforced with time-aware reasoning (e.g. timestamps, sequential neural models, stochastic
processes etc.). One model that addresses both limitations is NeSyA (Neuro-Symbolic Automata) [66],
which combines symbolic automata with neural-based perception under probabilistic semantics in an
end-to-end differentiable framework. NeSyA supports temporal reasoning while enabling the learning
of common symbolic structures used in CER.

This work represents an initial effort to address complex events in autonomous driving with NeSy,
and specifically NeSyA, with the incentive to yield better results than purely neural approaches, focus-
ing on the recognition of overtake incidents between agents in the ROAD dataset [81]. The remainder
of the paper is structured as follows. Section 5.2 presents the necessary theoretical background,
focusing on CER and its relation to symbolic automata and autonomous driving. Section 5.3 outlines
our neuro-symbolic approach, explaining the integration of the sub-symbolic models and symbolic
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Figure 8: Illustration of the inference and training procedure in NeSy-SFA. First, videos are processed
through a neural network that outputs simple event probability distributions (Output Layer). These
probabilities help answer the probabilistic query of whether the sequence is in a certain state at a given
frame (Guards’ Probabilities), utilizing a compiled Boolean circuit (Logic compiled into an Arithmetic
Circuit). Over time, each state accumulates probabilities, by multiplying the probability distribution
with the Transition Matrix, resulting in a final state probability distribution at the end of the sequence.
We use this distribution to compute the loss for the ‘overtake’ incident prediction and backpropagate
the loss to train the network, repeating the process until we achieve the minimum loss value.

automata for training and inference. The complete dataset, the experimental setup, results and analysis
are provided in Section 5.4, for the challenging task of recognizing the complex event where a road
agent overtakes another. Finally, Section 5.6 concludes the paper and outlines directions for future
work.

5.2 Background
5.2.1 Complex Event Recognition
Complex Event Recognition (CER), also known as complex event pattern matching, refers to the
detection of complex events in streaming data by identifying temporal patterns composed of simple
events, i.e. low-level occurrences, or even other complex events [14]. Typically, CER systems
operate on streams of event tuples [40, 42], which are time-stamped collections of attribute-value
pairs. Conceptually, CER input can be seen as a multivariate sequence, with one sub-sequence per
event attribute. For example, an attribute might represent the output of a specific sensor, and its values
correspond to the sensor’s readings over time, whether numerical, categorical, and/or sub-symbolic.
Each event tuple serves as an observation of the joint evolution of all relevant attributes at a specific
time point. Complex event patterns define both a temporal structure over these event tuples and a set of
constraints on their attributes. A pattern is matched when a sequence of event tuples satisfies both the
required temporal ordering and the attribute constraints.

These patterns are typically specified by domain experts using event specification languages [42].
Such languages must support a core set of event-processing operators [5, 40, 107], including: (a)
sequence, indicating that specific events must occur in temporal succession; (b) iteration (Kleene
Closure), requiring one or more repeated occurrences of an event type; (c) filtering, which restricts
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Table 4: Labels and locations for agents, along with available actions for both agents and the
autonomous vehicle.

Agent Labels AV Actions Agent Actions Agent Locations

Pedestrian Stop Move away, towards AV lane
Motorbike Move Move right, left Outgoing lane
Bus Turn right,left Move Outgoing cycle lane
Car Move right, left Brake Incoming lane
Medium vehicle Overtake Stop Incoming cycle lane
Large vehicle Indicating left, right Pavement
Cyclist Hazard lights on Left pavement
AV traffic light Turn left, right Right pavement
Other traffic light Push object Junction
Emergency vehicle Reversing Crossing location

Overtake Parking
Red, Green, Amber light Bus stop
Wait to cross / Crossing / Cross from left, right

matches to events satisfying predefined predicates.
These operators naturally align with a computational model based on Symbolic Finite Automata

(SFAs) [26]. Unlike classical automata, which assume finite alphabets, SFAs generalize transitions to
be governed by logical predicates over potentially infinite domains, represented using effective Boolean
algebras [98, 95]. This enables expressive and compact representations of complex event structures. As
a result, most existing CER systems rely on SFA-based pattern representations [1, 107, 44, 4, 25, 8, 21].
In these systems, patterns are typically written in declarative languages (e.g., SQL-like syntax) and
compiled into symbolic (often non-deterministic) automata.

5.2.2 CER in Autonomous Driving
Existing work in the autonomous driving domain typically describes activities as driving events,
i.e., events occurring during driving [71, 62, 106]. The connection to the CER theory is evident:
autonomous vehicles must process numerical and/or sub-symbolic sensor data to recognize driving
events. For example, sudden braking may follow a sequence in which a car stops at a red light,
accelerates when it turns green, and then brakes abruptly as a deer crosses the road.

Framing these problems as CER tasks is motivated by the fact that many target patterns are either
known or can be explicitly defined. When such patterns are not predefined, learning-based methods
can be used to discover patterns compatible with CER systems. A relevant example is the ROAD
dataset [81, 82], a richly annotated autonomous driving dataset based on the RobotCar dataset [64].
ROAD provides frame-level annotations for agents, including their identity (e.g., vehicle, pedestrian),
action(s) (e.g., overtaking, turning left), and semantic location(s) (e.g., left pavement, incoming lane).

From a CER perspective, certain actions, such as ‘overtake’, constitute complex events, while
others, such as ‘green traffic light’, represent states. Among these, ‘overtake’ is particularly notable
due to its temporal extent, involvement of multiple (simple) sub-events, and significant impact on the
scene, making it a compelling CER task. However, the ‘overtake’ pattern is not predefined. Given
the complexity of scenes-multiple agents, dynamic locations, and concurrent actions, and the lack of
domain experts, manual specification is infeasible. Section 5.4 details the learning approach used to
extract such patterns.
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5.3 Neuro-Symbolic Approach
To perform CER on the video input, we combine ideas from (sequential) NeSy frameworks and
standard CER pipelines: neural networks process sub-symbolic input to detect simple events (actions
and semantic locations), while symbolic automata handle pattern matching to recognize ‘overtake’
incidents. In this Section we will describe in detail the NeSy integration in our work, by outlining the
NeSyA framework and its theoretical basis and connecting it to our decisions, driven by the task at
hand.

5.3.1 SFAs and Markov Models
In sequence modeling, it is often reasonable to assume that recent observations are more predictive than
distant ones. This motivates the use of Markov models, where future states depend only on a limited
history, typically just the current or previous state [17]. In these models, transitions between states
are governed by probabilities. A model is considered non-stationary if these transition probabilities
change over time.

Markov models represent sequences using a state space and a transition function in the form of a
matrix that defines the likelihood of moving from one state to another. At each time step, the distribution
over states is updated based on the previous distribution and the current transition probabilities. This
formulation allows for efficient modeling of temporal dynamics in data.

A seemingly different approach comes from SFAs. Rather than using probabilities, SFAs define
transitions using logical conditions over structured inputs. Specifically, inputs are interpreted as truth
assignments over a set of propositional variables and transitions occur when the current input satisfies
a logical formula attached to an edge in the automaton.

Both frameworks process sequences by transitioning through states in response to observed inputs,
whether those inputs are numeric symbols or logical interpretations and when SFAs are applied to
data streams (where input patterns or variable co-occurrences can be estimated) transitions can be
interpreted probabilistically, much like in a non-stationary Markov chain. So, SFAs can subsume
Markov models by encoding structured dependencies while remaining amenable to probabilistic
analysis.

5.3.2 Differentiable Probabilistic Inference via SFAs
Probabilistic reasoning over structured domains typically involves modeling uncertainty using joint
probability distributions over finite sets of variables [38, 77]. While expressive, these distributions
grow exponentially with the number of variables, rendering exact inference intractable. A widely used
approach to address this is Weighted Model Counting (WMC), which encodes the probabilistic model
as a weighted logical theory, consisting of a propositional formula and a function assigning weights
(probabilities) to literals [80]. The probability of a query is then computed by summing the weights of
all satisfying assignments, generalizing the classical model counting problem.

This process underlies probabilistic logical inference, where one computes the probability that
a logical formula holds under uncertain inputs. Since WMC is a #P -complete problem, practical
inference relies on Knowledge Compilation, which transforms formulas into tractable representations,
such as deterministic decomposable negation normal form (d-DNNF) circuits [28]. Once compiled,
inference becomes linear in the size of the circuit and differentiable.

Symbolic automata define transitions between states using propositional formulas over input
variables. When inputs are uncertain or noisy, each transition can be evaluated probabilistically by
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Figure 9: A bicycle approaches from behind the AV, overtakes it while the AV moves forward, and
stops at a red light. It then continues to overtake a car that is stopped ahead of the AV at the traffic
light.

applying WMC to the corresponding formula. If the automaton is constructed using compiled circuits
for each transition, the entire system becomes a differentiable probabilistic model, enabling integration
with gradient-based learning methods.

5.3.3 End-to-end training
Let us present in this section the NeSy pipeline in both inference and learning scenarios. Note that
the process of probabilistic inference and learning is embedded in NeSyA, but we will not distinguish
it here so that the pipeline is more coherent. We begin by outlining the inference process –a single
feed-forward pass from input to prediction.

A video is processed by simple event recognition networks, which output probability distributions
over simple events, specifically each two agents’ actions and semantic locations for every frame.
These distributions are then used to classify (ground) the agents’ discrete actions and locations for
the evaluation of the symbolic automaton. Next, a smooth d-DNNF circuit is compiled from the ASP
representation of the automaton. The circuit includes one variable for each possible action and location
value, and supports probabilistic queries corresponding to the automaton’s transitions. These queries
form the transition matrix by computing weighted model counts that accumulate probabilities in the
states of the automaton.

For each video, a row vector representing the probability distribution over automaton states at each
time step is maintained. It is initialized such that the start state has probability mass 1, with all others
set to 0. As each frame is processed, the state vector is updated by multiplying it with the current
transition matrix. Each column of the transition matrix represents the probability of transitioning into
a particular state at a given frame. Because the transition matrix is computed from neural network
outputs, which vary at every timestep, we consider our symbolic automata non-stationary. The final
output is the state distribution after processing the last frame.

We now turn to the learning procedure. After each forward pass, the computed state probability
distribution can be used to evaluate the prediction loss over the complex event. This loss can be defined
over the entire distribution or based solely on the acceptance probability –that is, the probability
mass assigned to the automaton’s final (accepting) state. Since the compiled symbolic automaton is
differentiable, the loss can be backpropagated through the symbolic layer. This enables end-to-end
training of the simple event recognition networks via gradient descent. As a result, the model learns to
adjust its predictions of simple events in a way that improves recognition of complex events, which in
our task is the ‘overtake’ event through distant supervision. A visualization of the proposed pipeline is
presented in Figure 8.
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5.4 Experiments
5.4.1 Sequential datasets
ROAD dataset consists of 22 real-world 8-minute videos recorded between November 2014 and
December 2015 in central Oxford, covering a range of routes and seasonal conditions. Of these, 20
videos are currently available for training and evaluation.

Road events are defined as a series of bounding boxes linked in time (frames), annotated with the
agent’s label, action(s), and semantic location(s) (cf. Table 4). Regarding the autonomous vehicle (AV),
we only know its unique ego-action (Table 4). Each agent has a unique identifier per video. The dataset
includes approximately 122K annotated frames (12 fps) at 1280× 960 resolution with a multitude of
agents per frame.

Regarding the complex ‘overtake’ actions, the dataset contains 30 unique overtakes, performed
either by the AV or other agents. Durations range from 2 to 164 frames (mean: 49.83; std: 41.87), all
occurring within 9 videos. Figure 9 illustrates an overtaking instance from the ROAD dataset.

To enable neurosymbolic integration and construct a pipeline that extracts sub-symbolic information
from video and feeds it into a symbolic reasoning module for overtake recognition, we extract two
aligned sequential datasets from the complete dataset: one symbolic and one sub-symbolic, in one-
to-one correspondence. We differentiate between overtakes involving the AV and those involving
two external agents. This distinction is necessary, as each type exhibits different visual and symbolic
patterns. When the AV is involved, its position is fixed, and its visual representation is not relevant,
unlike scenarios where the AV is not part of the overtake. The dataset consists of sequences ranging
from 6 to 10 frames (approximately 0.5 to 1 second), a duration sufficient for humans to recognize
overtakes in both symbolic and sub-symbolic modalities.

We define three classes: 0 for negative examples (no overtake), 1 when the first agent overtakes
the second, and 2 when the second agent overtakes the first. This labeling explicitly captures the
directionality of the overtake. Positive instances were generated by selecting video segments with
a maximum length of 10 frames, using non-overlapping chunks to prevent overfitting during NeSy
training. A sliding window approach was avoided due to the limited number of positive examples,
which would result in highly similar instances. This process yielded 92 positive instances, each
concluding with and containing an overtake event.

Selecting negative instances is inherently more challenging, as any sequence not classified as an
overtake could theoretically serve as a negative. To ensure informative training, we focused on close
negatives: sequences that initially resemble overtakes but do not culminate in one vehicle passing
another. To construct these, we identified the action pairs performed by agents prior to overtakes,
along with their frequency, and stochastically searched the dataset for similar sequences that do not
result in overtakes. Only one instance per agent pair was included, and both agents were required
to appear for at least 6 frames. This process yielded approximately 2,000 negative instances. While
downsampling negative examples could balance the dataset, we deliberately avoided this approach.
Overtake events are inherently sparse, and artificially balancing the dataset would introduce unrealistic
conditions. Also training on simplified, artificially balanced data would lead to poor performance,
given the sub-symbolic complexity of the task.

The symbolic dataset provides a structured, logic-based representation of events occurring within
each frame. Each instance encodes facts describing the two agents involved, including their identity
(e.g., AV, large vehicle), actions, semantic locations, and normalized bounding box coordinates at
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each timepoint (frame). The instance’s class label is also included. This representation enables the
grounding of the complex overtake event in terms of simple events, defined by combinations of agent
actions and locations within the symbolic framework. The sub-symbolic includes the corresponding
images of the frames that consist the symbolic dataset.

To ensure unbiased evaluation, we enforced a strict separation between training and testing sets,
preventing overlap of augmented positives or negatives from the same video segments. We performed
an 80/20 train/test split, analogous to k-fold cross-validation, using disjoint sets of videos for positive
samples. This resulted in up to 36 splits, allowing testing on out-of-distribution data. While we initially
applied the same strategy to negative samples, we observed a drawback: videos vary significantly
in visual characteristics (e.g., snow-covered vs. leafy junctions), and training solely on one type
reduces generalization. To mitigate this, we allowed negatives from all videos but enforced a minimum
temporal distance of 100 frames between any two selected instances, avoiding redundancy while
maintaining visual diversity.

To simplify the task, we focused only on one positive class and overtakes not involving the AV. As
a result, not all data splits remained suitable, since some lacked relevant positives or exhibited more
positives in the testing set. We randomly selected four viable splits for training and evaluation. Across
these splits, the number of positive sequences in the training set ranges from 46 to 75, and from 17 to
46 in the test set. The corresponding number of negative sequences is approximately 550 for training
and 250 for testing.

5.4.2 Extracting Background Knowledge

1start 3 2 4

f(1, 1)

f(1, 2)

f(1, 4)

f(2, 2)

f(2, 3)

f(2, 4)

f(3, 3)

f(3, 1)

f(4, 4)

% State 1 -> 2: if agent 2 is moving towards the AV and not transitioning to State 4.

f(1,2) :- action_2(movtow), not f(1,4).

% State 1 -> 4: if agents are in the same lane and the agent 2 is moving away from the AV.

f(1,4) :- same_lane(l1, l2), action_2(movaway ).

% Stay in State 1: if not moving to State 2 or 4.

f(1,1) :- not f(1,2), not f(1,4).

% State 2 -> 3: if agent 2 is moving towards the AV and not transitioning to State 4.

f(2,3) :- action_2(movtow), not f(2,4).

% State 2 -> 4: if agent 1 is stopped and agent 2 is in the incoming lane.

f(2,4) :- action_1(stop), location_2(incomlane ).

% Stay in State 2: if not moving to State 3 or 4.

f(2,2) :- not f(2,3), not f(2,4).

% State 3 -> 1: if agent 1 is in the incoming lane.

f(3,1) :- location_1(incomlane ).

% Stay in State 3: if not moving to State 1.

f(3,3) :- not f(3,1).

% Stay in State 4: always; absorbing state.

f(4,4) :- #true.

Figure 10: Learned automaton from symbolic dataset. l1 and l2 denote the agents’ (with the respective
index) locations. It achieves an F1-score of approximately 0.87 on the test set. The actual ASP syntax
has been simplified for clarity of the illustration.
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Since ‘overtake’ patterns were not predefined, we employed the ASAL framework [56] to learn
the patterns from the symbolic sequential dataset. ASAL learns Answer Set Automata, an extension
of SFAs tailored for CER over multivariate event streams, where transition predicates are defined via
ASP rules. Through declarative learning with symbolic reasoning it produces compact models with
strong generalization performance.

We used ASAL with the objective of maximizing generalization on the test set. We learned a
general automaton from the different symbolic splits. This led to the selection of a subset of simple
events most relevant for complex event recognition. The selected actions were: moving away, moving
towards, stop, and other (none of the above). The selected semantic locations were: incoming lane,
vehicle lane, junction, and other. Intuitively, this aligns with human reasoning: recognizing an
‘overtake’ primarily requires understanding the orientation and motion direction of the vehicle.

The above process resulted in the automaton shown in Figure 10. This learned symbolic automaton
accepts multiple patterns as valid instances of overtakes, represented by different paths leading to
the accepting state. Examples of such paths include: f(1,1)→ f(1,1)→ f(1,2)→ f(2,4) or f(1,1)

→ f(1,4). Let us give an intuitive overtaking pattern that is validated by the shortest accepting path
f(1,4):

• AV detects two vehicles in the same lane as itself (vehicle lane)

• Both vehicles are visible in front of the AV, meaning they are positioned side by side without
overlapping in the AV’s field of view

• If one of these vehicles is detected as moving, while the other is static or moving slower, the
moving vehicle is classified as overtaking the other

5.4.3 Experimental Setup
In a higher level of abstraction, the task is framed as a binary sequence classification problem:
determining whether a given sequence of frames constitutes an ‘overtake’. Experiments were conducted
on the four (sub-symbolic) data splits described in Section 5.4.1. We trained NeSy models and
compared their performance against purely neural baselines.

For simple event recognition, we employed two architectures: a 2D-CNN for semantic location
prediction and a 3D-CNN for action recognition, both with multiple convolutional layers. The temporal
modeling capability of the 3D-CNN is particularly important for recognizing motion-based actions.
Each module outputs eight predictions per frame: probability distributions over the actions and
locations of each agent. Although the annotations are multi-label (e.g., an agent may simultaneously
move toward the AV and signal a left turn), the task is cast as multi-class due to the requirement in the
NeSy pipeline for probability distributions over mutually exclusive classes. Both networks receive the
same input: a 10-frame video segment and bounding boxes of the two agents of interest per frame.

To evaluate the temporal reasoning capabilities of our NeSy model, we compare it against a
standard spatio-temporal neural architecture: a Long Short-Term Memory (LSTM) network [50]. In
this baseline, the outputs of the simple event recognition modules are passed to an LSTM (hidden size
10), whose output is used to predict the final classification probability.

For training, we used the Adam optimizer [58] with a batch size of 8. Due to the differing temporal
context –80 frames for the semantic location network versus 8 for the action recognition network– we
set distinct learning rates for each. Empirically, we found that the semantic location module required a
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lower learning rate, so we used 10−5 for the 3D-CNN action recognizer and halved it for the location
module.

All CER models were trained for a fixed 40 epochs. The neural baseline took approximately 20
seconds per epoch, whereas for the NeSy approach took 30 seconds. Given the scarcity of positive
examples in the training set, we did not employ a validation set. Instead, model selection was based
on training loss dynamics: we normalized losses to the [0, 1] range using the first epoch’s loss as the
maximum and 0 as the minimum, then selected the model at the earliest epoch where the loss plateaued,
defined as a change of less than 0.05 across a window of two consecutive epochs.

Since ‘overtake’ instances are sparse, comprising only 10% of the dataset, the task becomes a
highly imbalanced binary classification problem. To address this, we evaluated two loss functions for
NeSy and baseline training: weighted binary cross-entropy (weighted BCE) and focal loss. While
weighted BCE increases the contribution of the minority class by reweighting class loss terms, focal
loss down-weights easy examples, focusing learning on harder, misclassified ones.

In the neural baseline, outputting a complex event probability is straightforward. In contrast, the
NeSy model produces a state probability distribution over the automaton. The first and last entries
in this vector correspond to the start and accepting states, respectively. We experimented with two
approaches for mapping this distribution to a classification probability: (a) using only the acceptance
probability, and (b) comparing the full state distribution to the target distribution (0, 0, 0, 1) using
the Kolmogorov-Smirnov (KS) distance. The KS distance provides a bounded [0, 1] similarity score
between cumulative distributions, offering a principled, interpretable metric to evaluate whether the
final state is reached.

5.5 Results and Discussion
5.5.1 End-to-end NeSy
Our primary objective is to evaluate complex event recognition, i.e., the recognition of the ‘overtake’
event, across the four sub-symbolic data splits. To ensure a fair comparison across splits with
imbalanced class distributions, we adopt the micro-averaged F1 score as our evaluation metric across
all data splits. Table 5 presents the comparative results on complex events for the NeSy and baseline
for all loss configurations.

Metric
Baseline NeSy

Focal Weighted BCE Focal Weighted BCE

States Final States Final

Micro F1 0.15 0.14 0.55 0.42 0.31 0.39

Table 5: Micro-F1 scores by model type, loss function, and NeSy probability variant. ‘States’ uses the
full state distribution; ‘Final’ uses only the acceptance probability. A random 50% predictor yields
0.13 micro-F1.

Overall, the NeSy counterpart outperforms the neural baseline by a large margin across all con-
figurations. Additionally, focal loss yields better performance than weighted BCE in both model
types. However, no single acceptance probability computation strategy consistently outperforms the
other across all loss types within the NeSy configurations. Specifically, using the full state probability
distribution is superior when employing focal loss, whereas relying solely on the acceptance probability

Dissemination level: PU – Public, fully open Page 36



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

yields better results under weighted BCE.
This discrepancy can be attributed to the characteristics of each loss function. Focal loss is

particularly effective at emphasizing hard, misclassified examples, especially from the minority class.
In such cases, the richer information provided by the full automaton state distribution enables finer-
grained adjustments that help reduce loss more effectively. The KS-derived score, computed from
the full distribution, provides a softer, less confident prediction signal that is less biased and better
reflects uncertainty across states. Focal loss benefits from this nuance, as it is designed not for
probability calibration but for modulating loss based on prediction confidence. In contrast, weighted
BCE operates as a weighted maximum likelihood estimator under asymmetric class priors, assuming
calibrated, true probabilities as input. Consequently, it performs best when provided with a single,
well-defined probability –such as the acceptance probability– rather than a heuristic proxy derived
from distributional similarity.

5.5.2 Evaluation on Simple Events
However, as seen in Table 5, the F1 scores on the testing set remain relatively low. Again, as mentioned
in Section 5.4.1, the computer vision task itself is difficult, so low scores in the distant supervision task
of classifying an ‘overtake’ is expected. Additionally, for the neural baseline, this outcome is expected
due to the high variability among ‘overtake’ instances, which hinders generalization. In contrast, the
reduced performance of the NeSy model suggests deficiencies in simple event recognition, since the
symbolic automaton, demonstrates high generalization on the testing set.

To investigate this hypothesis, we overfit a NeSy model on the training set and then evaluate
its simple event predictors directly on the training data. As shown in Table 6, although the model
achieves perfect recognition of ‘overtake’ instances, it relies on what can be described as reasoning
shortcuts: it learns to exploit superficial cues in the input to satisfy the automaton transitions without
truly understanding or modeling the intended semantics of the simple events. Note that in preliminary
experiments we also used pre-trained simple event predictors, but the complex event training still
managed to find the best training shortcut.

Complex Event (F1-Score) - Training Set 0.99

Action Location

Class Micro-F1 Support Class Micro-F1 Support

Move away 0.301 1335 Vehicle Lane 0.000 1321
Move towards 0.273 6752 Incoming Lane 0.137 7194
Stop 0.301 2350 Junction 0.000 1967
Other 0.000 3963 Other 0.687 3918

Table 6: Trained complex event predictor evaluated on simple events for only one split. The model is
overfitted on the training set to isolate the symbolic component’s behavior. Evaluation is reported as
per-class F1 scores (one-vs-all) for each simple event category.

5.5.3 Loosely coupled NeSy
Given the sub-optimal performance of the NeSy model, one natural consideration is to decouple
training and reasoning, i.e., to first train the simple event predictors independently, and then incorporate
the symbolic component only at inference time.

Two approaches are possible: (a) utilizing the entire dataset for the simple event prediction task, and
(b) utilizing only the sub-symbolic dataset splits defined for the end-to-end NeSy task, as described in
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(a) Trained on the whole dataset
Action Location

Class F1 Score Class F1 Score

Move away 0.980 Vehicle Lane 0.767
Move towards 0.857 Incoming Lane 0.822
Stop 0.889 Junction 0.905
Other 0.861 Other 0.715

(b) Trained on the complex event dataset
Action Location

Class Micro-F1 Class Micro-F1

Move away 0.328 Vehicle Lane 0.504
Move towards 0.686 Incoming Lane 0.408
Stop 0.573 Junction 0.491
Other 0.158 Other 0.532

Table 7: Simple event training and F1 scores for action and semantic location recognition on the
testing set using two training configurations: (a) (left) models trained on a randomly selected 60% of
the dataset, validated on 20% with early stopping, and tested on the remaining 20%; (b) (right) models
trained on the four sub-symbolic splits used for the complex event task. Actions and locations for both
agents are evaluated jointly to keep the table simple.

Section 5.4.1. The evaluation results for the simple event predictors trained using these two approaches
are presented in Table 7. As expected, leveraging a larger portion of the dataset for training leads to
improved performance in simple event recognition. However, since our primary evaluation pertains
to the NeSy training and inference process, we proceed with the simple event predictors trained on
the dataset used for the end-to-end NeSy component. This configuration serves as the baseline for the
current task definition and dataset setup.

If we evaluate ‘overtake’ recognition using the pre-trained simple event recognizers by appending
the symbolic automaton, the results show that relying solely on this sequential setup, without end-to-
end training, yields a complex event F1 score of 0.0, indicating that end-to-end training is essential for
achieving non-trivial performance.

However, while the overall complex event performance is low, a score of exactly zero suggests
further investigation. We therefore conduct an additional experiment in Table 8, where we evaluate
complex event recognition while selectively fixing some simple event predictions to their ground-
truth labels. This allows us to assess whether the accurate prediction of specific simple events has a
disproportionately large influence on complex event recognition and whether certain errors in simple
event prediction are particularly detrimental.

Fixed Simple Events Micro F1

None 0.00
All 0.87

action_1, action_2 0.43
location_1, location_2 0.01
action_1, location_2 0.81

Table 8: Results on the loosely coupled NeSy structure. Simple event predictors trained on the NeSy
dataset splits are evaluated on the complex event. Some simple events are given their true labels during
evaluation. action_1 refers to agent 1’s action, location_1 to their location, etc.

If we provide the symbolic automaton with the ground-truth distribution of all simple events, as
expected, we recover the automaton’s maximum F1 score on the testing set (cf. Figure 10). When
providing only the ground truth for the agents’ actions, the ‘overtake’ recognition F1 score increases to
0.43. In contrast, supplying only the ground truth for the agents’ semantic locations yields a much
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lower score of 0.01. Interestingly, when fixing agent 1’s action and agent 2’s location to their true
values, the F1 score rises to 0.81, very close to the automaton’s upper limit.

This observation highlights that not all simple event predictions contribute equally to complex
event recognition. Intuitively, one might expect that accurate semantic location predictions would
significantly improve performance, as predicates such as same_lane, location_1, and location_2 appear
in multiple transitions within the automaton, but that is not the case. On the contrary, examining the
learned automaton reveals that action_1 is involved only in the transition f(2,4), where it is conjuncted
with location_2(incomlane). Accurately predicting this specific conjunction appears to be critical for
achieving high complex event recognition performance. These results indicate that certain transitions
in the symbolic automaton are more crucial for temporal reasoning than others, and accurate prediction
of the literals involved in these key transitions has a disproportionately large impact on overall complex
event recognition.

5.6 Conclusions and Future Work
In this work, we presented a Neuro-Symbolic (NeSy) pipeline for Complex Event Recognition, focusing
on the recognition of overtake incidents between two vehicles from video data. Our experiments
demonstrate that the NeSy model significantly outperforms its purely neural counterpart across all
configurations.

We also evaluated the learned simple events as well as a loosely coupled NeSy setting. Interestingly,
our findings show that the end-to-end NeSy model does not rely solely on accurate simple event
predictions for correct complex event recognition; instead, it is subject to reasoning shortcuts. In the
loosely coupled setting, we observed that the importance of specific simple events depends more on
their role in key automaton transitions rather than on their frequency within the automaton structure.

A primary direction for future work is the reformulation and expansion of the dataset. Incorporating
more data and a broader range of complex events would address one of the main limitations of our
study, namely, the limited training data combined with the inherent complexity of the computer vision
tasks involved.

Another promising direction is the systematic study of the relationship between symbolic automaton
structure and NeSy training dynamics. It is plausible that certain automaton architectures are more
suitable for guiding the neural component. For instance, automata with fewer conjunctive conditions
in their transitions may make the simple event training easier, while more complex automata could
offer smoother convergence or improved generalization.

Finally, a highly relevant avenue is the joint learning of both the neural and symbolic components.
Instead of fixing background knowledge in advance, we could provide a flexible knowledge base and al-
low the system to learn both the automaton structure and the neural network parameters simultaneously.
While this approach poses considerable challenges, it holds the potential for creating more flexible
and powerful models that can incorporate symbolic knowledge without introducing domain-specific
biases.
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6 Event Pattern Learning

6.1 Introduction
In the previous sections we assumed that the symbolic knowledge that is input to a NeSy system is
given beforehand. Under this assumption we presented techniques tailored specifically for temporal
event-based domains, for training the neural part of the NeSy system alongside the knowledge, so that
the two components (neural/symbolic) are aligned. However, the assumption of existing knowledge
does not always hold. In many event-based applications the patterns that we are interested to monitor
are not known beforehand, or they evolve over time as the underlying processes or data characteristics
change. This motivates the need for learning such patterns directly from data, rather than relying on
hand-crafted specifications, allowing us to automate part of the pattern engineering process and to
seamlessly adapt to new situations. However, although knowledge learning in a purely symbolic setting
(e.g., inductive logic programming, automata and grammar induction) is a well-studied problem, it is
much less explored in the case where the input data are of perceptual nature, such as videos (image
sequences) or high-dimensional time-series data.

A straightforward approach is to train a neural network to map percepts to symbols and then use an
off-the-shelf symbolic learner to induce temporal structure from the network’s symbolic inferences.
This yields a loosely coupled NeSy system, where the neural and the symbolic components are trained
in isolation, from different data and for different tasks. To illustrate the case, consider the autonomous
driving domain from Section 5 and assume that we do not know the automaton that represents the
overtake pattern that we wish to monitor. To learn it from the input video feeds via a loosely coupled
NeSy approach we would need dense simple event labels to train a neural network to detect simple
events. We would then use this network to extract symbolic sequences from the images, annotate the
sequences with complex event labels (overtake incidents), and use a symbolic learner, e.g. ASAL, to
learn the automaton from these symbolic sequences.

This approach has several shortcomings: (i) acquiring dense, high-quality simple event supervision
is costly and often infeasible, given the volume and velocity of real-life event-based data streams; (ii)
symbolic learners often rely on combinatorial search and, as a result, their running times and memory
requirements scale exponentially with the dimensionality and length of the training sequences and with
the size of the symbolic vocabulary (number of symbols or predicates) produced by the perceptual
module; (iii) training the neural part of the NeSy system and learning its symbolic component
separately, in a pipeline, is sub-optimal: neural training ignores the downstream task that we are
primarily interested in and symbolic learning ignores the stochastic, error-prone nature of the neural
grounding process that produces its input symbols.

To address these issues, in this section we present advancements on NeSy temporal structure
learning from perceptual data. We take first steps towards tackling points (i) and (iii) above by
presenting a method for joint neural/symbolic training that combines ASAL [57]—also presented
previously in D4.1—and NeSyA [66]—see also Section 4. The input consists of training image
sequences with downstream (complex event) labels only, together with a small subset of images from
these sequences for which simple event labels are also available. ASAL and NeSyA are combined
in a co-training framework in which a perceptual neural network is initially partially trained on the
small pool of labeled images. The partially trained network is then used to predict simple event labels
for all images, thereby inducing noisy symbolic sequences from the raw training sequences. ASAL is
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subsequently used to learn an initial symbolic automaton (SFA) from these sequences. To account for
the noise introduced by the poorly trained neural network, each sequence is weighted by the average
entropy of the neural predictions across time, and ASAL incorporates these weights during induction,
alongside a Minimum Description Length (MDL) heuristic, to bias its search towards models that
explain low-entropy sequences while discounting high-entropy ones when they incur a large MDL
penalty. NeSyA is then used to further train the neural network for a few epochs, using the SFA
induced by ASAL as a “teacher”. In this step, two losses are combined: the standard NeSyA loss
from sequence misclassification and the image-level misclassification loss for the labeled images. The
system then employs active learning principles to identify the most informative images to label and
requests a batch of new labels under a query budget. ASAL induces an improved SFA using the newly
acquired labels (rather than the network’s pseudo-labels), and the joint training loop continues until
convergence. This approach ensures that the neural and symbolic components are trained jointly and
mutually informed, while preliminary experiments indicate that convergence is achieved with only
a fraction of the labeled images that would be required without NeSy training or without an active
learning heuristic.

We also present a neuro-symbolic framework that addresses primarily point (ii) above by replacing
combinatorial symbolic search with fully differentiable SFA learning from perceptual sequences.
Instead of repeatedly invoking ASAL on large symbolic datasets, our new approach, ∂SFA, fixes an
SFA topology (number of states and candidate transitions) and parameterizes each transition guard as a
neural DNF over learned base predicates, implemented as differentiable conjunction and disjunction
operators on top of a perceptual network. Given a sequence of inputs, the corresponding guard truth
values are converted into a probability distribution over the SFA states’ outgoing transition and a
classical forward algorithm is used to compute the sequences’ acceptance probabilities at the end
of each sequence. The fuzzy relaxation and the fully differentiable forward pass through the SFA
graph yield an objective that can be optimized end-to-end from sequence-level labels using standard
gradient-based methods, without performing explicit symbolic search during training. Post-training,
an extraction pipeline prunes small or redundant weights, sweeps thresholds to discretize the neural
DNFs into candidate Boolean guards, and uses a lightweight ASP-based meta-encoding to select which
guards and literals to retain, subject to structural constraints such as determinism and sparsity. In
this way, ∂SFA recovers a compact, human-readable SFA that closely matches the behavior of the
trained differentiable model, while training and extraction are significantly faster and more scalable
than running ASAL from scratch on the same data.

6.2 Related Work
Most existing work on learning SFA has focused on symbolic, active learning algorithms, typically
formulated in Angluin’s MAT (Minimally Adequate Teacher) setting [7] with membership and equiv-
alence queries (MQ/EQ) [34, 12, 65, 74, 35]. In this setting, a learner repeatedly queries an oracle
about whether a word belongs to the target language (membership queries) and whether a conjec-
tured automaton is equivalent to the unknown target, receiving counterexamples in the opposite case
(equivalence queries). These assumptions are often impractical in many data-driven applications: MQs
requires “probing” the environment/system under all synthetically generated event sequences, and EQs
assume a teacher capable of certifying that a learned SFA matches the unknown pattern, or providing
informative counterexamples when it does not. In practice, however, what is often available is only a
finite log of labeled executions and no access to such oracles.
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Figure 11: NeurASAL overview.

In contrast, in the passive learning setting, the learner receives a sample of positive and negative
sequences and must infer an automaton consistent with the sample, or, when learning in the presence
of noise, an automaton that approximates the data as close as possible. This setting is often more
natural in data-driven applications [35, 16]. For classical automata, state-merging algorithms such
as RPNI and its variants are widely used in this setting, while also several SAT-based approaches
have been proposed. For SFA, most existing techniques rely on Inductive Logic Programming [24]
and logic-based learning [57, 55, 72, 36]. These approaches suffer from scalability issues, since they
rely on combinatorial search in a space that grows exponentially in the number of states in the target
SFA, the number of predicates in their guards and the length of the input training sequences. Besides,
scalability is a well-known issue of all purely symbolic SFA induction techniques, either in the passive,
or in the active learning setting: efficient induction algorithms in either setting exist only for certain
classes of SFA, specifically those defined over monotone Boolean algebras – e.g. the interval algebra
over the reals – but not for in the general case – e.g. the propositional algebra where the SFA guards
are Boolean combinations of arbitrary predicates [35].

Aiming to sidestep the hardness of exact automata identification, differentiable approaches have
recently emerged, where neural architectures approximate deterministic finite automata (DFAs) from
symbolic sequences and can be trained using gradient-based optimization [45, 88, 33]. Such methods
demonstrate that continuous relaxations of automata can be learned efficiently and that discrete
automata can be extracted post-hoc from trained models. However, these approaches operate over
discrete symbol sequences and assume a fixed finite alphabet; they do not handle multivariate, sub-
symbolic input (e.g., sensor streams, images, or high-dimensional feature vectors) directly, and they
do not provide a systematic mechanism for learning symbolic transition guards over relational or
numerical predicates, as required in CER/F.

6.3 Active Neuro-Symbolic Learning of Complex Event Patterns
In this section we introduce NeurASAL, a novel approach that combines ASAL for symbolic automata
(SFA) induction [57], see also Deliverable D4.1, with NeSyA [66], Section 4, for joint neuro-symbolic
training of perception networks with such SFA. NeurASAL – see Figure 11 for an overview. jointly
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learns an SFA while training the perception network and targets temporal learning problems in which
supervision is cheap at the sequence level, but expensive at the latent concept level – a typical setting
in complex event recognition and forecasting tasks. The input consists of sequences of perceptual
observations (e.g., images) labeled only as positive or negative with respect to some unknown complex
event pattern, together with a small, actively acquired pool of image-level labels for a small number
of sequences. The goal is to learn simultaneously: (i) a symbolic finite automaton (SFA) describing
the temporal structure of the pattern; and (ii) a perception model that maps each observation into
probabilities for a set of base predicates (latent concepts/simple events), such that the learned SFA
accurately predicts the sequence labels and the perception model is aligned with this structure.

The perception component is a convolutional neural network (CNN) that, given an image xt,
outputs a probability distribution over a set of simple predicates. These predicate probabilities form
the interface between the neural and symbolic parts. Starting from a small seed set of fully labeled
sequences, where every image in the sequence has a latent concept label, the CNN is first trained with
standard cross-entropy on these image labels. The partially trained CNN is then applied to all images
in the training set, producing noisy symbolic sequences: for each time step, the most probable predicate
configuration is treated as a pseudo-label, and each sequence is associated with an overall confidence
score, typically the average entropy of the CNN predictions across the sequence.

ASAL is then used in a purely symbolic fashion on these noisy sequences. It takes as input: (i)
the pseudo-labeled sequences; (ii) their sequence-level labels; and (iii) a weight for each sequence
derived from the CNN’s confidence. ASAL searches in the space of SFAs up to a fixed number of
states, guided by a weighted Minimum Description Length (MDL) criterion. Fully labeled sequences
and highly confident pseudo-labeled sequences act as strong constraints, while uncertain sequences are
discounted by their lower weights and can be ignored if they incur a large MDL penalty. This results in
an initial SFA whose guards are Boolean combinations of the base predicates and which approximates
the unknown target pattern despite the noise in the symbolic input.

To align the perception model with this symbolic structure, NeurASAL then enters a neuro-
symbolic training phase using NeSyA. The SFA produced by ASAL is compiled into an arithmetic
circuit – or more generally a tractable probabilistic circuit – that computes, for any sequence of
predicate probability vectors produced by the CNN, the acceptance probability of the SFA. This circuit
implements differentiable dynamic programming over the automaton, allowing gradients to flow from
a sequence-level loss back to the CNN parameters. During this phase, two losses are combined: a
sequence loss, such as binary cross-entropy between the SFA acceptance probability and the sequence
label, and an image loss, i.e., cross-entropy on the available image-level labels. Optimizing the sum of
these losses refines the CNN so that its predicate predictions not only fit the few image labels but also
make sequences symbolically consistent with the current SFA.

NeurASAL wraps the ASAL and NeSyA phases inside an active learning loop. After each round
of neuro-symbolic training, the system evaluates the current model on the pool of unlabeled sequences
and selects the sequence for which the sequence-level prediction is most uncertain or most erroneous
(e.g., highest binary cross-entropy or largest margin). For that sequence, an oracle (typically, a human
annotator) is asked to provide latent labels for all images in the sequence. These new labels are added
to the labeled pool, and the loop continues. ASAL re-induces an SFA using the updated symbolic
dataset, where newly labeled sequences are treated as highly reliable, NeSyA retrains the CNN under
the new automaton, and the active learner selects the next query.

In this co-training approach the symbolic learner continually reshapes the structure that supervises
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the CNN, while the CNN provides increasingly accurate pseudo-labels that improve the quality of the
SFA. NeSyA allows the SFA to act as a differentiable teacher for the CNN, propagating sequence-level
supervision to the latent level without requiring dense labels. Active learning further reduces labeling
costs by focusing annotation effort on the most informative sequences. Crucially, unlike a loosely
coupled pipeline where a CNN is trained first and a symbolic learner is applied post hoc to its outputs,
NeurASAL performs joint learning: the SFA directly influences the representation learned by the CNN,
and the evolution of the CNN feeds back into the SFA through ASAL. The result is a neuro-symbolic
system in which perception and temporal reasoning are tightly aligned and can be trained from very
few latent labels.

6.4 Indicative Results

Figure 12: A simple MNIST-based SFA used to generate data in the active learning experiment.

We evaluate NeurASAL on a simple temporal MNIST benchmark tailored to complex event
recognition. Each example is a sequence of ten MNIST digits, and labels are generated by a hand-
crafted SFA over predicates such as even, odd, larger_than_6 and smaller_than_3 – see Figure 12. A
representative pattern starts in state S0, waits until it sees a digit that is even and larger than 6, moves
to S1 and then requires a digit that is odd and not larger than 6, finally transitioning to S2 and accepting
once it sees a digit smaller than 3. Self-loops on each state ensure that irrelevant digits are ignored.
Positive sequences are those that realize the pattern somewhere in the ten positions; all other sequences
are negative. The CNN receives the raw digit images; sequence labels are available for all training
sequences, whereas only a small number of sequences come with latent concept labels (true values of
the predicates per time step).

We compare NeurASAL against DeepDFA [88], a fully differentiable Deterministic Finite Automa-
ton (DFA) learning method, the literature approach that is most closely related to ours. The method
learns a probabilistic automaton with gradient-based optimization, properly regularized so that the
outcome closely approximates a crisp DFA, which can then be easily extracted from the neural model.
DeepDFA learns classical DFA over a fixed alphabet, as opposed to symbolic automata over a pool of
predicates that can account for infinite alphabets. Typically, DeepDFA can be used in multi-variate
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settings via propositionalization. However, this was not necessary in this simple, univariate MNIST-
based domain: DeepDFA can learn over the digits alphabet, at the potential cost of inducing more
complex automata, as opposed to symbolic automata learning methods, which can compress alphabet
symbols (and transitions) into logical formulas. Moreover, DeepDFA was originally designed for
learning from symbolic strings/words. We thus extended the method so that it can handle perceptual
input (images), process by a CNN head. The purpose of the comparison is to show that thanks to
ASAL’s crisp structure induction, as opposed to DeepSFA’s purely neural approach, NeurASAL is able
to converge to high-quality models, faster than the state-of-the-art DeepDFA method.

For a fair comparison we equip both methods with the same CNN architecture as a perception
module and let them share the same pool of labeled sequences. The experimental training protocol
proceeds in rounds. Initially, we provide fully labeled latent concepts for only four sequences (40
images). The CNN is trained on these images, and then in parallel: DeepDFA learns a DFA from the
corresponding symbolic sequences, while NeurASAL runs the ASAL+NeSyA loop to induce an SFA
and train the CNN under its supervision. After this initial phase, the active learner selects the sequence
with the highest sequence-level binary cross-entropy and queries latent labels for that sequence. The
labeled pool grows by one sequence per round, and both systems are retrained for a fixed number of
epochs at each step. We repeat this procedure for ten rounds, reaching at most fourteen fully labeled
sequences (140 labeled images) in total.

Figure 13: Sequence classification (left) and image classification F1-scores for NeurASAL and
DeepDFA on temporal MNIST.

Figure 13 (left) shows the test F1-score on sequence classification (target task) as a function of
the number of fully labeled sequences (averages over five runs). DeepDFA starts around F1 ≈ 0.68

with four sequences and improves steadily as more latent labels are acquired, reaching roughly 0.82

with fourteen labeled sequences. NeurASAL exhibits much faster improvement: with only six fully
labeled sequences it already surpasses DeepDFA, and by eight to ten fully labeled sequences it reaches
an F1-score in the range 0.9–0.93. Therefore, NeurASAL needs roughly an order of magnitude fewer
latent labels to achieve the same sequence-level performance that DeepDFA only attains when trained
with about one hundred fully labeled sequences.

The advantage is even more evident on the latent concept (simple event) prediction task. Figure 13
(right) reports F1 on image-level label prediction. For DeepDFA, latent concepts are learned only
indirectly through the CNN trained on the limited labeled pool, yielding modest performance (around
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Model Train F1 (T=10) Test F1 (T=10) Test F1 (T=50, OOD)

NeurASAL 0.968 0.899 0.823
CNN + LSTM 1.000 0.916 0.554
CNN + Transformer 1.000 0.967 0.542

Table 9: Out-of-distribution generalisation from length-10 to length-50 image sequences. All models
are trained on length-10 sequences.

0.72 when extrapolating to many labeled sequences). In contrast, NeurASAL uses the SFA learned
by ASAL as a teacher that provides indirect supervision for every time step in every sequence, via
the NeSyA circuit. As a result, the CNN learns latent concepts much more effectively, reaching
latent F1-scores of approximately 0.88 with the same small set of labeled sequences. Additional
ablation experiments confirm that both components are necessary: training the CNN without any
neuro-symbolic loss but with the same set of latent labels yields image-level F1 around 0.72, while
using the SFA for indirect supervision only (no extra latent labels) achieves about 0.65; combining
NeSy training with extra latent labels pushes performance to approximately 0.875.

Out of Distribution Generalization In our second experiment we investigate NeurASAL’s Out
of Distribution Generalization (OOD) performance, thanks to its ability to learn invariant symbolic
patterns and use them to train the perception module. Our OOD setting is based on temporal length:
All models under comparison are trained on sequences of length 10 and tested on sequences of length
50 generated by the same underlying SFA pattern. We compare NeurASAL against two purely neural
baselines: a CNN followed by an LSTM, and a CNN followed by a Transformer. Table 9 presents that
results. All three models achieve high training performance and similar test F1-scores on length-10
sequences. However, when evaluated on length-50 sequences, NeurASAL suffers a moderate drop in
F1-score, while the purely neural models drop to near random guessing. The hybrid models learned
by NeurASAL can handle longer horizons because the automaton in the symbolic component is
length-invariant. In contrast, the neural baselines, have learned to exploit superficial regularities in
sequences of length 10 and fail to extrapolate to longer temporal contexts.

Overall, these experiments demonstrate three key benefits of NeurASAL. First, by combining
ASAL, NeSyA and active learning, it can recover high-quality SFAs and achieve strong sequence-level
performance from very few latent labels, substantially outperforming the state-of-the art DeepDFA
method in the low-supervision regime. Second, the learned SFAs serve as effective teachers for the
perception network, leading to significant gains in latent concept prediction accuracy compared to
training the CNN alone or using DeepDFA. Third, the explicit temporal structure encoded in the SFA
yields robust OOD generalization, whereas purely neural sequence models’ performance degrades
sharply. These results highlight the value of tightly integrated neuro-symbolic learning in temporal
domains where labels are scarce and extrapolation beyond the training distribution is essential.

6.5 Differentiable Learning of Symbolic Automata
We next proceed to the presentation of our differentiable approach to learning SFA from perceptual
sequences, aiming to alleviate the combinatorial complexity of symbolic induction techniques, such as
ASAL.

An input sequence is denoted x1:T = (x1, . . . , xT ), with each xt an element of a domain X . The
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domain may consist of multivariate time-series vectors (X ⊆ Rd), images or video frames (X a space
of tensors), or already-symbolic tokens. Our goal is to learn interpretable symbolic automata that
recognize complex event patterns over such sequences.

Let Π be a set of base, predicates, i.e. the predicates that will be used as building blocks for
synthesizing the SFA guards. Each of these base predicates is either a primitive condition over the
input (e.g., attribute ><= value) or a higher-level predicate that can be used to reason over the
neural output – e.g. consider the even/1 predicate over MNIST digit predictions by a CNN. In the
case where the base predicates are numerical feature/value comparisons over the neural predictions
their probabilities are directly given from the neural network. Otherwise, for more complex predicates
we use knowledge compilation into probabilistic circuits, which are used to calculate predicates
probabilities from the symbol probabilities predicted by the neural network.

Our goal is to use such sequences, as training data, and the predicates as a language bias, in order
to learn, in a fully differentiable fashion, symbolic automata that express complex event patterns that
are present in the data. Training sequences are labeled as positive or negative. Positive (resp. negative)
sequences are those that satisfy (no not satisfy) a target complex event pattern and should be accepted
(resp. rejected) by the learnt SFA. We give a brief formal definition of SFA below and refer the reader
to the previous sections for further details regarding SFA and their usage in CER applications.

6.5.1 Preliminaries
Symbolic finite automata. Let Π be as above and let B(Π) denote the Boolean algebra generated
from Π by conjunction, disjunction, and negation. A symbolic finite automaton (SFA) over Π is a tuple

A = (Q, q0, F,Π,∆),

where Q = {1, . . . , N} is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states, and ∆ ⊆ Q× B(Π)× Q is a finite set of transitions. Each transition is of the form (u, φ, v),
where φ ∈ B(Π) is a guard; we write u

φ−→ v for such a transition. Given a sequence x1:T , a run of
A is a state sequence q0:T = (q0, . . . , qT ) such that for each t ∈ {1, . . . , T} there is a guard φt with
(qt−1, φt, qt) ∈ ∆ and φt true on xt under the Boolean semantics of Π. The run is accepting if qT ∈ F ,
and the language L(A) consists of all sequences that admit at least one accepting run.

DNF guards. We fix an upper bound N on the number of states for the target SFA. For simplicity,
in what follows we assume that target SFA have a single accepting state, which is also absorbing
(i.e. there are no outgoing transitions from the accepting state). Therefore, in principle we want to
learn N2 − 1 guards, each represented as a logical formula over the base predicates in Disjunctive
Normal Form (DNF), i.e. a disjunction of conjunctions. We assume a maximum number M of clauses
(disjuncts) per DNF/guard, which is a hyperparameter. We index guards by g ∈ {1, . . . , G} with
G = N2 − 1, each guard corresponding to a specific ordered pair of states (ug, vg).

Guard parametrization. The i-th clause of guard g is a conjunction of literals indexed by j, where
a literal is a base predicate π, or its negation ¬π. We denote by πi,j

g the j-th literal in the i-th clause of
guard g, and by pi,jg (t) ∈ (0, 1) the probability that πi,j

g holds at time t. If πi,j
g is a positive predicate,

then pi,jg (t) = p(πi,j
g | xt), otherwise pi,jg (t) = 1−p(π̄i,j

g | xt). We therefore maintain |Π| ·M · (N2−1)

real-valued weights specifying the importance of each literal in each clause of each guard – recall that
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Π is the base predicate set, M is the maximum number of disjuncts per DNF and N is the maximum
number of states in the target SFA.

6.5.2 Conjunction Layer
We split a literal weight wi,j

g ∈ R into a positive and a negative part via rectified linear units:

wi,j
g,+ = max{wi,j

g , 0}, wi,j
g,− = max{−wi,j

g , 0}.

wi,j
g,+ measures how strongly the i-th positive literal should be enforced in clause cij i (i-th clause of

guard g), whereas wi,j
g,− measures how strongly its negation should be enforced; when both are close to

zero, the corresponding predicate is effectively irrelevant for that clause.
Given the literal probabilities and split weights, we define the log-product score of clause i of guard

g at time t as
sig(t) =

∑
j

(
wi,j

g,+ log pi,jg (t) + wi,j
g,− log

(
1− pi,jg (t)

))
, (4)

which after exponentiation yields

exp
(
sig(t)

)
=

∏
j

(
pi,jg (t)

)wi,j
g,+

(
1− pi,jg (t)

)wi,j
g,− .

This is a Weighted Product Model [86] over the positive and negative literal probabilities. When the
weights are constrained to {0, 1} and at most one of wi,j

g,+, w
i,j
g,− is 1 for each j, this product reduces to

the probability that all literals with weight 1 are simultaneously true (under a standard independence
assumption), i.e., the probability that a crisp conjunction is satisfied. Allowing real-valued weights
turns this into a soft conjunction.
To pass clause scores to the disjunction layer (which, as discussed below, is a noisy-OR layer, expecting
values in [0, 1]), we map sig(t) ∈ (−∞, 0] to a truth value in [0, 1] via a sigmoid σ:

pig(t) = σ
(
sig(t)

)
=

1

1 + exp
(
−sig(t)

) . (5)

pig(t) ∈ (0, 1) serves as a fuzzy truth value for the fact that the i-th clause of guard g is satisfied at
time t: if all high-weight positive literals have high truth values pi,jg (t) and all high-weight negative
literals have low truth values then pig(t) from (5) is close to 1. On the other hand, pig(t) is close to 0 if
the clause contains “inconsistent” literals, i.e. at least one high-weight positive literal with small truth
value pi,jg (t), or a high-weight negative literal with a large pi,jg (t). In such cases, these “inconsistent”
literals push the clause’s log-product score to a large negative number, so that the sigmoid is close to
zero. Note also that a clause’s after-sigmoid truth value is close to 1/2 when all its literals’ weights are
close to zero, so that it log-product is close to zero. This represents a “neutral”, degenerate clause that
is effectively independent of the input will most likely be pruned post-training (see below for weight
pruning).

6.5.3 Disjunction Layer
At the guard level we introduce an additional parameter γi

g ∈ R per clause, and define a clause weight
as αi

g = σ(γi
g) ∈ (0, 1). Intuitively, αi

g expresses how much clause i is trusted, or how “active” it is
allowed to be inside the guard: values of αi

g close to zero effectively deactivate the clause, while values
close to one allow the clause to contribute to the DNF. The guard probability at time t is then obtained
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by a weighted noisy-OR over the clause values:

gg(t) = 1 −
R∏
i=1

(
1− αi

g q
i
g(t)

)
. (6)

If we interpret qig(t) as the probability that clause i is satisfied at time t by input f(xt) (where by f we
denote the perception network that maps percepts to symbols) and αi

g as the probability that clause i is
actually used by the guard, then αi

gq
i
g(t) is the probability that clause i both fires and is active. Under

an independence approximation, the probability that no active clause fires is
∏

i(1− αi
gq

i
g(t)), and the

complement in (6) is the probability that at least one active clause is satisfied. Noisy-or is a classical
soft OR approximation from fuzzy logic and the dual t-conorm of the product t-norm [93], whose
log-product variant we use here to model soft conjunctions.

Although it is in principle possible to omit the clause weights αi
g from the architecture, they provide

a second level of sparsity on top of the literal weights and, empirically, training has been proven to be
much more effective when using clause-level weights, as compared to relying on literal weights only.
During training we regularize the αi

g (e.g., via L1 or L0-style [63] penalties) so that redundant clauses
are driven towards αi

g ≈ 0. Such clauses become effectively inactive in the noisy-or layer and can later
be pruned when extracting a discrete SFA.

6.5.4 Transition Layer and the SFA Forward Pass
Each guard g corresponds to a unique ordered pair of states (ug, vg). At time t, we use the guard truth
values to construct an unnormalised transition matrix. For each source state u and destination state v

we define a score

ru,v(t) =
gg(u,v)(t)

τ
,

where g(u, v) is the index of the guard for transition u→ v, and τ > 0 is a temperature parameter. We
then obtain a row-stochastic transition matrix from u at time t via a softmax:

pt(v | u) =
exp

(
ru,v(t)

)∑
v′ exp

(
ru,v′(t)

) . (7)

For each fixed u and t, the mapping v 7→ pt(v | u) is a categorical distribution over states. The
temperature τ controls how deterministic the transitions are: small τ makes the distribution concentrate
on the transition with the largest guard probability, while larger τ yields smoother, more exploratory
dynamics. In practice, during training, we typically start with a high temperature and gradually anneal
it, encouraging the model to converge towards near-deterministic automaton behavior.

Given the time-varying transition probabilities pt(· | ·), the sequence-level semantics is defined by
the classical dynamic programming-based recursion from temporal graphical models (e.g. HMMs) –
se also Section 4.3.1. Let µ be an initial distribution over states and define α0(u) = µ(u). For t ≥ 1

we propagate state probabilities according to

αt(v) =
∑
u

αt−1(u) pt(v | u). (8)

This is the usual forward recursion for a non-homogeneous Markov chain whose transition matrix at
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time t is [pt(v | u)]u,v4. Let F ⊆ Q be the set of accepting states. The acceptance probability of x1:T

under the relaxed δSFA semantics is

pΘ(acc | x1:T ) =
∑
v∈F

αT (v), (9)

where Θ collects all parameters of the model (literal and clause weights).

Additional inductive biases. As already mentioned, for simplicity we constrain the SFA hypothesis
space to the space of symbolic automata of up to N states, with a single, absorbing accepting state and
a single start state, as well as up to M disjunct rules per DNF guard. The accepting state qacc being
absorbing means that it has no outgoing transitions, but only a deterministic self-loop (i.e. once the
SFA reaches qacc it self loops on it with probability 1.0, regardless of the input). Additionally, we
refrain from learning explicit guards for self-loop transitions and instead treat them as probabilistic
complements of any state’s q ∈ Q \ qacc outgoing transitions, thus treating self-loops as realizing
the “skip-till-next-match” event consumption policy [57]. Specifically, during the construction of
the transition matrix at each step, we set the truth value of any non-accepting self-loop entry q to
1−∨q, where ∨q is the noisy-OR truth value of q’s outgoing guards, and then normalize the rows of the
transition matrix via a tempered softmax. This way we encode the requirement that any piece of input
that does not satisfy one of the outgoing transition guards is effectively “skipped”, without having to
learn explicit formulas for the guards’ logical complements.

6.5.5 Weight Pruning and Post-Training SFA Extraction
After training converges we extract a crisp SFA via weight pruning and thresholding on the neural
model. First, we set to zero the weights of all SFA guards whose removal does not affect the training
loss more than a given threshold ϵ. We then repeat this process for the literals of the remaining guards,
zeroing out the weights of all literals whose removal from the model does not significantly affect the
performance on the training set. Next, we select a weight threshold for surviving literals by sweeping
over a range of possible weight values, using a similar training performance reduction criterion and we
remove the literals whose weight is below is below that threshold. Finally We construct a crisp SFA
from the guards and literals that survive this multi-step pruning process.

Although the weight pruning and thresholding process often yields a high-quality crisp SFA, there is
no guarantee for that. It might be the case that the extracted crisp SFA contains redundant literals, which
were deemed useful for the neural SFA during the pruning process, but are useless, or even hurtful
for the crisp SFA’s performance, resulting in over-specific guards, which affect the symbolic model’s
generalization abilities. Moreover, although the training process pushes towards deterministic SFA via
the tempered softmax that is used to convert the unnormalized transitions matrices to row-stochastic
ones during training, there is no guarantee that the crisp SFA that is extracted from the neural model is
indeed deterministic: it can happen in practice that the DNFs that guard the outgoing transitions from
some state q in the crisp SFA are not mutually exclusive, resulting in a non-deterministic SFA. This
hurts interpretability of the resulting model, as well as the ability to combine it with NeSy reasoning
frameworks that expect deterministic SFA, such as NeSyA. Although a non-deterministic SFA can
be made deterministic via standard determinization algorithms, this requires propositionalizing the

4For numerical stability on long sequences, the recursion can be implemented in log-space by propagating logαt(v)
and using log-sum-exp in place of the sums, while keeping the transition logits in the log domain as well.
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SFA, which hurts interpretability even further, while it can also result in an exponential blow up in the
automaton’s size (number of states and transitions).

To address these issues we utilize an ASP-based approach for selecting the optimal combination of
guards and literals from those that survive the pruning process, while enforcing structural constraints
that ensure determinism, or other properties that might be desirable for simplifying the model (e.g.
explicit dead/reject states in the SFA, inclusion of backward transitions, or “jumps” in its graph
structure and so on).

Specifically, we treat the surviving guards and literals as a hypothesis space for ASAL and utilize
its support for easily definable, declarative constraints and its abductive learning methodology for
identifying the optimal crisp structure that best fits the training data. Crucially, the heavily constrained
hypothesis space that results from neural training makes the complexity of the SFA induction process
manageable. This is in contrast to plain ASAL, where an SFA needs to be learned from scratch, from
an unconstrained hypothesis space that grows exponentially with the dimensionality and length of the
input.

We omit the description of the post-training SFA-induction meta-encoding and instead refer to [57]
and D4.1, which contain detailed descriptions of such encodings and of declarative specifications of
structural constraints that are enforced during the induction process.

Example 1. Consider the following rules that were learned from the ≈ 1500 length-50, multivariate
gene sequences in EVENFLOW’s Personalized Medicine use case – we refer to D3.3 for further details
on the use case:

0.589: g(1, 2)← −0.233: hus1b(0),−0.018: slc22a1(0),−0.017: oasl(1),−0.016: oasl(0),
0.616: g(2, 1)← −0.043: hus1b(2),+0.040: hus1b(0),−0.033: oasl(2),−0.029: oasl(1),−0.016: slc22a1(2).
0.506: g(2, 3)← −0.175: hus1b(0),−0.030: slc22a1(0),−0.020: slc22a1(2),−0.018: slc22a1(1),−0.016: oasl(0).
0.580: g(3, 1)← −0.115: hus1b(2),−0.110: hus1b(1),−0.024: slc22a1(1),−0.014: slc22a1(0),
0.127: g(3, 2)← −0.044: hus1b(1),−0.035: hus1b(2),−0.031: oasl(2),−0.027: slc22a1(1),−0.020: slc22a1(2).
0.500: g(3, 4)← −0.185: hus1b(0),−0.033: oasl(0),−0.030: slc22a1(0),−0.028: hus1b(1),−0.015: oasl(2).
0.537: g(4, 1)← −0.150: hus1b(1),−0.126: hus1b(2),−0.024: oasl(1).
0.161: g(4, 2)← −0.081: hus1b(1),−0.031: oasl(1),−0.022: slc22a1(0),−0.021: oasl(0),−0.017: hus1b(2).
0.140: g(4, 3)← −0.067: hus1b(1),−0.033: hus1b(0),−0.026: hus1b(2),−0.018: oasl(0),−0.016: slc22a1(2).
0.456: g(4, 5)← −0.178: hus1b(0),−0.037: hus1b(1),−0.017: oasl(0),−0.017: slc22a1(0).

These rules represent the post-weight pruning surviving guards of a 5-state SFA learned from the gene
sequences dataset, using the top-ten genes from the panel of fifty genes that were identified as most
relevant to cancer progression in this use case. Therefore, we are learning from 10-variate sequences in
this case. We omit self-loops since, as mentioned above, we are not explicitly learning DNF formulas
for them. The head of each rule refers to the transition that the rule guards in the learned SFA. For
instance the first rule refers to the transition (1→ 2). The learned weight of each rule precedes the
head, as in 0.589: g(1, 2). The bodies of the rules represent conjunctions of literals. The input training
sequences were discretized to three bins for this experiment, therefore, each gene can take three values,
0, 1 and 2. The predicates in the bodies of the rules encode the values that each gene takes, for instance,
hus1b(2) means that gene hus1b takes the value of 2. The sign encodes the “polarity” of the predicate,
i.e. whether the predicate is used positively or negatively in a rule. The learned weights of each
predicate are also presented before each predicate. Recall that these are weights that survive the weight
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pruning process.
Given the above, the weighted rules correspond to the following crisp rules obtained by discarding

the weights and properly interpreting the literals’ signs:

g(1, 2) ← not hus1b(0),not slc22a1(0),not oasl(1),not oasl(0),not hus1b(1).

g(2, 1) ← not hus1b(2), hus1b(0),not oasl(2),not oasl(1),not slc22a1(2).

g(2, 3) ← not hus1b(0),not slc22a1(0),not slc22a1(2),not slc22a1(1),not oasl(0).

g(3, 1) ← not hus1b(2),not hus1b(1),not slc22a1(1),not slc22a1(0).

g(3, 2) ← not hus1b(1),not hus1b(2),not oasl(2),not slc22a1(1),not slc22a1(2).

g(3, 4) ← not hus1b(0),not oasl(0),not slc22a1(0),not hus1b(1),not oasl(2).

g(4, 1) ← not hus1b(1),not hus1b(2),not oasl(1).

g(4, 2) ← not hus1b(1),not oasl(1),not slc22a1(0),not oasl(0),not hus1b(2).

g(4, 3) ← not hus1b(1),not hus1b(0),not hus1b(2),not oasl(0),not slc22a1(2).

g(4, 5) ← not hus1b(0),not hus1b(1),not oasl(0),not slc22a1(0).

In addition to the fact that a careful inspection of these rules reveals several redundancies, the crisp
SFA has a very low test-set performance. This is in contrast to the neural model that uses the weighted
rules presented above, which achieves an almost perfect test-set F1-score. This is indicative of the fact
that simply keeping all literals that survive weight pruning in the crisp SFA, may result in over-specific
guards that generalize poorly. Attempting to improve the SFA manually, by removing additional,
low-weight literals is tedious and error-prone, often yielding non-deterministic outcomes.

These issues are resolved in principled fashion by treating the crisp SFA presented above as the
hypothesis space for the induction of a minimal SFA that subsumes the crisp SFA above and best
fits the training sequences. The latter means that the crisp guards and their literals are written as a
“defeasible” ASP program, which is passed to ASAL alongside the symbolic training sequences and
structural constraints regarding the desirable properties that the SFA should have (e.g. determinism).
The final, crisp SFA process that is induced from this process is presented below (the absorbing g(5, 5)

rule refers to the accepting state, which is state 5):

g(1, 1) ← not g(1, 2).

g(1, 2) ← not hus1b(0).

g(2, 3) ← not hus1b(0).

g(3, 1) ← hus1b(0).

g(3, 4) ← not hus1b(0).

g(4, 1) ← hus1b(0).

g(4, 5) ← not hus1b(0).

g(5, 5) ← #true.

Notably, this SFA achieves a test-set F1-score of 0.96, comparable to that of the neural model.
Moreover, it was induced by ASAL using the constrained search space defined by the learned neural
SFA in approximately half a minute from the entire 10-variate training set. Attempting to learn this
SFA from scratch with ASAL, from the same training set failed after exhausting 30GB of RAM. For
ASAL to be able to learn in this domain we had to reduce the dimensionality of the dataset, keeping
only the three most promising genes from the 50 genes panel. moreover, we had to increase the cut-off
for the allowed induction time for ASAL to three hours. On the other hand, by using the incremental
version of ASAL with batches of 100 sequences, we were able to learn with a reasonable time and

Dissemination level: PU – Public, fully open Page 52



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

memory budget, albeit models of significantly inferior quality, that did exceed a test-set F1-score of
0.80. In contrast, the combination of differentiable SFA learning plus ASAL-based rectification learned
an almost perfect model in less than 5 minutes in total.

6.6 Experimental Evaluation
In this section we present an experimental evaluation of our new method, to which we henceforth refer
as ∂SFA, on both time series and image sequence datasets. The goal was to empirically validate in a
range of applications and perceptual input data modalities that ∂SFA is indeed capable of scaling much
better than purely symbolic techniques (ASAL) without compromizing the predictive performance of
the learned models.

Although in principle ∂SFA can be used for end-to-end training that allows to learn an SFA while
simultaneously training a perception network to map percepts to symbols, we leave this challenging
setting for future work and focus here on the simpler setting where the perception network is pre-trained
beforehand and we use its predictions on the percepts to infer the target SFA with ∂SFA. For the time
series datasets we discretized the time series to a number of symbols using the SAX algorithm and
during training we pass to ∂SFA near one-hot encodings of the symbols, simulating a near-perfectly
trained network (e.g. an MLP) that predicts these symbols from the time series data. We next present
in detail the datasets used, experimental settings and the obtained results for the various domains in
our experimental study.

6.6.1 Temporal MNIST
The purpose of this experiment was to stress-test our structure learning methods to perceptual input
sequences of different lengths and to target SFA of different complexity, in a principled and fully
controlled fashion. To that end, we used a significantly more complex version of the simple MNIST-
based domain, introduced in 6.4. The training data in the Temporal MNIST dataset consist of
multivariate sequences of MNIST digit images. Each point in a sequence consists of three digit images
(therefore, the dataset is 3-variate), each of which is mapped to a probability distribution over the
digits 0 − 9 via a convolutional neural network (CNN). In particular, given the three input images
⟨xt

1, x
t
2, x

t
3⟩ at point t in an input sequence, the CNN predicts three probability vectors vti = ⟨p(di =

0 | xt
i), . . . , p(di = 9 | xt

i)⟩ for i = 1, 2, 3 and with di referring to the i-th digit.
The sequences in these datasets are labeled as positive or negative, based on whether they satisfy

a target SFA or not. The target SFA patterns were defined in terms of the even/odd predicates and
express sequential conditions that correspond to complex events that occur, or do not occur in the
image sequences. For instance, the following guard definition rules:

g(1, 1) ← not g(1, 2).

g(1, 2) ← even(d1 ), odd(d2 ), odd(d3 ).

g(1, 2) ← even(d3 ).

g(2, 2) ← not g(2, 3).

g(2, 3) ← odd(d1 ), even(d2 ).

g(2, 3) ← even(d1 ), even(d3 ).

g(3, 3) ← not g(3, 4).

g(3, 4) ← odd(d3 ).

g(4, 4) ← #true.
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define a 4-state SFA pattern dictating that a positive sequence should satisfy the following sequential
conditions: a point in the sequence where either even(d1 ) ∧ odd(d2 ) ∧ odd(d3 ), or even(d3 ) are true
should be observed, followed by a point where either odd(d1 ) ∧ even(d2 ), or odd(d1 ) ∧ even(d2 ) are
true, eventually followed by a point where odd(d3 ) is true. Self-loop guards dictate that irrelevant
sequence points in-between the transition points should be skipped. Negative sequences are sequences
that do not satisfy the pattern.

We defined the patterns as Answer Set programs and we used ASAL to abductively generate
multivariate digit sequences that satisfy (resp. do not satisfy) the patterns, using acceptance constraints
to guide the abductive search. We also used a dedicated ASP meta-encoding of Hamming distance-
based diversity between the sequence-representing stable models returned by the solver in ASAL, in
order to ensure that the generated sequences are adequately diverse and to avoid repetitions.

Once a symbolic sequence dataset was generated, we paired it with MNIST images, selecting an
image with the same label as the corresponding digit in the symbolic sequences. The images required
for this pairing well exceed the size of the original MNIST dataset. Therefore, to avoid data leakages
due to repeated images in the training and testing sets, once the original MNIST dataset was exhausted
during the generation process, we applied simple transformations to each image selected from that
point onward, to ensure that each image in the generated sequences is unique.

We used two target SFA patterns with five and ten states respectively. Each guard in these patterns
consists of up to 3 disjuncts, with each disjunct consisting of up to four conjunctions. For each of the
two patterns we generated datasets with sequence lengths of 10, 30 and 50, for a total of six multivariate
image sequence datasets.

We compare ∂SFA to ASAL, in both its batch and incremental versions. In its batch version,
ASAL needs to induce an SFA from the entirety of the training sequences. Given enough resources
(time and memory) this version is guaranteed to learn an optimal SFA with the best trade-off between
predictive performance and model complexity. However, it is often infeasible to scale this version to
input data of increased length and dimensionality, since the induction process scales exponentially in
those quantities. To account for that that, ASAL supports an incremental version, which learns partial
SFA from data mini-batches and iteratively refines them over the data in a Monte Carlo Tree Search
(MCTS)-based approach, trying to approximate a global optimum from partial data views. Given
moderate mini batch sizes, ASAL’s incremental version scales much better than the batch version, but
it can often yield models of inferior quality, especially in complex, or noisy domains, where partial
views are insufficient for a good global optimum approximation.

In all experiments we used a standard-for-MNIST CNN architecture, pre-trained for 100 epochs
on 1K images sampled randomly from the image sequences, achieving a test-set F1-score for digit
recognition that varied between 0.89 and 0.92 across the various runs. In our experiment ∂SFA learned
directly from the CNN’s predictions, i.e. we define an integrated neural architecture where each input
point in a training sequence is first input to the CNN, its predicted probability distributions are passed
to ∂SFA and the entire sequence is processed via ∂SFA’s forward recursion algorithm that returns
an acceptance probability at the end of the sequence. For ASAL the training setting was different,
resembling the one outlined in Section 6.3: the CNN was used to make argmax predictions from the
image sequences; each inferred symbolic sequence was weighted by its average entropy across the
sequences and ASAL used these weights as an extra bias during SFA induction, encoding a preference
towards low-entropy sequences. Note that although this setting allows ASAL to simulate learning from
neural outputs, it is extremely challenging in terms of scalability, since it introduces and additional
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∂SFA ∂SFA+ASP ASAL ASALinc

Pattern |Q| T F1 Time F1 Time F1 Time F1 Time

Pattern A 5
10 1.0 0.7 1.0 0.9 1.0 3.8 0.955 4.7
30 1.0 1.2 1.0 2.3 1.0 7.3 0.702 4.9
50 1.0 1.8 1.0 3.5 0.948 10 (time-out) 0.723 5.3

Pattern B 10
10 1.0 1.4 1.0 2.2 0.913 10 (time-out) 0.718 8.23
30 1.0 2.6 1.0 3.3 0.887 10 (time-out) 0.725 8.82
50 1.0 3.8 1.0 5.2 0.687 10 (time-out) 0.620 12.4

Table 10: Test F1-score and training time (in minutes) for the two target SFAs with different numbers
of states |Q| and datasets with different sequence lengths T .

WeightedMaxSAT optimization objective. It also makes incremental ASAL less appropriate, since
global access to the weighted sequences is typically required in order to learn a good approximation to
a global optimum.

We used 70/30 train/test splits on 2K positive and negative sequences in each one of the six datasets
and the presented results are averages from a 3-fold cross-validation. ∂SFA was trained for 100
epochs in each run. For ASAL we used a cut-off induction time of 10 minutes. We run ASALinc on
mini-batches of 100 sequences for 20 MCTS iterations and a cut-off induction time per iteration of 1
minute.

Table 10 presents the results from the MNIST experiment in terms of F1-scores and training times
for the methods compared. As can be seen from Table 10, both ∂SFA and ∂SFA+ASP are able to
correctly recover the target SFA in all runs, achieving a perfect test-set F1-score. Moreover, the extra
overhead in induction time that stems from searching for an optimal crisp SFA using a neural SFA as
a starting point (∂SFA+ASP) is tolerable in general and does not exceed an additional 2 minutes on
top of neural training. In contrast, ASAL exceeds the cut-off induction time of 10 minutes in most
runs and the model returned within this time is sub-optimal, as can be seen by the imperfect test-set
F1-scores. Moreover, ASAL’s predictive performance deteriorates rapidly in the more challenging
settings (larger number of states in the target SFA, larger sequence lengths), indicating that ASAL
requires significantly more time to learn a high-quality SFA, or adequately approximate the optimum
in such settings. The incremental version of ASAL ends-up performing even worse. This is mainly
due to the relatively small batch size that we used for ASALinc in this experiment, which incurs an
increased “myopia”, caused by locally optimal solutions from which the system cannot effectively
recover. ASALinc can achieve significantly better results in this experiment with a larger mini-batch
size, at the cost of increased learning times that approximate those of the batch version.

In contrast to the above ∂SFA can learn a perfect neural model in significantly less time and, when
coupled with ASP-based search, a perfect, fully interpretable crisp model at the cost of a small increase
in total training times. It is worth mentioning that ASAL has a very large memory footprint, requiring
≈13GB of RAM in this experiment, in contrast to the neural method that has no significant memory
requirements. These results demonstrate empirically the efficacy of our new approach for differentiable
SFA learning.

6.6.2 ROAD-R
Our second experiment is again from a vision-based domain and its purpose is to evaluate the efficacy
of our approach on a real-world event recognition application. To that end, we used the ROAD-R

Dissemination level: PU – Public, fully open Page 55



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

dataset, which was discussed in Section 5, with the purpose of learning SFA-based definitions for
overtake incidents. The difference from the work in Section 5 is that there we had a crisp SFA as
background knowledge, which was learned separately by ASAL from purely symbolic sequences.
The goal was to train a CNN to detect simple driving events with indirect supervision using NeSyA
(Section 4), with the supervision provided in terms of overtake ground truth only, at the sequence level.
Here, we instead use a pre-trained CNN, trained on the entirety of the ROAD-R dataset, and use its
predictions to train ∂SFA, so that it learns a high-quality SFA for the overtake complex event.

Other than that, the experimental setting is identical to that of Section 4. We limit ourselves to
the small simple event library introduce there, namely the events move_away, move_towards, stop,
other for the vehicles’ actions and vehicle_lane, incoming_lane, junction, other for their locations.
The training data for ∂SFA are the positive and negative overtake image sequences that were extracted
in Section 5 with sequence lengths that range between 6 and 10. We perform experiments on the four
training/test splits described there.
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Figure 14: Comparison of test F1-score (left) and training time (right) for SFA learning on the ROAD-
R dataset (learning overtake definitions).

The results are presented in Figure 14 in terms of F1-scores and training times for the ∂FA and
ASAL variants compared in the previous experiments. We observe that the neural SFA learned by ∂SFA
achieves the best performance in less than one minute (trained for 100 epochs), while discretization
via ASP search slightly exacerbates this performance without significant training time overheads.
ASAL is able to nearly match ∂SFA’s performance, but requires significantly larger training time. Its
incremental version is able to discover an SFA of significantly inferior quality in training times that
match the neural ones.

6.6.3 Evaluation on EVENFLOW Data.
In Example 1 we already provided an overview of learning from multi-variate time series data
with ∂SFA from an EVENFLOW dataset, in particular, the gene expression level dataset for cancer
progression (Personalized Medicine use case). In this section we provide additional technical details
for this experiment and we also present a similar evaluation on the Industry 4.0 use case.

Personalized Medicine. As mentioned in Example 1, the purpose of this experiment was to learn
an SFA that captures cancer progression in terms of the change over time in the expression levels
of critical genes. The purpose SFA learning in this use case was to infer a high-quality, logic-based
temporal model, i.e. an SFA, that can subsequently be used for interpretable complex event forecasting
with Wayeb [3], our baseline interpretable event forecaster in EVENFLOW. The results from this
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experimental study are presented in Deliverable D3.2, where ASAL was used to learn the background
knowledge SFA. Here, we attempt to apply ∂SFA on the same task, in order to speed-up the SFA
induction process.

Deliverable D3.3 provides a detailed overview of the core dataset RNA-sequencing gene expression
profiles dataset that was used by BSC to train the Variational Autoencoder that was used in EVEN-
FLOW, in order to generate synthetic patients’ trajectories, in an effort to compensate for the lack of
real-patient trajectory data. Here, a trajectory refers to a multi-variate time series of gene expressions
that starts from an early state cancer profile and either progresses to a late stage, or remains at early
stage. The former case, which represents a positive sample/sequence in our learning setting, attempts
to capture a deterioration in the patient’s condition. The latter case, corresponding to a negative sample
(no progression), captures a desirable outcome that could be co-related to specific medical treatments
in clinical trials. In addition, Deliverable D3.3 provides details on the actual trajectory generation
via patient pairing, trajectory extrapolation in the VAE’s latent space and the methodology that was
followed for generating negative trajectories.

The trajectory generation process resulted in a dataset of 1494 positive and 264 negative trajectories,
split into training and testing sets using an 80/20 split ratio and stratified sampling. The high class
imbalance, partly due to measures against data leakage in the testing set, which was in turn due to the
particularities of patient pairing for trajectory generation, called for weighted learning schemes, both
in purely symbolic (ASAL) and NeSy (∂SFA) learning.

SFA learning was based on discretized trajectories. That is, the time series data was mapped into a
set of symbols and the input to the structure learning algorithms was either the corresponding symbolic
sequences (ASAL), or, near-one-hot probability vectors (∂SFA), simulating the predictions of a nearly
perfectly trained neural network that maps time series signals to symbols. We used two methods
to discretize the trajectories: (a) SAX, a specialized discretization algorithm, designed specifically
for time series data, and (b) a standard k-bins discretization process. The reason for working with
k-bins was that the SAX discretization process, while perfectly OK for sequence classification tasks,
introduces phenomena that can be interpreted as data leakages in early sequence classification, or
forecasting tasks. The results presented here are with k-bins discretization.

We discretized the gene expression level values into three bins. This was deemed adequate, since
this level of symbol granularity already produced adequate results with baseline sequence classification
(e.g. LSTM) and patient classification (e.g. XGBoost + SHAP for feature importance) techniques –
see Deliverable D3.3 for further details.
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Figure 15: Comparison of test F1-score (left) and training time (right) for SFA learning on the cancer
progression dataset (Personalized Medicine use case).
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1start 2 3 4

5 6 7 8

d /∈ S1 d /∈ S2 d /∈ S3 d /∈ S4

d /∈ S5

d /∈ S6

d /∈ S7 d ∈ [1, 39]

d ∈ S1 d ∈ S2

d ∈ S3

d ∈ S4

d ∈ S5
d ∈ S6

d ∈ S7

S1 = [4, 5] ∪ [7, 10] ∪ {14} ∪ {18} ∪ [22, 25] ∪ [27, 28] ∪ {30} ∪ {34} ∪ [36, 38]

S2 = [4, 5] ∪ [7, 8] ∪ {10} ∪ {12} ∪ [14, 17] ∪ [19, 22] ∪ [24, 26] ∪ [28, 31] ∪ [33, 34] ∪ {36} ∪ {38}
S3 = {4} ∪ {7} ∪ {9} ∪ {11} ∪ {13} ∪ {15} ∪ [24, 25] ∪ {29} ∪ {31} ∪ {34} ∪ {37}
S4 = [4, 5]

S5 = [4, 5] ∪ {9} ∪ {19} ∪ {26} ∪ {30} ∪ [33, 35] ∪ [37, 38]

S6 = [4, 5] ∪ {7} ∪ [9, 10] ∪ {12} ∪ {15} ∪ [23, 24] ∪ {26} ∪ {31} ∪ [33, 34] ∪ {36} ∪ {39}
S7 = {4} ∪ {7} ∪ [9, 10] ∪ [16, 19] ∪ [22, 23] ∪ {29} ∪ [33, 35].

Figure 16: Learned automaton structure for robots’ deadlock prediction. d denotes the robots’
Euclidean distance, discretized into 40 symbols. Although two features were used (Euclidean distance
and robot velocity), the latter was dropped during the induction process, since the formed suffices for a
high-quality model.

Figure 15 presents the results. ∂SFA learns an almost perfect SFA in less than 5 minutes, while the
crisp SFA extracted with ASP has a slightly inferior predictive performance at a negligible additional
training time overhead. ASAL is able to match this performance, but a three-hours induction time
cut-off (smaller cut-offs yielded inferior results). Its incremental version, run on mini-batches of 100
sequences, learns a model of significantly inferior quality.

The learned SFA is presented in Example 1. The results from using this SFA for event forecasting
with Wayeb in the Personalized Medicine use case are presented in Deliverable D3.3.

Industry 4.0. Similarly to Personalized Medicine, the purpose of automata learning in this use
case was to infer logic-based temporal models, in order to use them for interpretable robot deadlock
forecasting with Wayeb.

The data that the symbolic model was inferred from consists of robot trajectories in the form of
multi-variate time series for a number of attributes, such as robots’ (x, y, z) coordinates over time,
velocity and orientation vectors and so on. We refer to Deliverables D3.1 and D4.2 for the complete
list of attributes and the details of the trajectory generation process via simulations. Our training data
consisted of 100 trajectories with an average length of approximately 6.5K points each.

In these trajectories the robots move around the smart factory space simulating the execution of a
set of pre-defined tasks, where each task requires visiting a number of work stations in a fixed order, to
which we refer to as a “plan”. The plan-based joint movement of the robots ensures that their motion
is not random, allowing for joint mobility patterns to emerge. The robot trajectories are annotated
(by DFKI) with deadlock labels. Typically, a deadlock incident occurs when the relative motion of
the robots makes them perceive each other as obstacles, which are not easy to avoid via early motion
re-planning. Therefore, in almost all deadlock incidents in the robot trajectories datasets a relatively
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Figure 17: Illustration of the correlation between robot proximity and deadlock incidents in the DFKI
dataset.

close Euclidean distance d between the robots is strongly correlated to the occurrence of deadlocks, as
illustrated in Figure 17, making d a highly informative feature for deadlock prediction. The second
most informative feature is the robots’ velocity, since, by definition, in a deadlock incident at least
one robot is stopped, or, its non-zero velocity is the rotational one (the robot is spinning, trying to exit
the deadlock). In most cases a simple rule that combines the robots’ distance and their speed suffices
to achieve an adequate performance on deadlock prediction. However, we are not interested in static
rules, but in temporal mobility patterns, so that we can forecast their completion from early signs and
infer deadlock incidents before they actually occur.

We therefore attempted to learn symbolic automata that correlate the robots’ proximity and
velocities in their guards. To that end we worked as follows: we first split the trajectories into segments
of 500 time points each. We then used SAX to further reduce the dimensionality of these segments
and discretize them, resulting in sequences of length 20 time points over an alphabet of 40 symbols
(bins) for both features (distance, velocity). We arrived at these numbers via preliminary, exploratory
experiments.
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Figure 18: Comparison of test F1-score (left) and training time (right) for SFA learning on the robot
deadlock prediction dataset (Industry 4.0 use case).

The symbolic sequences were used as the training data for ∂SFA and ASAL (one-hot probability
vectors in the case of ∂SFA, as before), in an 80/20 train/test split. The latter ensured that no trajectory

Dissemination level: PU – Public, fully open Page 59



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

was “shared” between the training and the testing set, to avoid data leakages. That is, the symbolic
sequences generated from each one of the 100 trajectories were either all added to the training, or to
the testing set. Figure 18 presents the results. As previously, ∂SFA achieves the best performance in
4.5 minutes. ASAL is able to match this performance with a cut-off induction time of half an hour.
Figure 16 presents the learned automaton.

Dissemination level: PU – Public, fully open Page 60



Horizon Europe Agreement No 101070430 D4.2 – Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques

7 Data Programming for Neuro-Symbolic Training

7.1 Introduction
A central promise of Neuro-Symbolic (NeSy) AI is that we can train perception networks and symbolic
reasoning components jointly, so that the learned representations are aligned with high-level concepts
and temporal structures. In many temporal, event-based applications, however, supervision is naturally
given at the level of complex events over whole sequences (e.g., whether a trajectory satisfies a
pattern), while fine-grained labels for latent concepts (simple events) at each time step are scarce or
entirely unavailable. NeSy systems are then trained primarily from indirect supervision: neural outputs
influence the symbolic model, which in turn yields a sequence-level loss that is backpropagated to the
perception network.

While powerful, this regime is prone to reasoning shortcuts. The perception network may discover
idiosyncratic features of the raw data that correlate with the complex-event labels but have little to
do with the intended latent concepts (e.g., artefacts of the data generation process). The symbolic
component then adapts to these artefacts rather than to the true temporal structure. Such behaviour is
difficult to detect from sequence-level metrics alone and undermines both interpretability (the learned
simple events no longer match their intended semantics) and transferability (performance degrades
under distribution shift, when shortcuts disappear).

Temporal NeSy methods such as NeSyA address part of this challenge by embedding symbolic
temporal knowledge—e.g., Symbolic Finite Automata (SFA) encoding complex event patterns—into
a probabilistic circuit that consumes neural predictions over time. Given a sequence of perceptual
inputs, NeSyA uses a perception network to output probabilities for primitive predicates or symbols at
each time step, and compiles the SFA into a tractable arithmetic circuit that computes the acceptance
probability of the sequence. The resulting NeSy objective allows us to train the perception network
directly against sequence-level complex-event labels and to perform exact probabilistic inference over
exponentially many symbolic traces in time linear in the circuit size.

However, even in this setting, the perception network is still driven only by sequence-level su-
pervision, and nothing prevents it from converging to shortcut solutions that satisfy the SFA-based
loss while distorting latent concepts. This motivates the use of additional, inexpensive signals about
latent concepts, beyond a small pool of manually labelled examples. Data programming [79] offers
such a mechanism: instead of hand-labelling many individual instances, we define multiple noisy
labelling sources (labelling functions) and use a generative label model to aggregate their outputs into
probabilistic latent labels, which can be used to regularise the NeSy training process. In this section
we describe how we instantiate data programming using Snorkel [78] and how we combine strong (but
indirect) sequence-level supervision with weak latent labels in NeSyA, focusing on a temporal MNIST
pattern task.

7.2 Data Programming and Snorkel
Data programming is a weak supervision paradigm where, instead of labelling each example by hand,
the user specifies a set of labelling functions (LFs) that encode arbitrary heuristics, models or rules.
Formally, let X denote the input space and Y a finite label space (in our case, latent concept labels
such as simple events). For each input x ∈ X , we define m labelling functions

λj : X → Y ∪ {⊥}, j = 1, . . . ,m,
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where λj(x) = y proposes a label y ∈ Y and λj(x) = ⊥ denotes abstention. Applying the LFs to a
dataset {xt}nt=1 yields an LF output matrix Λ ∈ (Y ∪ {⊥})n×m, where Λt,j = λj(xt).

Data programming assumes an unobserved true label Yt ∈ Y for each example xt and places a
parametric generative model over (Yt,Λt,1, . . . ,Λt,m), typically factorised as

pθ(Yt,Λt,1, . . . ,Λt,m) = p(Yt)
m∏
j=1

pθ(Λt,j | Yt),

where the conditional distributions pθ(Λt,j | Yt) capture the (unknown) accuracies and propensities of
the labelling functions. In the simplest case [79], each LF is modelled as a conditionally independent
noisy channel with parameters describing its probability of emitting the correct label versus an incorrect
one.

Given only the LF outputs Λ (and optionally a small labelled validation set), the parameters θ can
be estimated by maximising the marginal likelihood

max
θ

n∑
t=1

log
∑
y∈Y

pθ(Yt = y,Λt,1, . . . ,Λt,m),

for example via gradient-based optimisation. Once θ is learned, we obtain for each example a
probabilistic label

ỹt(y) = pθ(Yt = y | Λt,1, . . . ,Λt,m), y ∈ Y ,

which aggregates the noisy signals from all LFs into a distribution over Y . These probabilistic labels
can then supervise a discriminative model (e.g., a neural network) via a standard cross-entropy loss.
This two-step process—learning a label model over LFs, then training a discriminative model using its
outputs—forms the core of the Snorkel system.

Snorkel extends this basic framework along several dimensions. It supports richer dependency
structures between LFs (e.g., modelling correlations and subclass relationships), multi-task settings
where the same LFs contribute to several related label spaces, and end-to-end pipelines for defining,
debugging and monitoring labelling functions and label models. Importantly, the label model can be
trained with no or minimal ground-truth labels, relying instead on structural assumptions (e.g., that
LFs are not perfectly anti-correlated) and the diversity of LFs to identify their accuracies.

In our setting, the label space Y corresponds to a set of latent concepts (simple events) that we
wish the NeSyA perception network to predict at each time step. We instantiate each LF λj as a CNN
trained on the same small seed set of manually annotated images, but with a different architecture,
initialisation or regularisation scheme (e.g., varying width, depth and dropout). This yields a pool of
partially trained CNNs, each with slightly different error patterns. For each image xt, we record the
predicted label λj(xt) from each CNN (or ⊥ if we choose to let an LF abstain under low confidence),
and feed the resulting matrix Λ into Snorkel’s label model to obtain probabilistic latent labels ỹt.

Remark 7.1 (Data programming and active learning). Data programming and active learning address
complementary aspects of supervision. Data programming uses domain knowledge and weak models
to produce many noisy labels at low marginal cost, which can be denoised by a label model and used
to train a discriminative student. Active learning, in contrast, focuses human effort on few but highly
informative labels, typically by querying an oracle on instances where the current model is most
uncertain or prone to error. Recent work has explored combining the two, for example by using NeSy
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models to guide rapid image labelling or to identify where weak supervision sources are unreliable.
In our context, data programming provides broad, low-cost coverage of latent concepts, while active
learning (Section 6.3) can be used to refine them further on the most critical time points.

7.3 Combining Strong and Weak Supervision in NeSy Training
We now describe how we combine sequence-level supervision from NeSyA with the probabilistic latent
labels produced by Snorkel. Let Dseq denote a set of training sequences, where each sequence consists
of perceptual inputs x1:T = (x1, . . . , xT ) and a corresponding complex-event label yseq ∈ {0, 1}
indicating whether the sequence satisfies a given pattern. Let Istrong be an index set of time steps for
which we have strong simple-event labels ystrong

t ∈ Y (one-hot, ground truth), and let Iweak be an index
set of time steps for which we have weak probabilistic labels ỹt(·) from Snorkel.

The NeSyA perception network fθ maps each input xt to a distribution over latent concepts:

pθ(· | xt) ∈ ∆|Y|−1,

which is fed into the compiled SFA circuit to obtain the sequence-level acceptance probability Pθ(y
seq |

x1:T ). The standard NeSyA sequence-level loss is

Lseq(θ) =
1

|Dseq|
∑

(x1:T ,yseq)∈Dseq

BCE
(
Pθ(y

seq | x1:T ), y
seq),

where BCE denotes the binary cross-entropy loss.
If strong simple-event labels are available, we define an image-level loss

Lstrong(θ) =
1

|Istrong|
∑

t∈Istrong

CE
(
pθ(· | xt), eystrong

t

)
,

where CE is the multi-class cross-entropy and eystrong
t

is the one-hot vector for the true label ystrong
t .

To incorporate weak labels from data programming, we define

Lweak(θ) =
1

|Iweak|
∑

t∈Iweak

wt · CE
(
pθ(· | xt), ỹt(·)

)
,

where ỹt(·) is the probabilistic label distribution produced by Snorkel’s label model for time step t

and wt ∈ [0, 1] is a confidence weight (e.g., a deterministic function of the entropy of ỹt, or a global
hyperparameter).

The overall training objective is then

L(θ) = λseqLseq(θ) + λstrongLstrong(θ) + λweakLweak(θ), (10)

with non-negative coefficients λseq, λstrong, λweak controlling the relative importance of each supervision
signal. In the experiments reported below we focus on the setting where no strong simple-event
labels are available, that is, Istrong = ∅ and λstrong = 0, so L(θ) interpolates between purely indirect
supervision via Lseq and weak latent supervision via Lweak.
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(b) Image-level F1-score.

Figure 19: Indicative test F1-scores on the temporal MNIST pattern task for NeSyA trained with
indirect supervision only and NeSyA augmented with Snorkel-based weak supervision.

7.4 Indicative Results on Temporal MNIST
We evaluate this approach on the simple temporal MNIST task introduced in Section 6.4. Each
example is a sequence of T = 10 MNIST images, and the complex-event label yseq indicates whether
the sequence satisfies a fixed SFA pattern defined over latent concepts such as “even digit” and “digit
larger than 6”. The SFA is fixed and known; only the perception network fθ is trained. We consider
two training regimes:

• NeSyA (indirect only). The CNN is trained solely using Lseq in (10), with λseq = 1, λstrong = 0

and λweak = 0. No simple-event labels (strong or weak) are used.

• NeSyA+Snorkel. We construct a small pool of CNN-based labelling functions {λj}mj=1, each
trained on the same small seed set of manually labelled MNIST images (a subset of the training
digits), but with different architectures, initialisations and regularisation schemes (e.g., different
widths and dropout probabilities). These CNNs are then frozen and used as LFs in Snorkel’s
label model, which is trained to produce probabilistic latent labels ỹt(·) for a large pool of
unlabeled training images. We then train the NeSyA CNN using the combined objective (10)
with λseq = 1, λstrong = 0 and λweak > 0, so that it learns jointly from the sequence-level NeSyA
signal and the Snorkel weak labels.

We evaluate both variants on a held-out test set. For each model, we report: (i) the F1-score
on sequence-level complex-event prediction (target task), and (ii) the F1-score on image-level latent
concept prediction (simple events), using ground-truth digit labels that are never seen during training
in this experiment.

In the baseline NeSyA (indirect only) regime, we obtain a sequence-level test F1 of 0.923 and an
image-level test F1 of 0.578. Adding Snorkel-based weak supervision, without changing the complex-
event supervision, yields a NeSyA+Snorkel model with indicative performance of 0.935 sequence-level
F1 and 0.680 image-level F1. Figure 19 summarises these indicative results.

These results illustrate two main points. First, even in the absence of any simple-event labels,
NeSyA’s indirect supervision is strong enough to achieve high sequence-level performance on the
complex-event task (F1 ≈ 0.92), confirming that the SFA-based NeSy objective is effective in this
setting. Second, supplementing this indirect signal with weak latent labels from Snorkel significantly
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improves the quality of the learned latent concepts (from F1 ≈ 0.58 to F1 ≈ 0.7 in this indicative run),
while also yielding a modest but consistent gain at the sequence level. In practice, this means that
data programming can help counteract shortcut behaviour in temporal NeSy training by nudging the
perception network towards latent concept representations that are better aligned with the intended
simple-event semantics, without requiring dense manual annotation.
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8 Discrete Mutual Information Markov Models
Learning discrete representations of raw signals is an important problem in machine learning. In the
context of dynamical systems such discovery methods are useful for downstream tasks like forecasting
and planning. If the data obeys the Markov property, it is of particular interest to map observations to
discrete states, such that a simple Markov chain can be used to analyze the dynamics. The problem of
state discovery with complex observations is primarily handled with Hidden Markov Models. In this
work we provide a different approach for finding a good mapping from observations to states using
a mutual information based objective. We use our method to induce a Markov chain for the input
data in an unsupervised fashion. Firstly, we showcase the benefits of our approach in terms of correct
discovery in a synthetic domain. Secondly, we present a neurosymbolic system which uses the induced
Markov chain along with a probabilistic model checker to answer complex queries about the input data
in forecasting scenarios.

8.1 Introduction
Analyzing dynamical systems has multiple applications in AI. Sequential discovery methods, which
represent raw input data in an interpretable representation, are therefore of much interest. In the realm
of Markov models this leads to representing raw data as, among others, Markov Decision Processes
[85], and Markov Chains [18]. The central, question therefore is how to map raw observations to
discrete states such that the dynamics of the process are preserved.

Hidden Markov Models and their extensions, “deep" [61, 60] or otherwise [20, 39, 73], are often
used for discovery purposes in unsupervised learning. HMMs attempt to model a generative process of
the data by considering a) a latent Markov chain which captures the dynamics in a lower-dimensional
state space and b) the reconstruction of the observations given the states. The problem with the
approach is that in order to accurately reconstruct the data the state must include a number of high
frequency and low level characteristics, e.g. local noise, which in a sense disincentivizes the discovery
of a high level, slow moving state. This is noted for example in [75].

In order to alleviate this stress we consider learning a mapping between observations and states
based on mutual information (MI) of adjacent inputs in a sequence. This approach has been used
for learning representations in high dimensions where mutual information is intractable and we must
resort to approximations [75, 48, 19, 76] albeit not in a Markov setting. In the simpler case, in which
we are interested in mapping observations to a value from a single categorical variable, MI has seen far
less use, e.g. in clustering [53].

State discovery in discrete Markov models also bears extreme relevance for the field of neu-
rosymbolic (NeSy) AI [69]. A number of NeSy systems have been introduced both generally
[103, 67, 105, 99, 94] and along the temporal dimension [32, 66, 90, 46, 101]. While most prin-
cipled probabilistic NeSy methods concern themselves mainly with knowledge injection, we instead
turn to the use of symbolic solvers as a means to analyze what we have learnt. More specifically, we
use probabilistic model checkers [54] for analysis of the induced Markov chain (in the latent space).

8.2 MiMM
Table 11 summarizes the notation that we use in this section. Consider a Markov process over data
x1:T . The joint can be written as:
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Notation Description

x ⊥ y
Independence between
two random variables

x ⊥ y | z
Conditional independence of

two random variables
conditioned on a third

x ̸⊥ y
Dependence between
two random variables

I(x; y)
Mutual Information between

two random variables

DKL(p(x) || q(x))
KL divergence between two
distributions p(x) and q(x)

H(x) Entropy of a random variable

H(x | y) Conditional entropy of x
given y

Table 11: Notation used throughout this section.

p(x1:T ) = p(x1)
T∏
t=2

p(xt | xt−1)

When we are dealing with complex high-dimensional data, e.g. video streams working in the
original space of the data, is cumbersome. A popular approach is to turn to a latent variable models.

8.2.1 Hidden Markov Models
For Markov data the standard solution is Hidden Markov Models (HMMs). Along with the observations
x1:T the HMM uses a latent sequence of states z1:T . The joint is:

p(x1:T , z1:T ) = p(z1)
T∏
t=2

p(zt | zt−1)
T∏
t=1

p(xt | zt)

This solution avoids modelling the dynamics in the original high-dimensional space of x and instead
does so in the lower dimensional space of z. In classical HMMs, z is a single categorical variable;
the state. More modern implementations [61, 60] extend the state to be distributed [47] and high
dimensional. Naturally while more expressive, this comes at the drawback of the interpretability and
tractability of the discovery method. Knowledge injection for “deep" Hidden Markov Models has been
studied in [32], e.g. by providing the dynamics, p(z1)

∏T
t=2 p(zt | zt−1) and learning the observation

function p(x | z) with a neural network, thus aligning the model with background knowledge.
In HMMs, while the latent state is assumed to be Markov, the data is not, i.e. xt+1 ̸⊥ xt−1 | xt. In

fact, the state z is used to capture possibly long interactions that are necessary for predicting the future.
Here we study the implications in HMMs of the data x1:T being Markov. The following must hold:

zt ̸⊥ zt−1 | xt
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in order for the HMM to generate Markov data. The only way for this to be true in general is that the
observation completely determines the state or more formally:

p(x | z = i) ̸= 0⇒ p(x | z = j) = 0

for all j ̸= i. This essentially removes the “hidden" nature of the HMM as the observation uniquely
identifies the state. A distribution that satisfies the property above can be described with a sequential
process where a) we classify which state z has produced the observation x and b) we quantify the
probability that z produces x among all observations it emits. Importantly, the second task is completely
unnecessary for inducing the latent Markov chain.

Therefore task a) which is a discriminative task is sufficient for discovery and task b) which is a
generative “harder" task does not aid in discovery while making learning significantly more complex.

8.2.2 Mutual Information
Instead of learning a full generative model we opt for a different treatment. We want to find a mapping
between original data X and Z where X is the input dimension and Z is a set of states {1, . . . , N}. To
this end we use an information theoretic approach. A sufficient representation for Markov data is one
which captures maximal information from the dependencies in the original data. Let I be the mutual
information (MI). I(xt; xt+1) measures the reduction of uncertainty of xt+1 when conditioning on xt.
Letting z = f(x) we have:

I(zt; zt+1) ≤ I(xt; xt+1)

by the data processing inequality. A good representation function is one which maximizes the
mutual information, i.e. recovers as much of the dependencies which exist between consecutive
timesteps in the data x as possible.

As aforementioned this approach, is being used of late for high dimensional representation learning
[75, 48, 19, 76]. Further MI has been used in natural language processing for the unsupervised induction
of part-of-speech tags in pairs of words (x, y) [83], in a way very similar to the one considered here.
Nonetheless, to the best of our knowledge, there is no work in using MI for discrete state discovery in
Markov models.

While the representation of data via one of N states is limiting in capacity, it makes the induction
of a differentiable function pθ(z | x) (in practise a softmax activated neural network) via MI closed
form. This is not the case when moving to higher dimensions. Formally, let {(xi, x̂i)}Mi=1 be a batch of
M pairs of data where (x, x̂) are adjacent, i.e. are found in consecutive timesteps in the training data.
It is then possible to compute the expected mutual information under the stochastic mapping pθ(z | x)
as:

I(z; ẑ) =
∑
z,ẑ

p(z, ẑ)log
p(z, ẑ)

p(z)p(ẑ)

with p(z, ẑ) =
1

M

M∑
i=1

pθ(z | xi)pθ(ẑ | x̂i)

We first compute empirically from the data the joint distribution of z and ẑ. Note that while locally,
i.e. in each batch element z and ẑ are considered independent (after they have been conditioned on x

and x̂), the variables are generally not independent [53]. Using the joint we calculate MI, which since
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the sample space of z× ẑ is quadratic in the number of states, can be achieved without approximations.

Relation to Maximum Likelihood. We can relate the MI objective to maximum likelihood. The
mutual information I(xt; xt+1) can be written as H(xt+1) − H(xt+1 | xt) with H representing the
entropy (in the second term the conditional entropy). Consider a model that is trying to predict xt+1

given xt, i.e. qϕ(xt+1 | xt).
Then:

I(xt; xt+1) ≥ H(xt+1)− LML

where LML = −log qθ(xt+1 | xt)

LML would be the loss of a generative model trying to reconstruct adjacent observations. Therefore,
trying to minimize the negative log likelihood is optimizing a lower bound on the MI of adjacent
timesteps. If the distribution qθ(xt+1 | xt) would include a latent state z, as done for example in HMMs,
it follows that this z would be optimized for increasing the lower bound on the MI. Our direct objective
I(zt; zt+1) is also optimizing a lower bound on I(xt; xt+1). It therefore follows that optimizing one
also, albeit implicitly, optimizes for the other.

Neural Discrete Representation Learning. Most of the work in inducing discrete representations
with neural networks is focused in the more complex, and often intractable, distributed case [47],
including examples which use MI [84]. Perhaps the most popular approach is generative, see [92]
and its numerous extensions. Our work, which is focused on discovery, i.e. the induction of simple
representations, instead focuses on simpler optimization by a) not including intractable objectives and
therefore resorting to approximations and b) not reconstructing the data. The latter characteristic, as
aforementioned, can potentially be unnecessary for state discovery. Moreover, it is expected to struggle
in scenarios which include noise. In such cases, reconstructing the data based on a low capacity z, as
is the case for a single categorical variable, is challenging. z must capture high frequency, low level
characteristics to reconstruct the data. While in larger dimensions this may be unproblematic, in lower
dimensions the necessary capacity for such a task is often not existent.

Knowledge Injection. The objective of maximizing I(zt; zt+1) attempts to extract enough informa-
tion from x such that the representation of xt+1 can be accurately predicted, while maximally utilizing
the state space. This objective is purely data driven and therefore requires significant amounts of
data. However, the latent space would ideally capture high level dynamics, for which knowledge
may often exist. Using said knowledge is possible for our approach by adding a regularization during
training which aids the neural network pθ(z | x) to discover more accurate and interpretable states.
Our knowledge injection routine is based on a declarative specification of the latent states. Details can
be found in Appendix 8.5. This includes the specification of q(zt+1 | zt), i.e. the transition function. It
is expected that aligning pθ(z | x) with the known dynamics will produce higher quality mappings as
the neural network is penalized for not respecting known dynamics.

To achieve this we define the final loss of the model to be:

L(θ) = −I(zt; zt+1)

+ λ · DKL(pθ(zt+1 | zt) || q(zt+1 | zt))

where the mutual information I should be maximized, i.e. its negation minimized (hence the minus
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Figure 20: Samples from the three different environments, vertically increasing in complexity. The
number of states of each environment are 36, 216 and 384 respectively. The goal of the models is to
map the image observations to discrete states in an unsupervised manner.

sign) and the KL divergence should be minimized (hence the plus sign).
When the transition function is unknown λ can be set to zero. The calculation of MI was based on

pθ(zt, zt+1), the joint distribution, which is a N × N matrix where N is the number of states. Row
normalization of the matrix gives the conditional pθ(zt+1 | zt) which is used for the calculation of DKL.
In comparison, to NeSy-MMs [32] where the knowledge is used in the definition of the probabilistic
model and the reconstruction forces the representation to remain informative, in our work the mutual
information achieves the same result.

8.3 Experiments
We create a synthetic dataset ranging in complexity from a few states to several hundreds. We
benchmark our method against the work of [32] on how accurately the intended states can be recovered.
We also consider variants which include noise in the data x which was not previously considered. We
compare our method, both with and without knowledge of the dynamics to the baselines.

While [32] use variational Markov models as baselines and perform approximate inference, the
implementations here instead use exact inference through an enumerable state space resembling
classical HMMs more closely. This is true both for the NeSy-HMM and the Neural-HMM methods. In
NeSy-MMs the latent process is given exactly, i.e. the transition matrix and initial distribution of the
HMM is fixed according to the environment specification. In Deep-HMM the transition and initial
distributions are learnt jointly with gradient descent. Both models differ with classical HMMs, since
the observation model p(x|z) is a neural network, replacing simpler emission distributions like, e.g.
Gaussian mixtures, as the data modelled are high-dimensional images.

We create a dataset with 200, 100, 150 trajectories of length 10 for train, validation and test
respectively. Some sample trajectories can be seen in 20. An observation is generated from a
symbolic. For example in the second trajectory of 20 the state used to generate the observation is
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Scenario Ours NeSy Deep
λ = 1 0 MM HMM

simple 0.95 0.85 1.0 0.94
0.86 0.83 1.0 0.60

medium 0.96 0.72 0.86 0.88
0.78 0.72 0.72 0.55

hard 0.98 0.76 0.71 0.87
0.75 0.63 0.40 0.46

Table 12: Comparison of methods across scenarios and noise conditions, with MiMM split into two
subcolumns.

(x = 2, y = 2, dir = 2, obstacle = 2, carrying = 0). The possible interpretations in the environment
are the state space. All models are trained with a learning rate of 0.0001, a batch size of 32 on a single
A100 GPU. For our model we set λ to 1, when considering knowledge injection and to 0 otherwise.
The probabilistic models used to generate the symbolic version of the data can be found in Section 8.5.
Symbolic sequences are subsequently rendered to image observations using the minigrid library [23].

8.3.1 State Discovery
Table 12 shows the results for our model and how it compares to NeSy-MMs and purely Deep-HMMs
(which include no knowledge of the dynamics). We report Adjusted Mutual Information, AMI(z; s),
i.e. the AMI between the predicted states z for each observation x and the actual state s from which x

was generated. AMI is the mutual information adjusted for that of a random model. It is high when
knowing one random variable significantly reduces the uncertainty of another and is 1 if z and s are
identical up to renaming. With AMI we can assess the quality of the predicted latent states beyond
exact match. The reason is that a model should not be punished for renaming states and we therefore
seek a permutation invariant metric. Lastly, we compare our method with knowledge of the dynamics
λ = 1 and without λ = 0. The latter is purely statistical and uses no knowledge.

From the results in Table 12 our introduced method is worse that NeSy-MMs only in the simplest
setting where the generative approach outperforms our mutual information based one. In more complex
scenarios, and particularly when noise is added to the data, we outperform both baselines. Further, we
see that the inclusion of knowledge about the dynamics, which both we and NeSy-MMs utilize, greatly
improves learning. Finally, we show that even without any knowledge of the environment, our method
matches NeSyMMs in the noisy scenarios of medium and outperforms them in hard. Further, the MI
based objective, as a purely statistical approach, outperforms Deep-HMMs almost throughout in noisy
scenarios.

8.3.2 Forecasting
With knowledge of the dynamics, due to the synthetic nature of the data, we can accurately benchmark
the capability of the induced state space for forecasting future events and their probabilities. We use
the model with knowledge injection for this task which performs better in terms of aligning with the
actual state space.

An example of the application of our method to forecasting can be seen in Figure 21. Two raw
datapoints are mapped to their corresponding states, via the mapping p(z | x) learnt during training.
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Figure 21: Example of a forecasting query. Two images are passed through the representation function.
A query is cast of reaching z′ from z is some number of hops (here 7). The query, along with the
dynamics (i.e. transition function) learnt through training (which are discrete and low dimensional) are
then fed into a probabilistic model checker which computes the probability of reaching z′ from z is the
given number of steps.

Along with the dynamics p(zt+1 | zt) also learnt during training, a probabilistic model checker is used
to compute the probability or reaching the latent state z′ from the latent state z in a given number of
hops.

Depth L1 Error True Prob (mean ± std)

1 0.195 0.377 ± 0.188

2 0.123 0.179 ± 0.108

3 0.0726 0.0980 ± 0.0721

4 0.0475 0.0612 ± 0.0494

5 0.0320 0.0411 ± 0.0328

6 0.0222 0.0296 ± 0.0232

7 0.0148 0.0208 ± 0.0157

8 0.00927 0.0143 ± 0.00898

Table 13: L1 error between predicted and true probabilities across different depths.

The results for forecasting are shown in Table 13. The errors in probability estimation of various
scenarios are reported, based on the depth of the query.

8.4 Conclusion
We presented a data driven statistical method for learning discrete state representation of high dimen-
sional data in the context of Markov models based on mutual information. We introduced a simple
way to include prior knowledge in training, by aligning the discovered states with prior dynamics.
We showcased that our method can achieve better state discovery, compared to both NeSy and purely
statistical baselines, especially in the case of noisy data in a synthetic domain. Further, we applied our
model and its discovered (latent) Markov chain p(zt+1 | zt) to a forecasting task. The system included
both neural components, which mapped raw image queries, to their (symbolic) state representation,
and utilized symbolic solvers (a probabilistic model checker) to answer queries.
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8.5 Appendix: Probabilistic Models Used in the Experiments
Here we give the formal definitions of the Markov Chains used for experimentation. These are also
used when specifying the transition function p(zt+1 | zt) for knowledge injection. The specification of
the first task is:

mdp

formula wall_in_front =

(direction = 0 & y = 0) |

(direction = 1 & x = MAX_X) |

(direction = 2 & y = MAX_Y) |

(direction = 3 & x = 0);

formula forward_x =

(direction = 1 & x < MAX_X) ? x + 1 :

(direction = 3 & x > 0) ? x - 1 : x;

formula forward_y =

(direction = 0 & y > 0) ? y - 1 :

(direction = 2 & y < MAX_Y) ? y + 1 : y;

const int MAX_X = 2;

const int MAX_Y = 2;

module robot

x : [0.. MAX_X];

y : [0.. MAX_Y];

direction : [0..3] init 1; // 0=N, 1=E, 2=S, 3=W

[step] (wall_in_front) ->

0.75 : (direction ’ = mod(( direction + 1), 4)) +

0.25 : (direction ’ = direction);

// If free ahead , move forward or rotate

[step] (! wall_in_front) ->

0.80 : (x’ = forward_x) & (y’ = forward_y) +

0.20 : (direction ’ = mod(( direction + 1), 4));

endmodule

And for the second and third tasks, just different sizes are:

mdp

// --- Constants ---

const int MAX_X = 2;

const int MAX_Y = 2;

// Pick-up and drop-off zones

const int PICKUP_X = 0;

const int PICKUP_Y = 1;
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const int DROP_X = MAX_X;

const int DROP_Y = MAX_Y;

// --- Robot Module ---

module robot

// Position and direction

x : [0.. MAX_X];

y : [0.. MAX_Y];

direction : [0..3] init 1; // 0=N, 1=E, 2=S, 3=W

// --- Movement Transitions ---

// If wall or obstacle ahead , rotate

[step] (wall_in_front | obstacle_forward) ->

0.75 : (direction ’ = mod(( direction + 1), 4)) +

0.25 : (direction ’ = direction);

// If free ahead , move forward or rotate

[step] (! wall_in_front & !obstacle_forward) ->

0.80 : (x’ = forward_x) & (y’ = forward_y) +

0.20 : (direction ’ = mod(( direction + 1), 4));

endmodule

// Package Module

module object

// Carrying a package?

carrying : bool;

// --- Pickup Transition ---

[step] (at_pickup & !carrying) ->

0.90 : (carrying ’ = true) +

0.10 : (carrying ’ = false);

// --- Drop-off Transition ---

[step] (at_drop & carrying) ->

0.90 : (carrying ’ = false) +

0.10 : (carrying ’ = true);

[step] (!( at_pickup & !carrying) & !( at_drop & carrying)) -> (carrying ’= carrying);

endmodule

// --- Obstacles Module ---

module obstacles

obstacle : [0..2]; // Positions: 0=(1 ,1), 1=(1 ,2), 2=(2 ,1)

[step] (true) ->

0.70 : (obstacle ’ = obstacle) +

0.30 : (obstacle ’ = mod(( obstacle + 1), 3));

endmodule
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// --- Derived Formulas ---

// Wall detection based on current direction

formula wall_in_front =

(direction = 0 & y = 0) |

(direction = 1 & x = MAX_X) |

(direction = 2 & y = MAX_Y) |

(direction = 3 & x = 0);

// Compute position in front of robot

formula forward_x =

(direction = 1 & x < MAX_X) ? x + 1 :

(direction = 3 & x > 0) ? x - 1 : x;

formula forward_y =

(direction = 0 & y > 0) ? y - 1 :

(direction = 2 & y < MAX_Y) ? y + 1 : y;

// Obstacle detection in the cell ahead

formula obstacle_forward =

(forward_x = 1 & forward_y = 1 & obstacle = 0) |

(forward_x = 1 & forward_y = 2 & obstacle = 1) |

(forward_x = 2 & forward_y = 1 & obstacle = 2);

// Pickup and drop location check

formula at_pickup = (x = PICKUP_X & y = PICKUP_Y);

formula at_drop = (x = DROP_X & y = DROP_Y);
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