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Executive Summary  
Deliverable D5.2 reports EVENFLOW’s final outcomes (for the second half of the project, since 

April 2024) on scalability and verification techniques for online neuro-symbolic learning and 

reasoning in real-time streaming settings. It consolidates methods, tools, and use-case 

applications addressing the project’s core challenges. 

The scalability of EVENFLOW is based on two pillars. Stream synopses and parallelism. On the 

stream synopses side, a synopsis-driven optimization paradigm is introduced for continuous 

learning. The SuBiTO Framework operationalizes the principle that training must adapt to 

stream dynamics by jointly optimizing (i) synopsis/compression configuration, (ii) training 

duration (e.g., epochs), and (iii) neural architecture, explicitly searching for strong accuracy vs 

training-time trade-offs and presenting these choices through supporting tooling. Parallelism 

cooperatively works with synopses through parallel synopsis maintenance and through a 

data-driven synchronization protocol suite that reduces coordination and communication 

costs in distributed learners. These components are integrated in Distribuito SuBiTO, 

combining parallel synopsis derivation, smart synchronization, and batched/parallel inference 

to increase throughput. In parallel, the NeuroFlinkCEP framework delivers scalable 

neurosymbolic Complex Event Recognition by integrating neural simple-event inference with 

symbolic, Apache Flink CEP pattern matching, supported by logical-to-physical workflow 

optimization and monitored deployment across cloud–edge/IoT environments. 

Scalability grounds these techniques in three vertical use cases via: SSTRESSED for Industry 

4.0 simple event detection, RATS+ for personalized medicine with transfer-learning elements, 

and infrastructure monitoring via reverse random hyperplane projection plus uncertainty-

aware synchronization. 

On the verification side, the deliverable defines an EVENFLOW verification stack that spans: 

(i) formal neural network verification, (ii) probabilistic neuro-symbolic verification, and (iii) 

temporal verification for streaming neuro-symbolic pipelines where neural perception feeds 

symbolic automata.  

For neuro-symbolic (NeSy) pipelines, where neural outputs feed symbolic arithmetic circuits, 

we found exact verification to be intractable in our evaluation. Therefore relaxation-based 

and hybrid pipelines were proposed to balance completeness with scalability requirements. 

These constitute abstract verification techniques and enable us to achieve robustness 

guarantees for NeSy systems also using CNN networks. 

The contributions include Spatio-Temporal Bound Propagation (STBP) and Spatio-Temporal 

shared IBP (S-IBP). These are hybrid schemes that solve MILPs for the first layer under 

structured (shared / fixed / bounded) perturbation constraints, then propagate tight layer-1 

bounds forward with efficient interval or linear relaxations. The work also develops 

probabilistic verification via PAC-interval estimation (LipPOT): a targeted Adam-Sobol 

sampling engine plus Extreme Value Theory (POT/GPD) constrained by DKW confidence 

bands to produce high-confidence upper bounds on local Lipschitz constants. For parallel 

verification, SCANNV applies Bayesian optimisation (with transfer learning and ReLU-stability 

grey-box signals) to find input splits that reduce wall-clock verification time. 
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Experiments on synthetic MNIST addition, ROAD-R autonomous driving, temporal complex-

event traces, and medical/video benchmarks show STBP and PAC methods substantially 

improve certified robustness and runtime compared to vanilla IBP and naive solver 

approaches, at a marginal cost of additional MILP or sampling overhead.  

Verification is further grounded in EVENFLOW use cases through a neuro-symbolic robot 

navigation/collision-avoidance scenario, where robustness is assessed across multiple 

perturbation levels and validation splits. We discuss routes to improve guarantee tightness 

through stronger bound methods and robustness-aware training. 
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Abbreviation 
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 Introduction 

1.1 Project Information 

EVENFLOW develops hybrid learning techniques for complex event forecasting, which 

combine deep learning with logic-based learning and reasoning into neuro-symbolic 

forecasting models. This approach combines neural representation learning techniques that 

construct event-driven features from streams of perception-level data with powerful 

symbolic learning and reasoning tools, which utilize such features to synthesize high-level, 

interpretable patterns for forecasting critical events.  

To deal with the brittleness of neural predictors and the high volume/velocity of temporal 

data flows, the EVENFLOW techniques rely on novel, formal verification techniques for 

machine learning, in addition to a suite of scalability algorithms for training based on data 

synopsis, federated training and incremental model construction. The learnt forecasters will 

be interpretable and scalable, allowing for explainable and robust insights, delivered in a 

timely fashion and enabling proactive decision making.  

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting 

in healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart 

factories and (3) reliable life cycle assessment of critical infrastructure.  

Table 1: The EVENFLOW consortium. 

Number1 Name Country Short name 

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA 

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU 

2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH 
"DEMOKRITOS" 

Greece NCSR 

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS 
STIS TECHNOLOGIES TIS PLIROFORIAS, TON 
EPIKOINONION KAI TIS GNOSIS 

Greece ARC 

4 BARCELONA SUPERCOMPUTING CENTER-
CENTRO NACIONAL DE SUPERCOMPUTACION 

Spain BSC 

5 DEUTSCHES FORSCHUNGSZENTRUM FUR 
KUNSTLICHE INTELLIGENZ GMBH 

Germany DFKI 

6 EKSO SRL Italy EKSO 

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY 
AND MEDICINE 

United 
Kingdom 

ICL 

 

 

1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner. 
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1.2 Document Scope 

This document provides the advancements made within the scope of EVENFLOW with special 

emphasis on the time period between M19 (April 2024) to M39 (December 2025). It 

elaborates on the developed algorithms and prototypes that serve as scalability and 

verification pillars for the project. It also explains the way they are applied in real world 

scenarios both derived from EVENFLOW use cases and broader application domains and/or 

on standard benchmarks and testbeds. It also reports on the evolution of Scalability and 

Verification Toolkit as exploitable assets of the project. In that, it describes the outcomes of 

high-quality research in EVENFLOW with anticipated highly impactful software modules.  

1.3 Document Structure 

This document is comprised of the following chapters: 

Chapter 1 presents an introduction to the project and the document. 

Chapter 2 summarises the main advancements till M18 of the project as reported in 

Deliverable D5.1. 

Chapter 3 emphasizes on the scalability aspects by means of data stream synopses and 

distributed/parallel learning and inference presenting the developed prototypes.  

Chapter 4 discusses scalable neurosymbolic CER over IoT platforms pushing the 

developments on scalability made throughout the project, not only at the cloud side but 

across the cloud to edge continuum.  

Chapter 5 presents the current open-source contributions of the scalability approaches 

developed throughout the project.  

Chapter 6 emphasizes on use case-specific adaptations of the generic techniques described 

in Chapters 3-4 to EVENFLOW use cases and novel scalable techniques for these specific 

application fields. 

Chapter 8 discusses techniques for improving scheduling and augmenting parallelization of 

verification frameworks, such as Venus, for enhanced scalability in neural network verifiers 

upon being treated as black or grey boxes.  

Chapter 7 introduces the foundational concepts of formal verification for neural networks, 

outlining core techniques and discussing their applicability to neuro-symbolic architectures. 

It further examines methods for verifying complex temporal events within neurosymbolic 

systems. 

Chapter 8 extends these verification techniques to spatio-temporal models. It presents hybrid 

approaches that combine linear programming with interval bound propagation, enabling 

robustness analysis for high-dimensional perturbations and larger neural network 

architectures. 
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Chapter 10 explores verification through probabilistically approximately correct (PAC) 

bounds. It evaluates the tightness of PAC intervals and assesses their suitability for providing 

reliable robustness guarantees in comparison to deterministic methods. 

Chapter 11 applies these verification techniques to the EVENFLOW Industry 4.0 use case, 

demonstrating end-to-end verification of a neurosymbolic system deployed in an industrial 

robotic environment. 

Chapter 12 presents the current open-source contributions of the verification approaches 

and the toolkits developed for verification of the EVENFLOW Industry 4.0 use case.  
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 Overview of Progress till M18 

2.1 Recap on Scalability Aspects in EVENFLOW 

As documented in Deliverable D5.1, EVENFLOW training and inference pipelines target three 

types of scalability: (a) horizontal scalability, i.e., scaling with the volume and velocity of the 

incoming data streams, (b) vertical scalability, i.e., scaling with the number of processed 

streams and (c) federated scalability, i.e., scaling the computation in (geo-)distributed 

environments by reducing the amount of transmitted data to preserve bandwidth and reduce 

network latencies.  

The focal point of developing effective and efficient training and inference pipelines in 

streaming settings revolves around the challenge of achieving appropriate balance/trade-off 

between accuracy and training time. In streaming setups, the statistical properties and the 

distribution of incoming streams are highly volatile. Consequently, a neural model that is 

currently suitable for inference purposes may quickly become obsolete. Therefore, the 

training process evolves continuously and on par with the prediction/inference process. As 

soon as an up-to-date trained model becomes available, it should be directly deployed on the 

prediction pipeline to maintain high quality inference, not only at the current time but, most 

importantly, in the long run. Figure 1 illustrates the evolution of training and prediction 

pipelines, instantiated using state-of-the-art frameworks for stream ingestion (i.e., Apache 

Kafka) and neural learning (PyTorch). The architectural scheme though is independent of the 

underlying technologies.  

 

Figure 1: Streaming Training and Inference Pipelines operating on par with one another [REF-
01]. 

The main pillars for achieving scalability in EVENFLOW involve (a) data streams synopses, (b) 

parallelism/distribution of computation and (c) optimal (or preferable) resource allocation 

for the involved neural, symbolic or neurosymbolic (NeSy) tasks. 

The use of synopses is motivated by the fact that, to establish accurate and rapid training 

pipelines, it is important to train over representative, good quality data. This does not 
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necessarily include the lot of training data streams that may reach a training pipeline. 

Therefore, by presenting a carefully crafted data summary in the training pipeline, an accurate 

model can be continuously produced, simultaneously avoiding exacerbated training times.  

However, synopses alone do not suffice for scalable processing. First, even if synopses do 

manage to controllably reduce the portion of streams that are ingested in a training pipeline, 

data summaries can still be voluminous. For instance, a recent stream of 10GB reduced by an 

order of magnitude still yields a training volume of 1GB which may entail important training 

latency for deep neural network architectures. Second, synopses can reduce the burden in 

the training pipeline only. The prediction/inference pipeline still needs to operate on the 

entire stream because client applications do not have the liberty of choosing to apply 

predictions and forecasts only to a subset of the ingested, unlabelled streams. For these 

reasons, besides synopses, parallelism on the training and prediction pipelines is the second 

scalability pillar of EVENFLOW. Figure 2 enhances the streaming architecture of Figure 1 with 

parallelism across the involved training and prediction pipelines. 

 

Figure 2: Parallel Streaming Training and Inference Pipelines [REF-01]. 

The third scalability pillar related to resource allocation in EVENFLOW comes in two forms. 

First in continuously configuring the degree of parallelism, the size of the synopses, the size 

of the neural network and the duration of the training process so that the aforementioned 

accuracy vs training time trade-offs and the preferable combination of such parameters 

ensure high quality models in an online real-time fashion. Second, models deployed on 

parallel predictors can be assigned not only at parallel threads being executed on powerful 

clouds, but also across devices of the computing continuum, in IoT settings.  

The progress achieved in EVENFLOW by M18, as reported in Deliverable D5.1, can be 

summarized as follows:  
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EVENFLOW proposed and developed the Synopses-as-a-Service paradigm (Figure 3) 

introducing a state-of-the-art stream summarization engine implemented on Apache Flink 

[REF-03].  

 

Figure 3: Synopses Data Engine-as-a-Service (SDEaaS) Paradigm in EVENFLOW by M18 [REF-
02]. 

The Synopses-based Training Optimization Paradigm was introduced, which leveraged 

Bayesian Optimization to continuously prescribe preferable configurations for (a) the size of 

synopses, (b) the number of training epochs for the training pipelines, for a fixed – a priori 

defined – neural network architecture. 

  
Figure 4: Synopses-based Training 

Optimization by M18. 
Figure 5: Demo prototype of Synopses-
based Training Optimization by M18. 

For parallel training, preliminary protocols and experimentation were presented to overcome 

the limitation of the vanilla synchronous and asynchronous protocols of the Parameter Server 

paradigm. The basic idea behind the proposed, preliminary protocols was to define a concept 

drift based on any given thresholded function applied on neural network global (accumulated 

in a Parameter Server) weights. Decompose this global concept drift trigger to local filters 

installed on parallel learners and trigger a synchronization only when some learner finds its 

local filter violated based on a geometric monitoring criterion. 
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2.2 Recap on Verification Aspects in EVENFLOW 

Deliverable D5.1 describes the verification approach for the EVENFLOW project in which we 

mention about the need for formal verification, the scalability challenges of verification and 

the approaches for verification of Neurosymbolic systems.  

Modern neural networks (NNs) power critical AI applications but remain highly vulnerable to 

adversarial perturbations—small, often imperceptible input changes that can lead to 

catastrophic misclassifications. This raises significant safety concerns, especially in domains 

such as autonomous driving, robotics, smart manufacturing, healthcare diagnostics, and 

decision-support systems. Due to their black box behaviour and high input dimensionality, 

understanding and guaranteeing NN behaviour is extremely challenging. Formal verification 

aims to deliver provable guarantees about system behaviour by mathematically ensuring that 

certain properties—primarily robustness—hold for all inputs within a perturbation set.  

 

Figure 6: Perturbations on the input should not affect the classification. 

Adversarial attacks in both 2D and 3D settings show the extent of NN fragility. Methods such 

as adversarial image noise, point-cloud manipulation, and mesh perturbation can reliably fool 

state-of-the-art models without visibly altering the input, strengthening the need for scalable 

verification tools. 

 

Figure 7: Formal Verification as an Optimization problem. 

Verification seeks to determine whether the NN satisfies a desired property (e.g., robustness) 

over an input region. This can be expressed as an optimization problem that checks whether 

the network’s minimum logit margin remains positive across all admissible perturbations. 

Exact verification approaches (MILP, SMT) are complete but computationally infeasible for 
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large networks. In contrast, incomplete or relaxation-based methods (IBP, LP relaxation, 

CROWN) scale better but provide weaker guarantees due to over-approximation.  

A central challenge stems from nonlinear activations such as ReLU, which must be 

approximated using linear inequalities when the activation is unstable. These relaxations 

allow propagation of lower/upper bounds but accumulate approximation errors as depth 

increases. 

 

Figure 8: Neural Network Verification. 

Exact verification is NP-hard and rapidly becomes intractable for deep networks or high-

dimensional data. Nonlinearities, combinatorial explosion of ReLU states, and large input 

spaces limit real-world applicability. This motivates abstraction-based techniques, which 

replace nonlinear functions with sound convex relaxations, enabling propagation of 

approximate bounds while maintaining efficiency. However, these techniques often yield 

overly loose bounds, particularly in architectures with attention mechanisms or heavy matrix 

multiplications. 

Neuro-symbolic systems combine neural perception modules (CNNs, MLPs) with symbolic 

reasoning engines such as Deterministic Finite Automata (DFAs). This decomposition reduces 

architectural complexity and allows verification at two separate levels: 

1. Neural level: Obtain probability intervals for simple-event detectors using relaxation 

methods such as IBP. 

2. Symbolic level: Propagate these intervals through DFA transitions to produce 

lower/upper acceptance probabilities for temporal patterns. 

This approach allows the verification of complex temporal events by combining probabilistic 

bounds from multiple simple events. Experiments on MNIST-based sequence tasks show that 
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NeSy models drastically reduce the verification–accuracy gap (≤2%), demonstrating greater 

verifiability compared with monolithic temporal models.  

 

Figure 9: MNIST based sequential model for sequence classification. 

Verified Training: Combining Adversarial and Formal Objectives 

A major challenge is training models that are both empirically robust and formally verifiable. 

Standard adversarial training improves empirical robustness but degrades verified 

robustness. The report discusses two new expressive loss functions (CC-IBP, MTL-IBP) that 

jointly optimise adversarial and verified objectives. These losses achieve state-of-the-art 

trade-offs on datasets such as CIFAR-10, TinyImageNet, and ImageNet64, enabling models 

that are more suitable for deployment in safety-critical settings. 

 

 

Figure 10: Convex combinations between adversarial attacks and IBP bounds. 
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 Scalable Neural Learning and Inference over Data Streams 

3.1 Leveraging Synopses for Training Optimization – The SuBiTO 

Framework 

The SuBiTO Framework, developed in EVENFLOW, comes in three different versions. The 

synopses-driven SuBiTO framework [REF-03] for synopses-based training optimization. The 

NeSy SuBiTO proof-of-concept for supporting entire NeSy pipelines and the Distribuito SuBiTO 

which leverages both synopses and parallelism across all its architectural components. In this 

section we initially focus on the synopses-driven SuBiTO [REF-03], which we will henceforth 

term as simply SuBiTO. Section 3.1.2 presents the NeSy SuBiTO and Section 3.6 details 

Distribuito SuBiTO.  

3.1.1 The SuBiTO Architecture 

The architecture of the SuBiTO framework is illustrated in Figure 11. Compared to our 

discussion in Section 2.1, SuBiTO performs Neural Architecture Search (NAS) besides 

configuring the size of ingested stream synopses and the number of epochs. In that, SuBiTO’s 

functionality is severely enhanced because it can examine a wide variety of additional options 

that may involve deeper neural networks with highly compressed streaming input or 

shallower networks with greater number of ingested streams being processed. Additionally, 

the up-to-date neural models that are produced by the training pipelines are directly 

delivered via Kafka to a Prediction Pipeline for online, real-time inference purposes. 

As shown in Figure 11, SuBiTO is composed of three architectural elements. The training 

pipeline, the prediction pipeline and the SuBiTO Optimizer.  

The Training pipeline (middle of Figure 11) receives labelled streams and trains a neural 

model, for a number of epochs using only a fraction of the labelled streams specified by a 

stream compression ratio. These are specified by the SuBiTO Optimizer every time a concept 

drift is detected.  

The SuBiTO Optimizer (top of Figure 11) runs every time a concept drift if detected. It 

accumulates a recent portion of the labelled stream and performs a number of Bayesian 

Optimization [REF-04][REF-05] trials to learn the accuracy vs training time trade-offs under 

different {stream compression ratio, neural architecture, number of epochs} configurations. 

At the end of the optimization process, it devices the optimal such triplet based on a scoring 

function, currently 𝑠𝑐𝑜𝑟𝑒(𝑐) = 𝑤1 ∙ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐 + 𝑤2 ∙ tanh (
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑐

𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
− 1) is the 

default, which is deployed in the Training Pipeline.  

The Prediction Pipeline processes unlabelled streams. It continuously receives the up-to-date 

neural model produced by the Training Pipeline and deploys it for inference purposes. 
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Figure 11: SuBiTO Framework Architecture [REF-03]. SuBiTO Optimizer, Training and 
Prediction pipelines. NAS along with configuring synopses compression ratio and number of 

epochs as supported participating in the examined trade-offs.  

 

Figure 12: The SuBiTO Dashboard [REF-03]. The SuBiTO Optimizer has devised three 
alternative Neural Network Architectures along with synopses compression ratios and number 
of training epochs. The user has not picked any of the devised options, therefore the training 

latency (right middle part of the dashboard) is in the order of tens of seconds.  
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3.1.2 The SuBiTO Dashboard 

The SuBiTO Dashboard, implemented on streamlit2, is illustrated in Figure 12. The vertical 

middle of the dashboard displays the SuBiTO Optimizer operation and suggestions. After a 

concept drift or a manually triggered optimization cycle, the optimizer presents the top-3 

training configurations {neural network, compression ratio, number of epochs} based on a 

scoring function. It also plots their expected training accuracy and loss. To further aid the user 

cherry-pick among the top-rated alternatives, it also plots the expected accuracy, training 

time trade-offs of each. As soon as the user activates one among the suggested alternatives, 

the training pipeline is accordingly renewed as long as it finishes the current training round.  

The upper right of the dashboard is devoted to the Training Pipeline. It shows the currently 

deployed neural network architecture, the devised compression ratio and the number of 

training epochs. Moreover, it plots the actual training accuracy, loss as well as the training 

latency throughout the training process. The lower right of the dashboard plots a histogram 

on stream label frequencies. 

Finally, at the vertical left part of the dashboard, a panel is available for the user to specify 

the parameters of the available search space to be taken into account during exploration. The 

user can configure the stream train size, stream test size, default numbers of convolution, 

pooling, dense or other types of layers, plus the learning rate and batch size. In the SuBiTO 

dashboard the user can also choose the SuBiTO train and test sizes (portion of stream to be 

collected during the optimization process), the compression ratio range (low/high), the range 

on the number of epochs and the per-layer search ranges for architecture components: 

number of convolution layers (low/high), pooling layers (low/high), dense layers (low/high), 

as well as LSTM, GRU, vanilla RNN counts (each with low/high), and the dropout range 

(low/high). 

3.2 A NeSy SuBiTO Proof-of-Concept 

The NeSy SuBiTO proof-of-concept accepts MNIST images as inputs and attempts to pinpoint 

temporal sequences of numeric symbols on them. In particular, a positive sequence is one 

where an even number larger than 6 is observed, followed at some point by an odd number 

≤ 6, followed by a number ≤ 3. Expressed as a Regular Expression: ^[0-9]*8[0-9]*[135][0-

9]*[0-3][0-9]*$ 

Concretely, the automaton encodes: 

• f(1,2) :- equals(even,1), equals(gt_6,1). → see an even & >6 digit → go to state 2. 

• f(2,3) :- equals(odd,1), equals(leq_6,1). → later see an odd & ≤6 digit → go to state 3. 

• f(3,4) :- equals(leq_3,1). → later see a digit ≤3 → go to state 4 (accepting state). 

• Self-loops/backoffs keep the automaton in the same state when a guard is not met. 

So the symbolic part is monitoring the temporal pattern: … → (even & >6) → … → (odd & ≤6) 

→ … → (≤3) and accepts sequences reaching state 4. 

 

2 https://streamlit.io/  

https://streamlit.io/
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Figure 13: Forward pass (blue arrows) and backpropagation (red arrows) for the NeSy SuBiTO 
proof-of-concept.  

During the forward pass, images arrive as short sequences and are processed by a 

convolutional neural network (Convolutional Neural Network, CNN). The network produces, 

for every time step, a vector of class probabilities—the “soft symbols” that represent the 

likelihood of each digit. In parallel, the rules you wrote in Answer Set Programming (ASP) are 

compiled once into differentiable logic. Concretely, the ASP program is turned into circuits in 

Negation Normal Form (Negation Normal Form, NNF) by the Sentential Decision Diagram 

builder, and those circuits are then executed as a Symbolic Finite Automaton (SFA). The fusion 

step ties these two sides together: a labelling function maps each symbolic variable in the 

automaton to the corresponding slice of the CNN probability tensor, and the SFA evaluates 

the sequence to produce a single acceptance score that reflects whether the rule-defined 

pattern is present. That acceptance score is optionally clamped and length-decayed and then 

compared with the ground-truth sequence label inside the loss and metrics block, where the 

loss used is binary cross-entropy (BCE). For online use, the prediction pipeline simply runs 

CNN to SFA to acceptance score. 

During backpropagation, gradients originate at the loss and flow first into the fusion step. 

From fusion they pass into the Symbolic Finite Automaton through its differentiable tensor 

operations that implement the compiled rules; the rules and circuits themselves are fixed, but 

the operations are differentiable so the gradient can traverse them. The gradient then crosses 

the labelling function, which carries it from symbolic variables back to the appropriate 

probability slices. Once it reaches the probability tensor, it continues into the logits and 

through all layers of the Convolutional Neural Network, updating only the neural weights via 

the optimizer. The ASP program and the Negation Normal Form circuits remain unchanged 

during training, while the Convolutional Neural Network is the sole learnable component. 
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The configurations provided by SuBiTO are as discussed in Section 3.1. Indicatively, in this 

scenario SuBiTO provides more than an order of magnitude reduction in training time with a 

negligible compromise in accuracy, lower than 5%.  

3.3 Enriching the Algorithmic Foundations of Synopses-based 

Training Optimization 

So far, we have described the functionality of SuBiTO assuming the SuBiTO optimizer runs 

under Bayesian Optimization and under a specific scoring function, as presented in [REF-03]. 

In this section we unveil the algorithmic foundation of synopses-based training optimization 

introducing, besides Bayesian Optimization, Exhaustive, Greedy, Evolutionary and Heuristic 

algorithms for the parameter space exploration by the SuBiTO optimizer. As we 

experimentally show, for a variety of scoring functions, these algorithms exhibit 

complementary characteristics with respect to the accuracy vs training time trade-offs of their 

proposed solutions, as well as the execution time of each algorithm. Since these algorithms 

are under peer-review by the time this deliverable is submitted, we here provide only 

algorithmic sketches of their functionality.  

Exhaustive Search Algorithm: The Exhaustive Search Algorithm constructs all valid 

combinations of hyperparameters and layer structures up to a predefined maximum network 

depth. For each candidate configuration, the corresponding model is generated, trained and 

evaluated using the scoring function. The optimizer then selects the configuration with the 

highest score as the optimal solution. While Exhaustive search guarantees that the optimizer 

will return the global optimum configuration, its major drawback is the fact that it is 

computationally intensive as the search space grows exponentially with the number of 

parameters and possible layer types.  

Greedy Search Algorithm: The Greedy Search Algorithm adopts an incremental strategy to 

construct and tune neural network architectures under streaming constraints. In the initial 

phase, the algorithm explores all valid combinations of epoch numbers, sampling rates, and 

first-layer types. For each candidate, it creates a simple one-layer network and evaluates it 

using the scoring function. The configuration achieving the highest score, reflecting the most 

favourable balance between computational efficiency and model accuracy is selected as the 

initial structure. Subsequently, once initialized, the algorithm proceeds iteratively by 

expanding the network one layer at a time. During each iteration, it examines all valid layer 

types and temporarily integrates each into the current network.  

Heuristic Search Algorithm: The Heuristic Search Algorithm follows an iterative, Pareto-based 

strategy. Unlike Greedy and BO approaches, Heuristic operates under the principle of Pareto 

dominance, where a configuration is considered superior (or dominant) if no other 

configuration performs better in both objectives, i.e., accuracy and training time, 

simultaneously. The optimization process begins with an initial exhaustive search over all valid 

combinations of epoch counts, sampling rates, and single-layer architectures. Each 

configuration is trained, and its performance is evaluated with respect to accuracy and 

training time. These results define a two-dimensional objective space from which the Pareto 

front is derived. The configurations on the Pareto front will be explored further in the next 
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iterations as promising alternatives. Next, each Pareto-optimal (from the previous step) 

configuration is expanded by adding one new layer. This process continues iteratively until a 

maximum number of iterations is reached.  

Evolutionary Search Algorithm: The Evolutionary Search Algorithm, similar to the other 

variants, incrementally constructs the neural network by employing notions from 

evolutionary theory, e.g., crossovers and mutations. Generally, this variant evolves a 

population of configurations, i.e., triplets of neural network architectures, number of epochs 

and sampling rates, across successive generations, and its goal is to find configurations that 

‘fit’ well in a setting/environment that is defined by the user’s constraints. The optimization 

process begins with an initial exhaustive evaluation of all valid combinations of epoch counts, 

sampling rates, and single-layer architectures. From this set of candidates, the optimizer 

selects a subset of top-performing networks. These networks represent the most promising 

trade-offs between accuracy and training speed. Then, a subset of these elite architectures is 

directly ‘promoted’ to the next generation. The remaining configurations, which will be 

‘promoted’ to the next generation, are produced by crossover and mutation operations 

applied to the current elites. This process continues until a fixed number of generations is 

reached. 

3.3.1 Experimental Evaluation on SuBiTO algorithms 

To stress test the SuBiTO algorithms we utilize two real-world datasets, namely the CIFAR10 

and the UCF50 dataset [REF-06]. We examine the performance of the Bayesian Optimization, 

Greedy, Heuristic and Evolutionary (termed EVO) algorithms in terms of accuracy, training 

time trade-off of the proposed solution as well as based on their execution time.  

We further alter the scoring function used while exploring the search space. Besides the 

scoring function discussed in Section 3.1.1, which we term ‘Original’, we employ the following 

scoring functions: 

• Original Scoring Function: see Section 3.1.1. 

• F1-like Harmonic Trade-off: inspired by the harmonic mean structure of the F1-score, 

this formulation balances accuracy and training time. 

• Exponential Decay Penalty: emphasizes that the score decreases exponentially with 

increasing training time. 

• Inverse Additive Penalty: a fraction of accuracy over normalized training time. The 

denominator increases with training time, gradually reducing the score without sharp 

penalties, unlike the Exponential Decay variant. 

• Min-based Trade-off: directly captures the ‘weaker’ (the minimum) performance 

criterion among accuracy and normalized training time. As such, it benefits 

configurations that perform well across all desired properties, i.e., achieve high 

accuracy and low training latency. 

• Log-Sigmoid Dominance Function: treats the difference between accuracy and 

normalized training time as an indicator of relative performance. This is essentially a 

sigmoid function which keeps the score within (0, 1) and produces smooth transitions, 
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i.e., models that perform slightly better in one aspect gain an adequate advantage, 

while large imbalances are downgraded toward the middle of the scale. 

We execute our experiments under a Google Colab Pro+ subscription using the A100 GPU 

configuration. To show the complementarity of the various algorithms, in Figure 14, we plot 

the median accuracy, training time of the solution yielded by each algorithm. In that, each of 

the provided features in Figure 14, holds for at least half of the cases of scoring functions in a 

per dataset fashion. Relative execution time is encoded in the figure by marker area and 

labelled by its multiple vs. the fastest method in the same dataset (1× = fastest). 

  
Figure 14: Median performance of SuBiTO algorithms across scoring functions for the 

CIFAR10 and UCF datasets. Relative execution time is encoded by marker area and labelled 
by its multiple vs. the fastest method in the same dataset (1× = fastest).  

The complementarity of the algorithms is justified by the following observations: 

Bayesian Optimization (BO) is always the fastest in terms of execution time. It is therefore the 

best solution in cases of highly volatile data streams which yield frequent concept drifts and, 

therefore, frequent optimization decisions. However, the accuracy vs training time trade-off 

that it provides is inferior compared to the other alternatives, especially in the, more 

demanding, video stream scenario. 

Greedy provides solutions of good accuracy but it yields the highest training times. The 

training time of Greedy is up to 2x worse than the best training time induced by EVO. In other 

words, Greedy can keep high accuracy levels but moderately compromises the real timeliness 

of the training pipeline of SuBiTO. Its execution time is the second best, though it remains 2x 

and up to 4x slower than BO. It is suitable in case high accuracy and fast optimization times 

for volatile data streams are prioritized higher than rapid training times.  

EVΟ provides solutions of slightly worse (up to 7%) accuracy compared to the algorithm that 

provides the most accurate solutions across these datasets, but it yields the fastest training 

times. Therefore, it ensures the real timeliness of the training process. The caveat is that its 

execution time is up to 10x times slower than BO and up to 2.5x slower compared to Greedy. 

It is therefore suitable for settings where rapid training times and high accuracy are of the 

essence, but with lower data stream volatility and rarer concept drifts.  

Heuristic yields the best solutions in terms of execution vs training time trade-offs. It often 

provides the best accuracy with only 15-20% higher training time compared to EVO. Its 
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execution time though is the highest among all algorithms. Heuristic is an order of magnitude 

slower than BO and 3-4 times slower than Greedy. It is also 20-25% slower than EVO. 

Overall, our experimental evaluation results in the following main findings:  

• Highly Volatile Streams, real timeliness of training pipeline àBO  

• High/Moderately Volatile Streams, prioritization on accuracy over training time à 

Greedy 

• Non-volatile Streams, real timeliness of training pipeline à EVO 

• Non-volatile Streams, prioritization on accuracy over training time à Heuristic 

3.4 Parallel Synopses Maintenance Revisited 

However novel and practical SDEaaS [REF-02] was, it had an important limitation: it emitted 

synopses via Apache Flink’s streaming APIs (e.g., DataStream/Table) that were not natively 

tensor-compatible for neural training. Each time new synopses were produced, they first had 

to be written to Kafka and then loaded into tensor-friendly structures (e.g., Pandas 

DataFrames or NumPy ndarrays) for the training pipeline. This extra hop can undermine the 

benefits of parallel synopsis maintenance, because the conversion/ingestion steps relied on 

tools that are not inherently distributed. To remove this bottleneck, we re-implemented the 

SDE on Dask3, enabling parallel synopsis maintenance with direct tensor-compatibility, 

eliminating interleaving format transformations and preserving the potential for end-to-end 

parallel training. 

We further incorporated an inherently parallel synopsis technique, namely the (Weighted) 

Priority Sampling Scheme introduced in [REF-07]. The Weighted Priority Sampler (WPS) is a 

parallel streaming sampling algorithm designed to efficiently maintain a representative 

subset of items from a continuous data stream. It keeps the k items with the smallest priorities 

(implemented with a min-heap), where each item’s priority is defined as:  

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
lo g(𝑈)

𝑤𝑒𝑖𝑔ℎ𝑡
 

Here, U is a uniformly distributed random variable in the interval (0, 1), and weight is a user-

defined importance score for each item. This formulation ensures that higher-weight items 

have a higher chance of being included in the sample, while also introducing randomness to 

prevent bias. If all items are assigned equal weights, the sampling scheme reduces to uniform 

sampling. Figure 15 illustrates the operation of the WPS on a single worker.  

 

3 https://www.dask.org/  

https://www.dask.org/
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Figure 15: Operation of the Weighted Priority Sampling on a single worker. 

Each worker applies the procedure of Figure 15 on its local stream using an add operation 

(see [REF-02]). The overall sample is formed in a merge step (see [REF-02]) by choosing the 

overall top-K tuples. The following code snippet sketches the operation of WPS in Dask, while 

Figure 16, illustrates the parallel execution of priority sampling on 4 workers as presented at 

the Dask Dashboard.  

# Map over each Dask array block, applying `self.add` to produce per-block results. 

# - `.compute()` gathers all per-worker outputs to the driver (in-memory) as a NumPy array. 

top_ks_splitted = stream.map_blocks(self.add, dtype=stream.dtype).compute() 

# Merge the per-block results into a single global result using your sampler’s merge logic. 

merged_PS = self.merge(top_ks_splitted) 
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Figure 16: Priority Sampling parallel execution as illustrated at Dask Dashboard under 4 
workers. 

WPS is a highly useful parallel sampling scheme that is utilized in the SuBiTO optimizer and 

across SuBiTO’s training pipelines as described in Section 3.6. 

3.5 Data-driven Synchronization and the EVENFLOW Protocol Suite 

As noted in Deliverable D5.1, the aim of the smart synchronization protocols for 

distributed/parallel neural learning, introduced in EVENFLOW is to provide data-driven 

synchronization mechanisms. The vanilla synchronous and asynchronous protocols entailed 

in the Parameter Server paradigm [REF-08][REF-09], trigger laggy, full synchronizations on 

predefined rounds (synchronous) or allow partial, inaccurate synchronizations 

(asynchronous). The EVENFLOW protocol suite [REF-01], instead, requires a sync only when a 

concept drift may have occurred based on data driven criteria.  

In EVENFLOW, the application provides any thresholded function f(w(t)): RdàR and a threshold 

T. w(t) corresponds to the global neural network weights at time t. A global sync is required 

only when f surpasses the given threshold T. EVENFLOW decomposes this global trigger to 

local tests which can be individually checked by each parallel learner locally, without 

communicating with its peers. To achieve that, EVENFLOW employs a geometric approach 

which, instead of distributively monitoring the function value, it monitors the input domain 

of w(t) and their gradients.  

More formally, we consider n learners i ∈ {1,…,n} training a shared model with weight vector 

𝑤(𝑡) ∈ 𝑅𝑑. Learner i computes a local gradient 𝑔𝑖
(𝑡)

= ∇𝑤𝐿𝑖(𝑤(𝑡)) Local steps between two 

synchronizations are indexed by κ = 0,1,…. An application-supplied monitoring function 

𝑓: 𝑅𝑑 × 𝑅𝑑 → 𝑅 with tolerance T > 0 decides whether a global synchronization is required: a 

sync is needed iff 𝑓(𝑤(𝑡 + κ + 1), 𝑤(𝑡)) > 𝑇. 
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3.5.1 The Basic EVENFLOW Synchronization Protocol 

Local updates (per learner i): The learner performs standard gradient steps with learning rate 

η > 0: 

𝑤𝑖(𝑡 + 𝜅 + 1) = 𝑤𝑖(𝑡 + 𝜅) − 𝜂 · 𝑔𝑖
(𝑡+𝜅)

= 𝑤(𝑡) − 𝜂 · 𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)
 

Geometric filter (distributed, no communication unless needed): Define the alarm set 𝐴 =

𝑥 ∈ 𝑅𝑑: 𝑓(𝑥, 𝑤(𝑡)) > 𝑇. Each learner i forms a d-dimensional sphere 𝐵𝑖 = 𝐵(𝑐𝑖, 𝑟𝑖) with: 

    c =𝑖 𝑤(𝑡) − (𝜂/2) · 𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)
, 𝑟𝑖 = (𝜂/2) · ||𝛴𝑟=0

𝜅 𝑔𝑖
(𝑡+𝑟)

||. 

If 𝐵𝑖 ∩ 𝐴 = ∅, the learner stays silent; if 𝐵𝑖 ∩ 𝐴 ≠ ∅, it requests a synchronization. If no 

learner requires a sync, local training continues (no global round completion). 

 

Figure 17: Basic EVENFLOW Protocol Rationale. Since no sphere intersects A, no sync is 
triggered. 

Global aggregation (upon any sync): The aggregator computes a weighted average of current 

local models and broadcasts it: 

    𝑤(𝑡 + 𝜅 + 1) = (𝛴𝑖𝛾𝑖 · 𝑤𝑖(𝑡 + 𝜅 + 1))/(𝛴𝑖𝛾𝑖),     with 𝛾𝑖 > 0. 

𝛾𝑖s can quantify cases of learners that receive inequivalent number of tuples, therefore, their 

participation in the global average is weighted accordingly. Finally, all learners set w ← 

w(t+κ+1), reset κ ← 0, and continue. 

Correctness: The global model lies in the convex hull of 𝑤(𝑡) − 𝜂𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)

𝑖
, which is 

contained in ⋃ 𝐵𝑖𝑖 . Therefore, if each 𝐵𝑖 is disjoint from A, then f(w(t+κ+1), w(t)) ≤ T. An 

intersection on any learner indicates a potential threshold crossing and triggers a 

synchronization (potentially false positive). 

A fundamental limitation of the Basic EVENFLOW protocol is that in neural learning, the 

number of weights may well reach the order of millions. Having learners perform sphere 

intersection checks against A in case of high d values may slow down, instead of benefitting, 
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the training process. To overcome this limitation, we introduce the Fast EVENFLOW protocol 

which utilizes only m << d important values, based on Discrete Fourier Transform (DFT) 

coefficients of the local weight vectors, to speed up local intersection checks. 

3.5.2 The Fast EVENFLOW Synchronization Protocol 

The Fast EVENFLOW protocol operates on offsets from the last global model computed during 

a synchronization: 𝛥𝑤(𝑡 + 𝜅 + 1) = 𝑤(𝑡 + 𝜅 + 1) − 𝑤(𝑡). The monitoring task now 

becomes 𝑓(𝛥𝑤(𝑡 + 𝜅 + 1), 0) > 𝑇𝑡𝑟 for an equivalent but transformed threshold 𝑇𝑡𝑟. For 

each learner i, Fast EVENFLOW computes the DFT of the cumulative gradients 𝐺𝑖
(𝜅)

=

𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)
. We denote 𝐺̃𝑖

(𝜅)
= 𝐷𝐹𝑇(𝐺𝑖

(𝜅)
), and retain only the top-m (m ≪ d) coefficients by 

magnitude: 𝐺̃𝑖,𝑚
(𝜅)

. The linearity of DFT ensures 𝐷𝐹𝑇(𝛴𝑟𝑔𝑖
(𝑡+𝑟)

) = 𝛴𝑟𝐷𝐹𝑇(𝑔𝑖
(𝑡+𝑟)

). 

Reduced-space filter (per learner): We Define the m-dimensional sphere 𝐵̃𝑖 = 𝐵(𝑐̃𝑖, 𝑟̃𝑖) with: 

    𝑐̃𝑖 = −(𝜂/2) · 𝐺̃𝑖,𝑚
(𝜅)

, 𝑟̃𝑖 = (𝜂/2) · ||𝐺̃𝑖,𝑚
(𝜅)

||. 

Intersection of 𝐵̃𝑖 with the transformed alarm set 𝐴𝑡𝑟 = 𝑥: 𝑓(𝑥, 0) > 𝑇𝑡𝑟 triggers a sync. 

Otherwise, the learning step stays local. Aggregation/broadcast proceed as in Basic 

EVENFLOW. 

Deterministic quality bounds. Using Parseval’s identity and highest-m reduction, the time-

domain approximation error satisfies (IDFT is the Inverse Discrete Fourier Transform): 

    ||𝐺𝑖
(𝜅)

− 𝐼𝐷𝐹𝑇(𝐺̃𝑖,𝑚
(𝜅)

)|| ≤ √(𝜅 + 1) · √(1 − 𝑚/𝑑) · 𝑚𝑎𝑥𝑟 ||𝑔𝑖
(𝑡+𝑟)

||. 

Thus, the center and radius in the reduced space approximate those of the Basic protocol 

within (η/2) times the bound above, which upper-bounds both center displacement and 

radius approximation due to dimensionality reduction. 

3.5.3 Handling Sliding Windows 

In streaming settings, a sliding window model is often used in order to account for the most 

recent observations, while mark older observations as expired obsolete. The Fast EVENFLOW 

protocol can be trivially extended to make synchronization decisions depend only on the most 

recent W global steps, rather than all steps since the last global sync. 

Windowed cumulative gradients (per learner i): We define 𝑆𝑖
(𝑡)

= 𝛴𝑟=𝑡−𝑊+1
𝑡 𝑔𝑖

(𝑟)
 and its DFT 

𝑆̃𝑖
(𝑡)

= 𝛴𝑟=𝑡−𝑊+1
𝑡 𝑔̃𝑖

(𝑟)
. The window-slide recursion is exact due to DFT linearity: 𝑆̃𝑖

(𝑡+1)
=

𝑆̃𝑖
(𝑡)

− 𝑔̃𝑖
(𝑡−𝑊+1)

+ 𝑔̃𝑖
(𝑡+1)

. Each learner maintains 𝑆̃𝑖
(𝑡)

 and keeps only the top-m coefficients 

𝑆̃𝑖
(𝑡)

𝑖,𝑚

(𝑡)
. 

Windowed reduced-space filter: We replace 𝐺̃𝑖,𝑚
(𝜅)

 with 𝑆̃𝑖,𝑚
(𝑡)

 in the Fast EVENFLOW test: 

𝐵̃𝑖
𝑤𝑖𝑛 = 𝐵(𝑐̃𝑖

𝑤𝑖𝑛, 𝑟̃𝑖
𝑤𝑖𝑛), where 𝑐̃𝑖

𝑤𝑖𝑛 = −(𝜂/2) · 𝑆̃𝑖,𝑚
(𝑡)

, 𝑟̃𝑖
𝑤𝑖𝑛 = (𝜂/2) · ||𝑆̃𝑖,𝑚

(𝑡)
||. 
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If 𝐵̃𝑖
𝑤𝑖𝑛 ∩ 𝐴𝑡𝑟 ≠ ∅, learner I requests a sync; else it keeps up local training. Aggregation upon 

a sync remains unchanged. 

Error and correctness: The same deterministic bound applies with κ+1 replaced by W, i.e., 

(𝜂/2) · √𝑊 · √(1 − 𝑚/𝑑) · 𝑚𝑎𝑥𝑟∈[𝑡−𝑊+1,𝑡] ||𝑔𝑖
(𝑟)

||. Therefore, decisions in reduced space 

track those in full space up to the stated bound. 

Complexity (per step, per learner). Compute in O(dℓog(d)) FFTs and reuse FFTs of per-batch 

gradients; update the sliding DFT via the O(d) recursion above; maintain top-m coefficients 

(selection/heap); run the m-dimensional sphere check. After caching 𝑔̃𝑖, monitoring is 

essentially O(m) per step. 

3.6 Distribuito SuBiTO: Synopses, Parallelism & Smart Sync All in One 

The fully distributed version of SuBiTO incorporates the EVENFLOW advancements described 

in Section 3.4 and Section 3.5.2. The architecture of Distribuito SuBiTO is illustrated in Figure 

18. The entire implementation of Distribuito SuBiTO is on Dask for parallel synopses 

maintenance and Ray4 for distributed/parallel training and inference purposes.  

As shown in Figure 18, data streams arrive partitioned across Kafka topics. Parallel synopses 

maintenance over Dask (Section 3.4) plays a role at both the SuBiTO optimizer and the SuBiTO 

training pipeline. At the SuBiTO Optimizer side, Distribuito SuBiTO examines different 

parallelization degrees on par with NAS, compression ratio and epoch numbers. Bayesian 

Optimization is still used here since, as shown in Section 3.3.1, it is the most preferable option 

for highly volatile streams, across scoring functions.  

The solution {parallelism, Neural Architecture, epoch number, compression ratio} returned 

by BO is conveyed to the Training Pipeline at runtime. This then becomes the currently 

deployed configuration. That is, the training pipeline now dynamically configures the 

parallelism of synopses maintenance at runtime.  

At both the SuBiTO Optimizer and the Training Pipeline, Fast EVENFLOW (Section 3.5.2) is 

adopted, across the parallel learners, to provide rapid training times, reducing inter-learner 

communication and maintaining high accuracy.  

Finally, at the Prediction Pipeline, unlabelled streams are consumed by parallel predictors. 

Again, the most up-to-date global neural model extracted by the Training Pipeline is 

transferred to the parallel predictors via Kafka. Based on this updated model, the parallel 

predictors label the streaming tuples belonging to their assigned partitions. Besides 

parallelism, predictors incorporate an important optimization that boosts throughput 

(number of tuples being labelled per second). The talk involves prediction batching. As we 

experimentally show in Section 3.6.1, throughput is dramatically increased when – instead of 

labelling streaming tuples one by one – streaming tuples are first organized into batches and 

 

4 https://www.ray.io/  

https://www.ray.io/
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are labelled all together. This optimization reduces data exchanges between RAM and GPU 

RAM, therefore boosting throughput. 

 

Figure 18: Distribuito SuBiTO Architecture. Synopses are derived using SDE on Dask (Section 
3.4). The Fast EVENFLOW protocol (Section 3.5.2) is incorporated for smart, data-driven 

synchronization. Parallel predictors and prediction batching used to boost inference speed. 

3.6.1 Experimental Evaluation of Distribuito SuBiTO 

The experiments conducted regarding the distributed SuBiTO are based on the three main 

parts of the framework: synopses construction, training and inference. We start by discussing 

the experiments on the synopses’ construction part of the framework, focusing on parallel 

sampling scalability. We continue by presenting the experiments carried out on the new 

distributed Training Pipeline, using the novel Fast EVENFLOW protocol, under the PS 

paradigm. The experiments regarding the Prediction Pipeline are presented in the end, testing 

the scalability of the inference mechanism, by examining the throughput of its new version. 

3.6.1.1 Synopses Scalability 

The experiments presented in this section focus on testing the new scalable sampling 

approach of the Distribuito SuBiTO framework, using Priority Sampling on Dask and assigning 

random weights on each data point (Section 3.4). On this experiment we stream the NSFW 
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Dataset (available from HauggingFace) through Kafka and test the sampling execution time 

on both the original SuBiTO framework, which uses stratified sampling over NumPy, and the 

Distribuito SuBiTO framework, which uses Weighted Priority Sampling over Dask.  

The original SuBiTO performs sampling centrally using NumPy, while the Distribuito SuBiTO 

uses 6 Dask Workers, performing sampling on Dask. Recall that 6 Dask Workers are used only 

for experimental purposes, during the deployment of SuBiTO the number of Dask Workers is 

set by the SuBiTO Optimizer. In order to compare the two approaches, we chose to 

experiment using sample sizes of 20%, 40%, 60% and 80% of varying dataset size. On each 

experiment the dataset is duplicated 25, 30, 35, 40, 45 and 50 times for stress testing SuBiTO 

and Distribuito SuBiTO on various stream volumes. The sampling times reported are the mean 

across 5 trials, performed on the same computation hardware. 

On this experiment we test both sampling approaches on a single machine. It should be noted 

that NumPy offers no way of scaling on a large cluster. On the contrary, Dask offers the ability 

to scale our application on large clusters, leveraging the computing power of multiple 

processors on multiple servers.  

 

Figure 19: Synopses Scalability, original SuBiTO uses Stratified Sampling on NumPy while 
Distribuito SuBiTO uses Priority Sampling on Dask with a parallelism of 6. 

As we can see in Figure 19, when the dataset can fit in memory of a machine, the original 

approach of stratified sampling on NumPy achieves a quicker execution time compared to the 

Dask approach, on nearly all sample size cases. This trend can be observed on the duplication 

factors of 25 and 30. This behaviour is expected as NumPy is very efficient when computing 

within the limits of system memory, compared to Dask which introduces unnecessary 

computation overhead (Task Graph building, Execution Optimization, etc.). When the dataset 

is extended 35 times, stretching the system’s memory limits, we observe that NumPy needs 
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more time for sampling, compared to Dask, for 40% sample size. As the datasets duplication 

factor grows from 40 to 45 and 50 times, surpassing the system’s memory limits, it becomes 

evident that Dask’s sampling time scales linearly, compared to NumPy’s exponential scaling. 

In the particular case of duplicating the dataset 50 times, we observe that NumPy needs twice 

the time for sampling on 20% sample size, compared to Dask and 60 times as long in the case 

of 80% sampling size. 

The observations made above show clearly that using Priority Sampling on Dask, gives the 

Distribuito SuBiTO framework’s sampling approach the ability to handle large data streams 

with ease and therefore maintain the real-time character of the application on both medium 

and large scale environments. 

3.6.1.2 Training Scalability 

This section includes the experimental evaluation of the Distribuito SuBiTO Training Pipeline. 

This set of experiments focuses on testing the Distribuito SuBiTO learning approach of using 

the PS paradigm and the Fast EVENFLOW synchronization protocol, across multiple Learner 

instances. Therefore, the execution times reported in this section denote only the time that 

the set of Learners needed for training, excluding stream ingestion and sampling. Our results 

are compared to the Distribuito SuBiTO framework using the vanilla synchronous protocol 

under the PS paradigm. Our tests vary the number of Learners between 2 and 4 and conduct 

the experiments using the NSFW Image Dataset5 and a subset of the UCF50 Video Dataset, 

containing 10 out of the 50 classes. Moreover, we report the number of the PS’s 

synchronizations invoked on each case, in order to examine the overall communication 

overhead of our approach. The Datasets are continuously streamed on Kafka on a loop. Our 

training limit is 1400 batches on the NSFW Dataset and 4000 batches on the UCF Dataset [REF-

06], essentially letting each learning approach process the entire data stream two times. After 

reaching the batch processing limit, deducted only when the Learners synchronize with the 

PS, each learning process is terminated. On both approaches we use a learning rate of 10-3 

and batch sizes of 32 and 10, on the NSFW Dataset and UCF Datasets, respectively. Regarding 

the Fast EVENFLOW Protocol, our threshold decay function is set empirically, through careful 

examination of the learning process and the loss function, with the aim to stabilize learning 

throughout the batch processing: 

𝑇 =  2 𝑒−0.4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑  +  0.15, for the NSFW dataset, 

𝑇 =  64 𝑒−0.2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑  +  0.5 

We start by observing the results of the NSFW Dataset, with 2 Learner instances, using the 

vanilla Synchronous protocol and the Fast EVENFLOW synchronization protocol, in Figure 20 

and Figure 21, respectively. As we can see both synchronization protocols achieve high test 

and train accuracy scores, indicating that both the Fast EVENFLOW and the Synchronous 

protocols achieve adequate model generalization. 

 

5 https://huggingface.co/datasets/deepghs/nsfw_detect  

https://huggingface.co/datasets/deepghs/nsfw_detect
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Comparing the test accuracy metric of both synchronization techniques, the Fast EVENFLOW 

protocol only lacks on test accuracy by 4% shining in terms of both reduced training time and 

number of synchronizations. The number of synchronizations is perceived here as a measure 

of communication cost between the workers and the Parameter Server. The training time 

achieved by the Fast EVENFLOW protocol is 4 times less, compared to the synchronous 

protocol, while the number of synchronizations is reduced from 701 to only 7. 

 
Figure 20: Synchronous Protocol using 2 Learners on the NSFW Dataset. 

 
Figure 21: Fast EVENFLOW Protocol using 2 Learners on the NSFW Dataset. 

We continue by examining the same experimental setup, with the only exception of using 4 

Learners this time. As we can see in Figure 22 and Figure 23 regarding the Synchronous and 

Fast EVENFLOW synchronization protocols, we observe similar results. Both approaches 

achieve equally high test accuracy scores, generalizing their models adequately. The training 

time of the synchronous protocol is reduced to 92 seconds (s), compared to the 143s needed 

on the 2 Learner approach, while the training time of Fast EVENFLOW is decreased only 

slightly going from 35s to 31s. The use of more Learners did not benefit the FAST EVENFLOW 

approach on the number of synchronizations but reduced the synchronizations of 

Synchronous in half. This training time of the Fast EVENFLOW protocol is a consequence of 

processing more than 2000 batches, compared to the 1400 batches that the synchronous 
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approach processes on the same experiment. As we mentioned earlier the NSFW Dataset 

contains 700 batches and is streamed on a loop, though due to the nature of the Fast 

EVENFLOW protocol we are able to deduct the number of batches that are processed by the 

Learners, only when the synchronization process is initiated. Therefore, we stop the training 

process when the Learners synchronize with the PS and we have processed at least 1400 

batches, leaving the experiments regarding the Fast EVENFLOW protocol, always processing 

more batches compared to the synchronous approach. But the important finding resides to a 

different, more important observation.  

 
Figure 22: Synchronous Protocol using 4 Learners on the NSFW Dataset. 

 
Figure 23: Fast EVENFLOW Protocol using 4 Learners on the NSFW Dataset. 

The Fast EVENFLOW synchronization protocol using 2 Learners (Figure 21) provides the 

same accuracy as the Synchronous protocol using 4 Learners (Figure 22) while reducing the 

training time by a factor of 3 and the number of synchronizations by 2 orders of magnitude, 

all while using less hardware, specifically half the number of Learners and therefore half 

the number of GPUs. Regarding the communication overhead, Fast EVENFLOW transmits 21 

messages during the training process while the synchronous approach transmits 1755, 

reducing drastically the communication cost of the training process. This indicates that the 

Fast EVENFLOW protocol can indeed provide a scalable solution to perform Distributed 

Learning on the Distribuito SuBiTO platform, while maintaining the real-time character of the 
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application, through reduced training time and communication cost, with half the hardware 

requirements. 

We continue the experimental evaluation by presenting the experiments conducted using the 

UCF Dataset. The UCF Dataset is larger in size compared to the NSFW Dataset used in the 

previous experiments both in terms of data items and item size, as videos carry much more 

information compared to images. Therefore, we utilized the Ray Store library, essentially 

sharing the data across the Actors (Learners), minimizing the memory footprint of the training 

process. This resulted in a memory efficient training process, which indeed impacted the 

training time. Given this remark, it is evident that there should be no comparison of the 

training times between the experiments conducted with the NSFW and the UCF datasets.  

 
Figure 24: Synchronous Protocol using 2 Learners on the UCF Dataset. 

 
Figure 25: Fast EVENFLOW Protocol using 2 Learners on the UCF Dataset. 

The results of using 2 Learners with the Synchronous and the Fast EVENFLOW protocol on the 

UCF dataset are provided in Figure 24 and Figure 25, respectively. Both approaches reach a 

Test accuracy score of 60%, while the synchronous approach seems to lack in terms of model 

generalization given a train accuracy score of nearly 70%. The Fast EVENFLOW occasionally 

improves Synchronous on model generalization, due to the fact that by synchronizing less 

frequently, it avoids overfitting that occurs during the streaming training process. In terms of 

communication cost, Fast EVENFLOW requires only 12 synchronizations compared to 201 of 
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the synchronous approach, reducing synchronization by an order of magnitude, and therefore 

the communication cost, while achieving the same training performance. This observation is 

reflected on training time as well, with the Synchronous approach 35s training time, 

compared with the 8s of Fast EVENFLOW. 

 
Figure 26: Synchronous Protocol using 4 Learners on the UCF Dataset. 

 
Figure 27: Fast EVENFLOW Protocol using 4 Learners on the UCF Dataset. 

We can see the results of on the UCF dataset using 4 Learners in Figure 26 and Figure 27. We 

observe that the training time is improved in both cases, compared to the 2 Learner approach 

discussed above. Both protocols achieve concise accuracy metrics with the Fast EVENFLOW 

approach lacking just by 7%. The use of more Learners, reduced the synchronizations of 

Synchronous in half. This observation is related to the fact that Fast EVENFLOW already 

performs a very limited number of synchronizations, with further reduction risking the 

stability of the training process. Regarding learning time, Fast EVENFLOW is again faster, 

needing 7s compared to the 24s of Synchronous approach. Again, we can see that comparing 

the use of Fast EVENFLOW with 2 Learners (Figure 25) and the use of Synchronous with 4 

Learners (Figure 26), Fast EVENFLOW achieves the same test accuracy, while reducing 

training time by a factor of 3 and the number of synchronizations by an order of magnitude, 

all while using half the number of Learners and therefore half the number of GPUs. 

Regarding the communication overhead, Fast EVENFLOW transmits 36 messages during the 
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training process while the synchronous approach transmits 505, reducing drastically the 

communication cost of the training process, once again. 

3.6.1.3 Inference Scalability 

Our last set of experiments focus on the Prediction Pipeline and the updated SuBiTO 

Predictors. Our approach uses parallel Predictors performing inference and communicating 

their results to a server orchestrator process. This experimental setup focuses only on 

examining the throughput of the updated Predictor and therefore uses a static pre-trained 

neural network throughout the experiment. It should be noted that on a real deployment 

setting the orchestrator process constantly receives the up-to-date model of Training Pipeline 

and deploys it for inference on the fly. These experiments focus on measuring the increase in 

throughput that we get when using multiple Predictor instances, compared to the original 

SuBiTO approach of using a single Predictor. In these experiments we utilise the NSFW dataset 

and various types of hardware. Each result presented below is the mean value of 10 trials. 

We start by examining the limits of a single Predictor running on a standard T4 GPU on Google 

Colab Pro+. We experiment with various batch sizes and a parallelism of 1 and report the 

achieved throughput in Figure 28. The results indicate that we achieve higher throughput on 

batch sizes ranging from 32 to 512, with the maximum being achieved by a batch size of 512. 

This result indicates that our next experiments should be conducted with a batch size within 

the aforementioned range. 

 
Figure 28: Throughput across batch sizes. 

Using the same hardware we utilise a varying number of Predictors, each as a separate Google 

Colab Pro+ instance, and examine the effect that multiple Predictors can have on throughput. 

The results regarding T4 Predictors using batch sizes of 32 are presented in Figure 29. We 

observe that going from 1 to 2 Predictors yields nearly twice the throughput. When scaling to 

more Predictors we observe that throughput increases almost linearly. The “almost” linear 

increase is due to the effect of the orchestration process that handles model reception, 

transmission and fetching of the inference results, therefore introducing latencies. 

We continue our experiments by deploying the Prediction Pipeline on state-of-the-art 

hardware, namely the A100 GPU. Each Predictor is modelled as a separate Google Colab 

instance, though limited to 3 instances due to Google’s policy restrictions. Our experiments 
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examine throughput by varying the number of Predictors within Google’s policy limits and use 

a batch size of 32. The results are presented in Figure 30. 

 
Figure 29: Throughput of T4 Predictors with batch size = 32. 

 

 
Figure 30: Throughput of A100 Predictors with batch size = 32. 

 

The results indicate twice the throughput, compared to the respective same amount of T4 

Predictors, which is a result of using more advanced hardware. Specifically, using 3 A100 

Predictors we perform inference on more than 50000 images/s, whereas using 3 T4 Predictors 

the throughput is decreased by 26000 images/s.  
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 Scalable Neurosymbolic Complex Event Recognition 
Consider the following pattern, stemming from a smart factory scenario, similar to the 

Industry 4.0 EVENFLOW use case, where raw robot navigation data are monitored: 

R_successful_delivery := (¬StationDetected)* · (¬StationDetected) · (StationDetected ∧ 

¬DeliveryManeuver)* · (StationDetected ∧ DeliveryManeuver) 

The Simple Event (SE) StationDetected occurs when a robot detects a station in the smart 

factory. The DeliveryManeuver SE occurs when the robot is moving at a certain speed, 

changing directions while manoeuvring to approach the detected factory station. The 

Complex Event (CE) R_successful_delivery is satisfied when initially a robot has not detected 

a station, then it detects one and, having detected the station, attains the required speed and 

repeated change of movement direction to approach it. The Complex Event Recognition (CER) 

system continuously evaluates the rapidly ingested robot streams, converts them to the 

aforementioned SEs and deduces a successful delivery CE. 

In such a scenario, each SE represents the detection of a behaviour that can only be deduced 

by a machine or neural learning model. The role of the neural model is to receive streams of 

frames (e.g., from vision, LIDAR, or other contextual cues) and the manoeuvring behaviour 

for delivery and provide classification outcomes, i.e., class/symbol A = StationDetected and 

symbol B = DeliveryManeuver, for CER to be possible. Then, a CER engine will ingest the 

aforementioned SEs (symbols A, B) and evaluate the occurrence of the involved CEs. 

Evidently, such scenarios call for both neural inference and symbolic CER to operate 

synergistically. 

FlinkCEP is the CER API of a state-of-the-art Big Data platform, namely Apache Flink. FlinkCEP 

focuses on scaling-out the computation to a number of machines in a computer cluster/cloud, 

working in parallel on partitions of the streams, to speed up continuous analytic outcomes. 

FlinkCEP provides a CER language of high expressive power in terms of formulating patterns 

for CEs. However, there are certain barriers to the adoption of FlinkCEP. First, FlinkCEP 

requires business analysts, who are not necessarily expert programmers, to write functional 

programming code. Second, pattern expression and parameterization involve cumbersome 

notation, making the whole code writing process error prone. Third, with the proliferation of 

IoT devices as SE producers, the classic paradigm in which we first accumulate raw data at the 

cloud and then submit a FlinkCEP job is severely suboptimal. For instance, in our running 

example, sending video frames from robots to the cloud and then performing CER would 

deplete the available bandwidth, causing network latencies that would prevent the real-time 

character of the involved applications. What should be done instead, is to ship trained neural 

models and FlinkCEP jobs to network devices, assign parts of the SE and/or CER process 

directly on them, and only a subset of SEs and/or CEs should be delivered to the cloud, alerting 

for the occurred events. 

Despite the fact that few previous efforts have integrated neural and symbolic CER, no 

existing approach has enabled neither parallel processing of neurosymbolic CER nor 

optimized, distributed neurosymbolic CER over IoT settings. The work presented in this section 

contributes to advancing the state-of-the-art by tackling all the aforementioned challenges. 
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We introduce NeuroFlinkCEP [REF-10], the first framework that integrates neural (aka sub-

symbolic) and symbolic CER over a state-of-the art Big Data platform for parallel processing 

that is also optimized to operate distributedly over IoT settings composed of various devices. 

To alleviate business analysts from the burden of writing FlinkCEP programs, NeuroFlinkCEP 

receives expressed patterns in the form of extended regular expressions (RegEx) and 

transforms them to FlinkCEP jobs. To enable detection of SEs and CEs, NeuroFlinkCEP 

integrates any chosen, domain-specific neural model inside the FlinkCEP job deployed per 

device. To optimally decide whether operators of the CER workflow should be executed at 

the cloud or the device network side, NeuroFlinkCEP enhances a state-of-the-art IoT optimizer 

with CER-specific optimizations. 

4.1.1 NeuroFlinkCEP Architecture 

NeuroFlinkCEP’s key architectural components are: (i) the RegEx2-NeuroFlinkCEP operator, 

(ii) the synapSEflow operator and (iii) the DAG*4CER Optimizer. RegEx2NeuroFlinkCEP and 

synapSEflow operators are nested into a newly introduced NeuroFlinkCEP operator. We have 

developed a NeuroFlinkCEP GUI for graphical workflow design using NeuroFlinkCEP operators 

and we have incorporated it as an extension to a commercial platform, Altair AI Studio6. 

The RegEx2NeuroFlinkCEP operator receives as input Extended Regular Expressions 

describing the pattern based on which a CE would be detected, i.e., this nested operator 

describes the symbolic part of a NeuroFlinkCEP operator. As shown in Figure 31, each such 

pattern can be parameterized with time windowing constraints as well as selection strategies 

and consumption policies supported by FlinkCEP. FlinkCEP supports the following SE selection 

strategies: (i) Strict Contiguity, (ii) Relaxed Contiguity, and (iii) Non-Deterministic Relaxed 

Contiguity. For event consumption policies, FlinkCEP provides: NO_SKIP, SKIP_TO_NEXT, 

SKIP_PAST_LAST_EVENT, SKIP_TO_FIRST[p], and SKIP_TO_LAST[p]. These can be graphically 

parameterized in a NeuroFlinkCEP operator via the developed extension on Altair AI Studio 

(Figure 32).  

The synapSEflow operator nests the TensorFlow Java API within the NeuroFlinkCEP operator. 

It receives as input the TensorFlow (.pb) file with a trained neural model. The operator loads 

the model, composes features from incoming raw streams (e.g., video frames, positional 

streams), feeds them through the model, and derives labels/symbols. It then (i) directs the 

simple event outputs to the core of FlinkCEP for pattern matching and (ii) listens to a 

broadcast stream for model updates via Kafka, installing received models so predictions use 

the latest version. If no .pb file is specified, the input to a downstream NeuroFlinkCEP 

operator should be another, upstream NeuroFlinkCEP operator feeding SEs for pattern 

matching. 

The DAG*4CER Optimizer incorporates a state-of-the-art IoT optimization algorithm, DAG* 

[REF-11], and extends it with FlinkCEP-specific optimizations. DAG* topologically sorts the 

logical workflow and progressively examines physical instantiations to network devices for 

the involved operators, computing g(n)=f(n)+h(n) where f(n) is the current partial-plan cost 

 

6 https://altair.com/altair-ai-studio  

https://altair.com/altair-ai-studio
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and h(n) is an admissible heuristic. Two rules enforce graph (not path) outputs: (i) at each 

step, only one operator can be examined for instantiation; (ii) no logical operator can be 

instantiated unless all upstream operators are already in the current partial plan.  

DAG*4CER adds CER-oriented rewritings:  

• Pattern Decomposition: assigns SE detection across devices instead of placing the 

entire pattern at one device),  

• Early Filtering: prunes irrelevant events with DataStream.filter() before FlinkCEP,  

• Reordering: evaluates selective predicates first within FlinkCEP), and  

• Pushing Predicates Upstream: moves filtering to source connectors like KafkaSource 

to save network costs. 

 
 

Figure 31: Anatomy of a NeuroFlinkCEP 
Operator. 

Figure 32: NeuroFlinkCEP Operator 
Parameterization. 

 

Figure 33: NeuroFlinkCEP Workflow Design, IoT Optimization & Distributed Execution. 

4.1.2 From Logical CER workflows to Physical CER over IoT Executions 

NeuroFlinkCEP’s users and applications are able to perform the numbered tasks in Figure 33. 

① The user interacts with the NeuroFlinkCEP GUI in Altair AI Studio to design and 

parameterize their own logical workflows. The user drags and drops each NeuroFlinkCEP 
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operator on a canvas and connects NeuroFlinkCEP operators and Kafka Source/Sinks to define 

the data flow as shown on the upper right part of Figure 33. As shown in Figure 32, for each 

NeuroFLinkCEP operator, the user graphically defines the pattern of interest, selection 

strategy, consumption policy, time window for the nested RegEx2NeuroFlinkCEP operator. 

Also, they specify the .pb file path for the nested synapSEflow operator. ② When the user 

submits the logical workflow, a Logical Workflow Parser checks its validity. It then converts 

this logical plan to a JSON file that is fed to DAG*4CEP optimizer and to a Neural Net Repo. 

③ The DAG*4CER optimizer detects the available network devices via a Device Registry and 

examines physical assignments to devices for each NeuroFLinkCEP operator, outputting the 

optimal physical plan. It also projects the optimized physical plan back to the GUI of Altair AI 

Studio. There are 3 options for the user to interact with the DAG*4CER Optimizer: (a) optimize 

and deploy: which instructs the Optimizer to directly feed the optimal plan to the Job 

Dispatcher, (b) only optimize: which instructs the Optimizer to show the suggested physical 

plan in the GUI for the user to inspect it or change it, before deploying it, (c) only deploy: 

which will feed the workflow, after (b), to the Dispatcher. ④ In ③(a), ③ (c), the DAG*4CER 

optimizer feeds the physical plan to the Job Dispatcher, while the Neural Net Repo provides 

the .pb files for the neural nets engaged in the CER workflow. ⑤The Job Dispatcher submits 

Flink jobs to the network sites based on the assignment of NeuroFlinkCEP operators by 

DAG*4CER. ⑥ Detected CEs are continuously visualized in an interactive dashboard (Figure 

34). ⑦The deployed plan is monitored and statistics including processing and network 

latency, throughput and other relevant metrics are collected for future DAG*4CER plan cost 

estimations. 

 

Figure 34: NeuroFlinkCEP dashboard for the Industry 4.0 Use Case. 
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 Status of the EVENFLOW Scalability Toolkit 
In addition to what was reported in Deliverable D5.1, the EVENFLOW code repository and the 

Scalability Toolkit in particular, now hosts the 3 main pillars of EVENFLOW scalability. Namely, 

a) the Synopses-as-a-Service (SDEaaS), (b) SuBiTO and (c) NeuroFlinkCEP. SDE on Dask along 

with Distribuito SuBiTO on Ray will be provided open source directly after the corresponding 

systems’ papers are published. 

 

Figure 35: Status of the Scalability Toolkit at EVENFLOW Repository. 

Each of these pillars have also dedicated github.io sites that are continuously in sync with the 

overall Scalability Toolkit advancements at the EVENFLOW main branch. In particular, SDEaaS 

has a dedicated site at https://sdeaas.github.io/. 

 

Figure 36: SDEaaS at https://sdeaas.github.io/.   

https://sdeaas.github.io/
https://sdeaas.github.io/
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SuBiTO has a dedicated site available at: https://subito-ai-for-bigdata.github.io/. 

 

Figure 37: SuBiTO at https://subito-ai-for-bigdata.github.io/.   

NeuroFlinkCEP has a dedicated site available at https://neuroflinkcep.github.io/. 

https://subito-ai-for-bigdata.github.io/
https://subito-ai-for-bigdata.github.io/
https://neuroflinkcep.github.io/
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Figure 38: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (part 1). 

https://neuroflinkcep.github.io/
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Figure 39: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (Part 2). 

Each dedicated site provides additional material including the published papers, videos and 

images as well as posters and presentation slides of the involved scalability pillars.  

https://neuroflinkcep.github.io/
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 Scaling EVENFLOW Use Cases 

6.1 The SSTRESSED Framework for the Industry 4.0 Use Case 

Detecting Simple, Derived Events (SDEs) is the first step towards Complex Event Recognition. 

In time critical applications, such as safe robot navigation in dynamic smart factory 

environments of Use Case II, SDE detection should be performed continuously over 

voluminous streams of movement data arriving at high speeds. In such scenarios, extracting 

SDEs out of raw streams is a challenging task engaging (a) online neural network training for 

continuously maintaining an up-to-date model for SDE labelling purposes and (b) semantic-

aware trajectory processing for identifying homogeneous movement portions, defining the 

SDE duration, before using the neural model for labelling it. By definition, output SDEs are 

simple pieces of information, but the volume and velocity of the original raw streams (Figure 

40) in large scale smart factory applications call for scaling out (parallelizing) the computation 

to a number of machines to ensure real-time processing. Therefore, both (a) and (b) should 

be set up in state-of-the-art, relevant platforms. To tackle these challenges, we developed 

SSTRESED, a prototype for scalable SDE detection over streaming movement data. For the 

first time, SSTRESED establishes a direct connection between semantic trajectory 

computation and SDE detection in the streaming context. This is in contrast to prior art which 

uses predetermined, application-defined time windows to a priori restrict eligible SDE 

durations. 

 

Figure 40: Example training stream for a single simulated robot. Unlabelled movement 
streams. 

The SSTRESSED Framework [REF-12], illustrated in Figure 41 and described in Deliverable 

D5.1, composes two connected pipelines distributed across worker machines. In the Industry 

4.0 use case of EVENFLOW, truthful, timestamped and labelled movement streams are 

continuously produced by robotic simulators, as SDEs and their raw features, per robot.  

The training pipeline (blue-coloured path) in Figure 41 abides by the one reported in Figure 2. 

It continuously receives these robot movement time series ingested in Apache Kafka 

partitions of the Training Topic. The Training Topic is read by parallel PyTorch Learners. Each 

such learner utilizes an identical neural model (specified by the application) but performs the 

training process on a separate set of robots. The local models learned at each Learner i (top 

of Figure 41) are synchronized into a global neural model maintained by a Parameter Server. 

At a global model update, new weights of the neural network are written to a Weights Topic 

of Kafka. 
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Figure 41: SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines [REF-12]. 

The SDE detection pipeline (red-coloured path in Figure 41) also abides by Figure 2 and 

extends it with semantic trajectory episode determination via SeTraStream [REF-13]. It 

receives raw, unlabelled streaming movement data, partitioned in the Movement Streams 

Kafka Topic. These incoming tuples, ingested directly from the application field, have the 

same schema as those of the Training Topic, but lack a label/SDE field. Ingested Movement 

Streams of robots (or, optionally, samples of them) are processed by a distributed version of 

SeTraStream [REF-13] developed in Apache Flink. Distributed SeTraStream uses each parallel 

Segmentor i to continuously identify homogeneous movement portions based on the 

ingested features per robot, thus semantically and temporally segmenting each trajectory. In 

that, the duration of a SDE is determined, which also bounds the feature tensors that should 

then be used for labelling the SDE.  

Let us assume that there is a buffer containing batches of records of a homogenous 

movement. The segmentation algorithm of SeTraStream starts by extracting a batch of m 

records from the streaming data. Once the batch is extracted, its similarity is evaluated 

against the last batch that was found to be consistent with the previous batches within the 

current buffer of a specific movement. If similarity is satisfied, the algorithm continues by 

testing the new batch against the last 2n batches in the buffer, where n starts from 0 and 

increases until 2n reaches the buffer length. This process continues until the batch is found 

to be similar to the entire buffer, in which case it is appended to it. When no similarity is 

detected, the current buffer is assumed to be a separate movement, and the new batch 

initializes a new buffer corresponding to the next movement. The algorithm then repeats. 

Similarity is quantified using a metric known as the RV coefficient. The RV-coefficient 

constitutes a generalization of the correlation coefficient for matrix data. We organize Wl into 

a d × m matrix, where d is the number of movement features and m represents a number of 

vectors (at different timestamps) that are the columns of the matrix. Similarly, Wr is organized 

in a d × m matrix i.e. n columns exist. The RV coefficient is mathematically defined as follows: 



D5.2 – Final Version of Verification and Scalability Techniques 

Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  54 

 

 

𝑅𝑉(𝑊𝑙, 𝑊𝑟) =
𝑇𝑟(𝑊𝑙𝑊𝑙

𝑇𝑊𝑟𝑊𝑟
𝑇)

√𝑇𝑟((𝑊𝑙𝑊𝑙
𝑇)2) 𝑇𝑟((𝑊𝑟𝑊𝑟

𝑇)2)
 

Where Wl and Wr are the matrices to be tested if similar, W⊤l , W⊤r refer to the transpose 

matrices, Tr() denotes the trace of a matrix and 0 ≤ RV ≤ 1. RV values closer to zero are 

indicative of uncorrelated movement patterns. Based on a division point threshold σ, matrices 

Wl, Wr can be either assigned to a pair of different episodes or to a single episode. 

Each parallel Segmentor i writes the result of its processing to an intermediate Kafka topic 

connecting Distributed SeTraStream with a PyTorch Semantic Tagger in the red-coloured 

path. Each parallel Tagger i (bottom of Figure 41) of the Semantic Tagger, at any given time 

instance, reads the up-to-date weights from the Weights Topic and uses the updated neural 

model to label SDEs. The final SSTRESED output goes to the SDEs Kafka topic in the form of 

tuples as illustrated in Figure 42 (per robot). 

 

Figure 42: SSTRESED output SDE Stream for the movement of a single robot. 

6.1.1 SSTRESED Experimental Evaluation 

In Deliverable D5.1 of EVENFLOW we introduced the SSTRESSED architecture [REF-12] and 

reasoned about its utility in the Industry 4.0 use case. In this section, we experimentally 

validate the feasibility and scalability of SSTRESSED implementation over robot movement 

data.  

To evaluate the performance of the SeTraStream in accurately classifying robot motion data 

of homogeneous movement segments, three widely used classification metrics are employed: 

Precision, Recall, and F1-Score. These measures provide complementary insights into the 

model’s predictive behaviour and are suitable for problems where class imbalance or partial 

misclassifications may occur. 

The training pipeline, in the scheme of streaming data input, employs a distributed learning 

method so that the system can benefit significantly in terms of time through data allocation. 

In applications such as robot navigation within a smart factory environment, where robots 

are prone to intermediate collisions, the distributed approach helps prevent system latencies 

and ensures a more stable processing flow. The training pipeline was executed for 1, 2, and 4 

workers, and the results of the training time per number of workers are presented in the 

diagram below. As Figure 43 illustrates the training time upon using 2 learners reduces by 

1.7x, while it further decreases to 2.7x times in the case of 4 learners, compared to the single 

learner alternative. The difference between the linear decrease in training time i.e., 2 times 

for 2 learners and 4 times for 4 learners, is due to the fact that in this experiment we utilized 

the synchronous, instead of the EVENFLOW, protocol of the parameter server paradigm for 

parallel training. We did so, in order to stress-test the accuracy of the Prediction Pipeline of 
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SSTRESED even in the presence of laggy transfer of the most up-to-date model, from the 

Training to the Prediction Pipeline. 

 

Figure 43: SSTRESED Training Pipeline performance. 

Figure 44 presents the SSTRESED throughput, illustrating the number of predictions per 

second with respect to the number of taggers (predictors) operating in parallel. As shown in 

the following diagram, the system throughput increases with the number of taggers. In 

particular, making the transition from 1 to 2 predictors/taggers increases the throughput by 

4x, while from 4à8 taggers throughput increases by 3x. This super linear increase in 

throughput comes from the fact that predictors, contrary to learners, do not need to 

synchronize and can operate independently provided they have the most up-to-date neural 

model at any given time. 

  

Figure 44: Performance of SSTRESED Prediction Pipeline. 

An important question that needs to be answered involves the accuracy of SSTRESED. Instead 

of evaluating the accuracy of the Training Pipeline and the Prediction Pipeline independently, 

we choose to directly show the overall accuracy of SSTRESED in the detected SDEs. This is 
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because, by reporting accuracy of the detected SDEs we provide the cumulative accuracy of 

the framework across (i) the Training Pipeline: not only how accurate is the neural network 

but also how the small time lap between producing the most up-to-date neural model at each 

epoch and deploying it across predictors affects the overall accuracy, (ii) the Segmentation 

part of the Prediction Pipeline: how well robot trajectories are segmented to homogeneous 

portions of movements (episodes) and (iii) how well the neural model deployed at the 

Prediction Pipeline, generalizes to unseen data. 

 

Figure 45: Cumulative SSTRESED accuracy vs Number of Epochs. 

Figure 45 shows SSTRESED accuracy across the number of epochs. The number of epochs here 

denotes the time frame of SSTRESED operation since each new epoch yields a new neural 

model that is conveyed from the Training to the Prediction Pipeline. This is the reason the 

number of epochs in the horizontal axis of the figure is halved across the plots, every time we 

double the number of workers, i.e., the entire dataset is partitioned to more workers. As 

Figure 45 shows, SSTRESED achieves a cumulative accuracy of 80% with the exception of 4 

workers where accuracy reaches 70%, but for early stopping at epoch 200 due to the reason 

mentioned above. This 70% accuracy at epoch 200 is consistent with the rest of the cases (1 

worker, 2 workers) proving that the only reason for the 10% lack is the boundedness of the 

robot dataset rather than convergence issues of the framework. 

Finally, it is important to note that the lower absolute throughput numbers in Figure 44 

compared to Figure 29 and Figure 30 comes from the fact that the current Prediction Pipeline 

includes SeTraStream for segmentation purposes. SeTraStream must not be considered as a 

performance bottleneck though, since the absence of SeTraStream significantly compromises 

the accuracy of the framework. This is due to omitting the segmentation step in a setup where 

SDEs are durative. Therefore, even if a version of SSTRESED without SeTraStream provides 

much higher throughput, the accuracy of the framework remains significantly low. This is due 

to the fact that the predictors retain correct tagging of individual motion tuples due to the 

neural model, but even a single incorrectly tagged tuple splits durative SDEs into non-

consecutive time periods and introduced erroneous interleaved SDEs, as well. In other works, 

if SSTRESED makes predictions on individual tuples, instead of episodes, most of the labels 

remain correct, but even few wrongly labelled tuples lead to SDEs of invalid duration. 

Therefore, the overall prediction accuracy is diminished. 

To validate our claim, Figure 46 shows the accuracy and throughput of SSTRESED without 

SeTraStream. As shown in Figure 46, throughput dramatically increases up to 15x for 1 
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predictor upon omitting SeTraStream from the prediction pipeline, but accuracy receives a 

maximum value below 0.25 

 

Figure 46: SSTRESED performance without SeTraStream. 

6.2 The RATS+ Framework for the Personalized Medicine Use Case 

6.2.1 Overview on the RATS Framework 

Tumour simulations such as those run on PhysiBoSS 2.0 are expensive, highly parallel, and 

parameter-rich. Each simulation corresponds to a tumour treatment methodology under 

examination, described by three TNF parameters—drug administration frequency, duration, 

and concentration. To cut down time to market for new therapies, each set of simulations 

needs to be properly scheduled. That is, there is a need to aid life scientists reserve a sufficient 

number of core hours for their medical study each time, devote the proper number of cores 

to each simulation so that the study finishes as early as possible and prioritize higher the most 

promising simulations so that early, useful results can be extracted and prematurely end the 

rest of the unpromising simulations if needed. In realistic studies, the number of possible TNF 

combinations is large: in the initial RATS framework [REF-14], described in Deliverable D5.1, 

our experiments consider 512 TNF triplets and core configurations up to 32 cores per 

simulation, resulting in 2,560 different {TNF, cores} configurations that could potentially be 

executed on the MareNostrum 4 supercomputer. Running all these configurations just to 

learn how performance and treatments behave is clearly infeasible. At the same time, life 

scientists need answers to three tightly coupled questions: (i) how many cores should be 

assigned to each simulation so that cores are not under- or over-utilized, (ii) under a global 

core-capacity cap, which simulations should run at each time step, and with how many cores, 

to minimize the overall time of the study, and (iii) among all candidate treatments, which ones 

look most promising and should therefore be prioritized. RATS addresses this full chain of 

decisions: it learns performance models from a small number of micro-benchmarks and then 

solves a series of knapsack-style optimization problems to prescribe core allocations and 

derive a schedule. 

The RATS framework [REF-14] starts from a discretized treatment space. TNF Frequency, 

Duration, and Concentration are discretized into fine-grained ranges via [low, high, step] 

triplets. All combinations form the set SS of TNF triplets under study. For each simulation Si in 

SS, the user may choose a core count k from a set of valid core configurations (e.g., 2, 4, 8, 
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16, 32). For every pair (simulation, core count), three quantities matter: throughput (THPi(k)), 

simulation time (STi(k)), and utility (UTLi). RATS tackles two optimization problems. First, it 

chooses, for each simulation, the “sweet-spot” number of cores—the value of k where 

doubling the cores from k/2 to k still yields a good throughput ratio but avoids diminishing 

returns. Second, if not all simulations can be started at once due to capacity constraints, it 

must schedule the simulations in time, subject to a global core capacity cap, so that the total 

completion time is minimized and high-utility treatments tend to finish earlier. This second 

problem is formulated as a multiple-choice knapsack: for each simulation, exactly one 

(simulation, k) choice is picked, and the sum of assigned cores at any time cannot exceed the 

capacity cap. 

To solve these optimization problems, RATS needs good predictors for throughput, simulation 

time, and utility. It cannot, however, afford to run all 2,560 configurations just for training. 

Instead, employs Bayesian Optimization (BO) with Gaussian Process (GP) regressors. The RATS 

Modeler component uses a small simulation budget N (5% or 10% of all 2,560 configurations) 

and iteratively selects new configurations to benchmark by maximizing an acquisition 

function over the {TNF, cores} space. Each new micro-benchmark yields observations of 

throughput, simulation time, and utility; these are used to update three GPs, one per target. 

Practically, RATS uses a Rational Quadratic kernel (which empirically captured the variability 

of tumour simulations best), no explicit warm-up set, and only two acquisition functions: an 

LCB-type function for throughput and an EI-type function for simulation time, with utility 

modelled passively. This design dramatically reduces the number of required sample 

simulations without sacrificing GP accuracy, enabling useful models from as little as 5–10% of 

the configuration space. 

Once the regressors are trained, the RATS Solver uses them to make decisions. For each 

simulation, it queries the throughput model over all allowed core counts and picks the k that 

maximizes a throughput-ratio-based objective, effectively identifying the optimal core 

allocation per simulation. This defines both the optimal core hours if all simulations are 

launched at once and their expected individual completion times. If the total number of cores 

required exceeds the available capacity, the RATS Solver turns to the second optimization 

stage. It first queries the utility regressor to obtain an expected utility for each simulation and 

sorts the simulation queue in descending utility. Then, in rounds, it solves a multiple-choice 

knapsack: it chooses a subset of simulations and core counts that fit within the capacity cap, 

favouring high utility and shorter simulated runtimes. The chosen simulations are submitted 

and, later on, once they complete, capacity is freed, and the solver iterates until all 

simulations are processed. 

Using a ground-truth dataset of 2,560 simulations on MareNostrum 4 as reference, in [REF-

14] and Deliverable D5.1, we show that with N = 10% (256 sample simulations), RATS 

approximates the optimal core hours within 3–9% error, while with N = 5% (128 samples), the 

error is around 10–18%. Under strict capacity constraints (cap = 5%|SS|), RATS matches the 

“Optimal” scheduling solution: it reduces total simulation time by up to four days in resource 

constrained environments and core hours by up to 15% to less constrained setups, compared 

to the best manual baseline (always using a fixed core count), while also achieving higher 
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aggregate utility. These results justify the core design of RATS as a data-efficient, BO-driven 

resource allocator and scheduler for a single tumour study. 

6.2.2 RATS+ Exploiting Transfer Learning 

In practice, life scientists rarely run a single, fixed study. As early results come in, they may 

adjust TNF parameter ranges based on emerging hypotheses. For instance, after studying TNF 

concentrations in a certain range with a given step, they may suspect that higher doses could 

be more effective and extend the range to concentrations beyond this interval. The new 

study’s domain therefore overlaps with, or fully contains, the old one. If RATS treated each 

study independently, it would have to re-run Bayesian Optimization from scratch on the 

expanded domain, wasting the simulations already executed in the previous study. RATS+ is 

introduced specifically to avoid this waste. Its goal is to reduce the new-study simulation 

budget N, reusing the BO models learned in the old study, without sacrificing the quality of 

the regressors. 

The enhanced EVENFLOW contribution involves RATS+ [REF-15], which recasts this scenario 

using transfer-learning. It defines a source domain DS: a subset SS' of the original simulation 

set SS with its own ranges for TNF frequency, duration, and concentration and full core 

configurations, and a target domain DT: the new, expanded SS, which partially overlaps or 

fully contains the source domain. The learning task T is the same in both domains: predict 

throughput, simulation time, and utility for any {TNF, cores} configuration. RATS in the source 

domain has already trained GP regressors for these targets using BO. The question is how to 

transfer these regressors to the target domain to reduce the number of new micro-

benchmarks needed there. RATS+ follows a modular approach: it first trains regressors on DS 

(as in RATS), then replays the BO calls made in DS as the initial calls in DT. This effectively seeds 

the target-domain optimizer with the source domain’s GP, while leaving freedom for BO in DT 

to explore new parameter regions that did not exist in SS'. 

RATS+ operates under the same total budget N as RATS but splits it between source and target 

domains. Two main configurations are used experimentally: RATS+ (N = 3% + 2%), total N = 

5%, where roughly 3% of the 2,560 configurations are sampled in the source domain and 2% 

in the target, and RATS+ (N = 6% + 4%), total N = 10%, where about 6% are sampled on the 

source domain and 4% on the target. In both cases, about 60% of the total budget is spent on 

the source domain and 40% on the new target domain. For comparison, we also consider 

RATS trained from scratch on the target domain with N = 10%, 5%, 4%, or 2%. A key practical 

decision is the choice of acquisition functions. For the original RATS Modeler in the source 

domain, Lower Confidence Bound (LCB) is used for throughput to ensure good mid-range 

exploration. For the extended RATS+ model in the target domain, Expected Improvement (EI) 

is preferred. The intuition is that uncertainty is highest in the newly introduced parameter 

regions; EI naturally directs sampling there, while still exploiting high-mean predictions 

inherited from the old domain. 

6.2.2.1 RATS+ Experimental Highlights 

The first RATS+ experiment [REF-15] assesses how well it can estimate the total optimal 

number of core hours needed to run all simulations in the extended study, compared to the 
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optimal baseline. Six configurations are evaluated: RATS trained from scratch on the target 

domain with N = 10%, 5%, 4%, and 2%, and RATS+ with transfer using N = (6% + 4%) and N = 

(3% + 2%). The crucial observation is that RATS+ (6% + 4%) and RATS (10%) converge to the 

optimal solution with comparable accuracy, and RATS+ (3% + 2%) and RATS (5%) also behave 

very similarly, both achieving near-optimal performance. However, from the perspective of 

new simulations in the extended study, RATS (10%) uses 10% of 2,560 configurations (256 

simulations) in the new domain, whereas RATS+ (6% + 4%) uses only about 4% (roughly 102 

simulations) in the new domain. Similarly, RATS (5%) uses 128 new simulations, while RATS+ 

(3% + 2%) uses only about 51 new simulations. In both cases, RATS+ cuts the new-study 

budget by roughly 60% while achieving essentially the same accuracy in total core-hour 

estimation as its full-budget RATS counterpart. 

The second RATS+ experiment embeds transfer learning into the full RATS pipeline, including 

capacity constraints. Two capacity settings are considered: cap = 5%|SS| (strict) and cap = 

25%|SS| (moderate). For each cap, we measure how many simulations have completed over 

time, the aggregate utility of completed simulations over time, and how close the total 

execution time is to the optimal schedule. Across both capacities, all RATS and RATS+ 

configurations closely track the optimal completion time curve. More importantly, the 

aggregate utility curves show that RATS+ (6% + 4%) is almost indistinguishable from RATS 

(10%), and RATS+ (3% + 2%) is almost indistinguishable from RATS (5%), in terms of how 

quickly high-utility simulations are completed and how much utility is accumulated over time. 

This confirms that transfer learning does not distort scheduling decisions: with fewer new 

simulations, RATS+ still identifies and prioritizes the same promising treatment 

methodologies as a freshly trained, full-budget RATS model on the new domain. 

We also compare the RATS GP regressors to Tabular Q-Learning and DQN under identical 

budgets (up to 256 episodes). As shown in [REF-15], Tabular Q-Learning fails to learn 

meaningful predictions. DQN improves but does not converge. By contrast, the GP models 

steadily reduce L1 error and drive correlation coefficient R² towards 1, supporting the choice 

of BO/GPR as the model that RATS and RATS+ transfer across studies.  

Second, we design a scheduler inspired by Flux [REF-16], which uses a utility-sorted queue 

with dynamic core assignment and backfilling. Even when this baseline is given oracle 

knowledge of the true utilities, RATS’ knapsack-based solver completes all 512 simulations 

tens to hundreds of hours earlier and with higher aggregate utility under both strict and 

moderate capacity caps. These comparisons make clear that the performance gains observed 

with RATS+ stand on top of an already strong modelling and scheduling foundation. 

6.3 Synopses and Smart Sync for the Infrastructure Lifecycle 

Assessment Use Case 

6.3.1 The Reverse Random Hyperplane Projection Scheme 

In Wireless Sensor Networks (WSNs), as those deployed in EVENFLOW’s Use Case III for 

Infrastructure Maintenance, the dominant energy cost is communication. Before reaching the 

point of performing neural or neurosymbolic tasks at a central base station, communication 
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burden is incurred while collecting data from sensors to the base station. Sensors 

continuously produce streams by sampling quantities of interest from their realm, usually 

organized over fixed-size windows. Continuously transmitting all raw time series to a base 

station is expensive in terms of both bandwidth and battery life. Existing data compression 

approaches either rely on non-reversible random hyperplane projection (RHP) [REF-21][REF-

22], which produces compressed bitmaps only suitable for similarity and outlier detection, or 

on reversible transforms such as DFT, DWT, DCT, and PAA [REF-17][REF-18][REF-19][REF-20], 

which can provide looser, deterministic error guarantees. In EVENFLOW, we introduce 

Reverse Random Hyperplane Projection (RRHP) [REF-23], which is designed to inherit the 

strengths of both lines of existing work on lightweight, reversible summaries. RRHPS uses 

RHP-style bitmaps for in-network compression, but also provides a principled way to 

reconstruct approximate real-valued vectors at a base station, together with explicit 

probabilistic (instead of deterministic) guarantees on the approximation of the original time 

series. In that, neural learning or broader data mining tasks can be performed on the 

approximated sensor time series.  

The starting point for RRHP is the traditional RHP. Each window of sensor readings is modelled 

as a vector u ∈ ℝ ω (ω denotes the window size). RHP constructs d random unit vectors r₁, …, 

rd ∈ ℝ ω. Each rk defines a hash function that maps u to one bit according to the sign of the 

dot product: 

ℎ𝑟𝑘
(𝑢) = {

1, 𝑖𝑓 𝑟𝑘 ⋅ 𝑢 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

A bitmap 𝑋𝑢 ∈ 0,1𝑑 is formed by concatenating these d bits. For two vectors u and v with 

angle θ(u, v), the probability that they collide on a random hyperplane is: 

𝑃[ℎ𝑟(𝑢) = ℎ𝑟(𝑣)] = 1 −
𝜃(𝑢, 𝑣)

𝜋
 

Equivalently, the normalized Hamming distance between 𝑋𝑢 and 𝑋𝑣 approximates θ(u, v)/π. 

As such, RHP offers a one-way mapping ℝ𝜔 → 0,1𝑑 useful for similarity estimation, but it does 

not provide a way to reconstruct u from 𝑋𝑢. 

RRHP [REF-23] augments RHP with a reverse mapping. All motes and the base station share a 

common random matrix 𝑅 ∈ ℝ𝜔×𝑑 produced using a different, but equal seed for each time 

window. The columns of R are the random unit vectors r₁, …, rd. For each window/vector u, 

RRHP can conceptually compute the projected vector 𝜉 = 𝑢 · 𝑅 ∈ ℝ𝑑  and then quantize it to 

a bitmap 𝑋𝑢 via the above sign test. Only 𝑋𝑢 (d bits) is transmitted by each sensor. 

For reasonably large ω, R has full row rank almost surely, so a right inverse 𝑅† ∈ ℝ𝑑×𝜔 exists. 

At the base station, RRHP reconstructs an approximate vector: 

𝑢̂ = 𝑋𝑢 · 𝑅† 

The key property is that angular similarities are preserved (in expectation) through 

compression and reconstruction. If θ(u, v) is the angle between original vectors and θ(û, v̂) 

the angle between their reconstructions, then RRHP shows that [REF-23]: 
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𝐸 [
𝜃(𝑢,𝑣̂)

𝜋
] =

𝜃(𝑢,𝑣)

𝜋
. 

Thus, the cosine similarity 𝑐𝑜𝑠(𝜃(𝑢, 𝑣)) is approximately preserved. Since many measures 

such as Pearson correlation and Euclidean distance on normalized vectors can be expressed 

via cosine similarity, RRHP can support generic mining tasks on the reconstructed vectors 𝑢̂. 

RRHP provides a Chernoff-style bound that relates the bitmap length d with the quality of 

angle estimation. To approximate the normalized angle between two vectors within an 

additive error ε with probability at least 1 − δ, it suffices to choose d proportional to 

log(1/δ)/ε². Thus, RRHP exposes a direct and tuneable trade-off between compression ratio 

and relative distance /reconstruction accuracy. 

6.3.1.1 RRHP Experimental Evaluation 

We tested RRHP on two settings. Initially we conduct experiments, examining the 

reconstruction quality of RRHP on several Machine Learning tasks (including neural learning), 

with compression ratios of 4 and 8. For stress testing RRHP on a high number of sensors, we 

use the Intel Lab Dataset7 for clustering tasks and the Pump Sensor Dataset8 for regression 

and classification.  

Table 2: RRHP performance on various Machine Learning tasks, under a compression ratio of 
8, over the reconstructed sensor time series, varying window sizes. 

Window 𝝎  16 32 64 128 Average per 
Metric 

Feed Forward 
Neural Net 

0.92 0.97 0.98 0.99 Classification 
Accuracy 

DBSCAN 
Clustering 

0.95 0.96 0.97 1.00 Clustering 
Similarity on 
Adjusted 
Rand Index 
(ARI) 

Linear 
Regression 

0.12 0.12 0.12 0.07 Root Mean 
Square Error 

Support Vector 
Machine 

0.92 0.97 0.98 0.99 Classification 
Accuracy 

K-NN 0.83 0.96 0.98 0.99 Classification 
Accuracy 

 

In our first experiment we showcase the accuracy of RRHP across different window sizes, on 

various mining tasks, by compressing sensor windows by a factor of 8, i.e., compression ratio 

is 8. In Table 2, we can see that the performance of RRHP significantly increases when we 

 

7 https://db.csail.mit.edu/labdata/labdata.html  
8 https://www.kaggle.com/datasets/nphantawee/pump-sensor-data  

https://db.csail.mit.edu/labdata/labdata.html
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
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increase the window from 16 to 32 observations but, in all cited cases, RRHP yields high 

accuracy with respect to the metrics cited in the rightmost column of the table.  

We also provide a comparison of RRHP vs DFT, DCT, DWT and PAA reversible data summaries, 

indicatively, for clustering sensor time series. This experiment tests RRHP on a clustering task, 

across sliding windows using the Intel Lab Dataset and reports the Adjusted Rand Index (ARI) 

score with 95% confidence interval. In Figure 47, we tested compression ratios of 4 and 8 

across two rows of plots. As we can see in the figure, RRHP outperforms competition by, on 

average, 20% on both compression ratios, regarding the ARI score of the clustering task. Note 

that RRHP achieves also the tightest 95% confidence interval. 

 
Figure 47: RRHP Performance on Clustering vs other Competitors. 

We then conduct a WSN simulation, examining RRHPs ability to prolong the lifetime of 

sensors in a real scenario, using the TOSSIM simulator [REF-24]. The hierarchical network 

tested consists of 4 cluster heads with 12 sensors per cluster. The communication and lifetime 

gains plotted below hold irrespectively of the chosen Machine Learning task, since the task 

itself takes place at the base station after having collected the compressed sensor data 

streams and having recovered the RRHP-approximated ones. 

In Figure 48, we see the total number of bytes that are transmitted during the simulation, 

including the ones of retransmissions. In Figure 49, we plot the total energy drain of the 

setups of Figure 48, essentially interpreting the communication costs to network lifetime. 

Retransmissions occur when multiple motes transmit their messages simultaneously, 

therefore resulting in corrupted messages due to collisions. Large message size and frequent 

communication are the main culprits of signal retransmissions. We observe that the 

compression ratios of 4 and 8, reduce the total number of bytes transmitted and the energy 

drain by 5 and 10 times, respectively. This increased reduction, compared to the theoretically 
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expected reduction of 4 and 8 on both cases, is the combined result of the reduced message 

size of RRHP due to compression, and the reduced number of message collisions and 

retransmissions. 

 
Figure 48: RRHP Comm. Reduction vs 

Compression Ratio using ω = 16. 

 
Figure 49: RRHP Network Lifetime vs 

Compression Ratio using ω = 16. 

6.3.2 Uncertainty-aware Synchronization Protocols  

In Section 3.5 we presented data-driven synchronization protocols that postpone a global 

model update until a considerable drift in the neural network weights, defined based on any 

given thresholded function, may exist. However, in EVENFLOW’s Use Case III, the 

Infrastructure Maintenance Monitoring utilizes sensors which produce uncertain 

measurements, for instance, due to noise or calibration errors.  

This uncertainty passes on to the weights of the neural network of the various distributed 

learner during the training process. Therefore, instead of monitoring whether a function f 

parameterized by the global weight vector has crossed the threshold, we instead want to 

know if f has crossed the threshold with sufficiently high confidence, provided we know the 

uncertainty distribution of learners’ weights.  

The Uncertainty-aware Global Monitoring (UGM) method addresses the problem of 

continuously monitoring a non-linear function over many distributed data streams whose 

values are uncertain. Each learner 𝑁𝑖 produces a local data stream 𝑆𝑖, modelled as a time-

varying random variable 𝑥𝑖(𝑡) with its own distribution 𝑝𝑖(𝑡). The Parameter Server (PS) 

wants to monitor a global function f(y(t)) of all streams and automatically raise an alert when 

f(y(t)) crosses a threshold T with high statistical confidence, while minimising communication. 

To this end, each learner maintains a sliding window of recent observations, from which it 

estimates the parameters of its local distribution 𝑝𝑖(𝑡) (e.g., empirical mean and covariance). 

Learners are assigned weights 𝑤𝑖 ≥ 0 with ∑ 𝑤𝑖𝑖 = 1, and the global random vector at time t 

is 𝑦(𝑡) = ∑ 𝑤𝑖𝑥𝑖(𝑡)𝑖 . The monitoring task is to decide, at any time t, whether f(y(t)) ≶ T holds 
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with confidence at least δ, without continuously transmitting raw data or full local models to 

the Parameter Server. Since the techniques we describe henceforth are currently under 

submission, we provide only algorithmic sketches of their functionality. 

In a centralized setting, the monitoring condition can be expressed as the global filter 

Pr[f(y(t)) ≶ T] ≤ δ, which guarantees that an alert is raised only when the probability of 

violating the threshold exceeds δ. However, evaluating this global filter centrally would 

require frequent updates from all learners. UGM decomposes the global filter into local filters 

that can be evaluated independently at each learner. The PS periodically synchronises with 

the learners at times 𝑡𝑠 and computes the global average vector 

𝑒(𝑡𝑠) = ∑ 𝑤𝑖𝑜𝑖(𝑡𝑠)𝑖 , where 𝑜𝑖(𝑡𝑠) is the last local average vector sent by learner i. Around this 

point, the coordinator constructs a convex “DONT-region” in the global feature space: a 

region that contains only “good” points, i.e., points where f(y(t)) is guaranteed to satisfy the 

monitored inequality with high confidence. As long as y(t) remains inside this DONT-region 

with sufficient probability, the global filter is satisfied and no alert is needed. The key design 

is to choose the DONT-region so that (i) it is convex, enabling rigorous decomposition into 

local conditions, and (ii) it is as large as possible, so that communication is reduced. 

We instantiate the DONT-region as a d-dimensional ball 𝐵(𝑀, 𝑟) = 𝑥 ∈ 𝑅𝑑: ||𝑥 − 𝑀||
2

≤ 𝑟 in 

the global feature space. The ball is constructed via a greedy sphere augmentation process: 

starting from a conservative initial ball around the current global mean, we iteratively 

increase its radius and slightly shift its center, as long as we can still guarantee that all points 

inside remain “good” (i.e., they satisfy the monitored inequality f(x) ≶ T). The procedure stops 

when any further inflation or shift would introduce points that might violate the constraint. 

The resulting ball is a maximal convex DONT-region that can be safely decomposed into local 

filters at the individual nodes. 

If no non-trivial sphere that contains only good points exists (e.g., when the global mean 

already lies near or beyond the threshold), the method enters a NO-SPHERE period; in this 

case, learners temporarily send updates eagerly, without local filtering. 

Given the DONT-region, each learner 𝑁𝑖 evaluates a local filter that decides whether to raise 

an alert. The learner maintains a set of drift vectors 𝐷𝑖(𝑡) that describe how its local 

distribution, translated near the last global mean, might move in the global space. Concretely, 

each drift vector has the form 𝑑𝑗
𝑖(𝑡) = 𝑒(𝑡𝑠) − 𝑜𝑖(𝑡) + 𝑧𝑗, where 𝑧𝑗 is a sample drawn from 

the current local distribution 𝑝𝑖(𝑡). Each learner holds m such drift vectors per time t. 

At time t, learner i estimates the probability that its local contribution keeps the global vector 

inside the DONT-region by counting the fraction of drift vectors that fall inside the sphere: 

𝑝𝑖(𝑡) = # {drift vectors in don’t-region} / m. 

Each learner is associated with a confidence threshold 𝛼𝑖 ∈ [0,1]. If 𝑝𝑖(𝑡) falls below 𝛼𝑖, 

learner i has strong evidence that the global function may have crossed the threshold and 

sends an alert to the coordinator; otherwise, it remains silent. Initially, all learners share the 

same 𝛼𝑖, derived from δ and |N|, ensuring that if all local filters hold, then the global filter 

also holds. When the PS receives an alert from one or more learners, it distinguishes between 
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true positives (TP), where f(y(t)) has indeed crossed the threshold, and false positives (FP), 

where local filters were overly conservative. Only TP alerts trigger an application-level 

reaction (e.g., reconfiguration, mitigation). 

As the number of learners grows, having a uniform confidence threshold 𝛼𝑖 can become 

overly strict, causing excessive alerts and communication. A Slack Allocation mechanism 

dynamically redistributes “slack” among learners by adapting their local thresholds 𝛼𝑖 after 

each synchronisation, based on their recent behaviour. 

Learners are partitioned into GOOD and BAD sets depending on the last alert: 

• In the FP case, learners that raised unnecessary alerts are marked as BAD, and learners 

that remained silent are GOOD. The coordinator computes a slack measure for each 

GOOD learner, reflecting how comfortably its local probability 𝑝𝑖(𝑡) was above its 

threshold 𝛼𝑖. It then gradually lowers the thresholds of BAD learners (making them 

less sensitive) and compensates by slightly raising the thresholds of selected GOOD 

learners, preserving a global probabilistic guarantee. 

• In the TP case, learners that failed to alert in time are BAD, while learners that correctly 

alerted are GOOD. A symmetric slack definition is used, and thresholds are adjusted 

in the opposite direction, making BAD learners more sensitive. 

This iterative procedure continues until all learners satisfy the global constraint on the joint 

probability of violation. In practice, Slack Allocation significantly reduces communication by 

allowing learners whose behaviour is well contained within the DONT-region to take on 

stricter thresholds, freeing other learners to relax theirs. 

6.3.2.1 UGM Experimental Evaluation 

For our experiments we utilize a 10-sensor dataset provided by EKSO using 5 computing 

nodes. We monitor L1, L2 and Variance functions posing the threshold as shown in Figure 50 

and Figure 51. In each experiment we present 5 bars with the vertical axis showing the 

number of transmitted messages, while the horizontal axis varies δ:  

• Naïve: representing continuous model updates 

• Sphere Max Off, Slack Allocation Off: which is the basic UGM protocol without any 

optimization 

• Sphere Max On, Slack Allocation Off: the protocol that uses the maximal, augmented 

sphere according to our discussion in Section 6.3.2, but does not perform wise Slack 

Allocation 

• Sphere Max On, Slack Allocation On: the protocol that uses both the maximal 

augmented sphere and performs wise Slack Allocation 
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Figure 50: L1 function (left) and L2 function (right) Threshold (red line) vs actual function 

values as time passes. 

 

   

Figure 51: Variance Threshold Selection based on Sensor violations. 
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Figure 52: Number of transmitted messages for L1-based monitoring across δ values. 

 

Figure 53: Number of transmitted messages for L2-based monitoring across δ values. 
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Figure 54: Number of transmitted messages for Variance-based monitoring across δ values. 

Across Figure 52, Figure 53 and Figure 54 we observe that UGM “Sphere Max Off, Slack 

Allocation Off” improves the Naïve approach yielding 17% (Var) to 3x fewer messages for 

loose δ = 0.25. The communication gains progressively increase for δ=0.5 to δ=0.95, reaching 

values of reaching 10x communication gains for δ=0.95. 

“Sphere Max Off, Slack Allocation On”, “Sphere Max On, Slack Allocation Off” as well as 

“Sphere Max On, Slack Allocation On” further reduce the amount of communicated messages 

up to 50% compared to “Sphere Max Off, Slack Allocation Off”. As we can observe in the 

figures, setting On or Off some optimization may occasionally increase communication 

although more optimizations are applied. For instance, in Figure 52 for δ=0.5, setting “Sphere 

Max Off, Slack Allocation On” gives a few more messages compared to “Sphere Max Off, Slack 

Allocation Off” or “Sphere Max On, Slack Allocation On” gives few more messages compared 

to “Sphere Max On, Slack Allocation Off”. This is because, when we apply each optimization, 

the synchronization timepoints differ between experiments. Therefore, a false positive 

synchronization that happens at a specific time, changes oi and cascades the timepoints at 

which future synchronization will take place. As such, a difference series of synchronization 

timepoints may yield a slightly different behaviour in the monitoring process.  
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 EVENFLOW Verification Approach 

7.1 Formal Verification of Neural Networks 

Deep neural networks have become the dominant paradigm for modelling complex functions 

across vision, language, control, and decision-making tasks. Their power stems from the 

universal approximation property [REF-27]: with sufficient capacity, a neural network can 

approximate virtually any continuous function to arbitrary precision. Yet, this expressive 

capability comes with a fundamental drawback—the internal workings of neural networks are 

opaque and highly nonlinear, making it difficult to reason about how they will behave under 

perturbations, distribution shifts, or intentionally manipulated inputs. Even small amounts of 

noise, such as adversarial perturbations or sensor uncertainty, can cause unexpected 

deviations in the network’s output.  

A neural network represents a mapping 𝑓: ℝ𝑛 → ℝ𝑚, taking real-valued inputs and producing 

real-valued outputs. While this functional view is mathematically elegant, it does not provide 

direct insight into the internal decision logic learned during training. Formal specifications 

describe what the network should do for all possible inputs within a given domain. These 

properties capture the intended safe or acceptable behaviour of the system without requiring 

explicit interpretability of its internal parameters. A property is considered satisfied when the 

network is guaranteed to behave safely for every input in a defined set, not just for those 

seen during testing. 

Formal verification aims to provide provable guarantees about network behaviour over all 

possible perturbations within a defined region (e.g., an ℓ∞-ball around an input). Ensuring 

the robustness of neural network classifiers involves demonstrating that the model’s 

predicted label does not change when its input is perturbed within a small region of radius 𝜖 

[REF-52]. Formal verification methods address this by reasoning over all possible inputs within 

this perturbation region, effectively providing mathematical certificates that guarantee 

robustness. For a neural network 𝑓, the robustness requirement can be stated as follows: for 

any input 𝑥 that the network classifies correctly, and for every perturbed input 𝑥′satisfying 

∥ 𝑥 − 𝑥′ ∥≤ 𝜖, the prediction must remain unchanged, i.e., 𝑓(𝑥) = 𝑓(𝑥′). 

This verification problem can be reduced to analysing the relationships between the 
unnormalized outputs (logits) of the network’s final layer. Specifically, robustness around 𝑥is 
guaranteed if, for every 𝑥′in the 𝜖-ball, the logit for the true class 𝑦trueexceeds the logits for 
all other classes 𝑦𝑖by a positive margin: 

𝑦true − 𝑦𝑖 > 0 for all 𝑖 ≠ true class. 

Checking this requires computing the minimum of these logit differences over all possible 

𝑥′within the perturbation set. If this minimum remains positive, the classifier is provably 

robust for that radius 𝜖 [REF-29]. However, computing this minimum exactly is an NP-hard 

optimisation problem [REF-30], which makes robustness verification computationally 

challenging in practice. 
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7.2 Scalable approach towards Probabilistic Neuro-Symbolic 

Verification 

Neuro-symbolic (NeSy) systems bridge deep neural networks with symbolic reasoning to 

achieve generalization, interpretability, and structured inference. In probabilistic variants of 

these systems, neural networks extract latent concepts from raw inputs, and a symbolic 

reasoning layer performs probabilistic inference using logical constraints. For probabilistic 

NeSy AI architectures [REF-28], formal verification is even more difficult, as the symbolic 

component requires evaluating weighted model counts (WMC) over latent concept 

probabilities. 

7.2.1 Probabilistic Neuro-Symbolic Verification 

We now formalize the goal of relaxation-based methods within neuro-symbolic (NeSy) 

reasoning systems. For a given NeSy model, as introduced in Section 7.1, the objective is to 

determine the following quantities: 

min 
𝑥′

 𝑝(𝑦𝑖 ∣ 𝑥′), max 
𝑥′

 𝑝(𝑦𝑖 ∣ 𝑥′)  for all 𝑥′ such that ∥ 𝑥′ − 𝑥 ∥≤ 𝜖  

 

for every output label 𝑦𝑖in 𝑦. In other words, we seek to compute tight lower and upper 

bounds on each probabilistic output of the NeSy system when its input is subject to 

perturbations of radius 𝜖. As outlined in Section 7.1, these bounds can then be used to 

formally evaluate the robustness of a particular input instance. 

 

Figure 55: Probabilistic NeSy Verification illustrating the Verification of NeSy system trained 
on the ROAD-R dataset. The symbolic constraints are encoded as an Arithmetic circuit. 

To illustrate, consider the NeSy architecture shown in Figure 55. Its neural components 
consist of two networks: (1) an object detector that identifies whether a red traffic light or a 
car is present in front of an autonomous vehicle (AV), and (2) an action-selection network that 
decides whether the AV should accelerate or brake. The symbolic component encodes a 
conjunction of two logical constraints, detailed in Appendix A. For an input image 𝑥, the 
system outputs 𝑦, representing the probability that these symbolic constraints are satisfied.  

An input instance is deemed robust if 
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min 
𝑥′

𝑝(𝑦 ∣ 𝑥′) > 𝑇, 

for some threshold 𝑇 ∈ [0,1]. This condition states that, across the entire 𝜖-ball surrounding 

𝑥, the probability of satisfying the symbolic constraints never drops below 𝑇. For the purposes 

of the remainder of this work, we focus on the case 𝑇 = 0.5. 

7.2.1.1 Relaxation-Based Approach  

Because computing exact bounds through the compiled symbolic component is 

computationally intractable, we turn to relaxation-based methods. These techniques can be 

naturally extended to neuro-symbolic (NeSy) systems and offer a scalable pathway for solving 

the equation in Section 7.2.1. 

In the NeSy architectures, the neural network outputs serve as inputs to an arithmetic circuit. 

Owing to this compositional structure and the algebraic nature of the circuit, the entire NeSy 

model can be treated as a fully differentiable computational graph. This enables us to 

implement the whole system as a single module within common machine learning 

frameworks such as PyTorch. The resulting model can then be exported into the Open Neural 

Network Exchange (ONNX) format [REF-31].  

The ONNX format is widely supported by state-of-the-art neural network verification tools, 

including solver-based systems such as Marabou [REF-32] and relaxation-based verifiers like 

auto-LiRPA [REF-33] and VeriNet [REF-34]. By exporting a NeSy model to ONNX, we can 

leverage these tools with minimal additional engineering effort, effectively enabling “plug-

and-play’’ verification of complex neuro-symbolic pipelines. 

Although the framework is compatible with a broad range of verifiers, the focus is on 

relaxation-based methods to demonstrate scalable probabilistic verification for NeSy 

systems. These methods allow us to apply input perturbations and compute bounds directly 

on the system’s final outputs—bypassing the need to derive intermediate bounds on 

individual neural network components. 

7.3 Experimental Evaluation 

In this section, an empirical evaluation of the proposed verification framework is presented, 

focusing on both its effectiveness and practical applicability. The scalability of the method is 

first examined using a synthetic task derived from MNIST addition, a widely adopted 

benchmark in the neuro-symbolic reasoning literature [REF-35]. To further demonstrate real-

world relevance, the approach is applied to an autonomous driving dataset, where a safety-

critical driving property is verified over two six-layer convolutional neural networks. This 

experiment highlights the capability of the proposed technique to manage high-dimensional 

inputs and larger neural architectures—conditions commonly encountered in operational 

autonomous systems. All experiments were conducted on a high-performance computing 

machine equipped with 128 AMD EPYC 7543 32-core processors (3.7 GHz) and 400 GB of RAM. 

7.3.1 Multi-Digit MNIST Addition 

In this experiment, the primary objective is to examine how well the proposed method scales 

as the complexity of the symbolic reasoning component increases. As symbolic structures 

grow larger and more intricate, they naturally introduce greater computational demands; 
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therefore, understanding how our approximate verification strategy behaves under these 

conditions is crucial. The experiment is designed to shed light on two key aspects: (1) how the 

inherent approximations used in our method enable significantly improved scalability, and (2) 

what trade-offs emerge in the accuracy and tightness of the resulting verification guarantees.  

To systematically study these effects, we compare our approach against two distinct 

verification paradigms: 

1. End-to-End Relaxation-Based Verification (E2E-R): This approach corresponds to a 

direct implementation of our proposed method using auto-LiRPA, a leading relaxation-

based neural network verification toolkit. In this setting, the entire neuro-symbolic 

system—including both the neural and symbolic components—is provided as input to 

auto-LiRPA. The system is internally converted into an ONNX computational graph, 

enabling uniform processing and bound propagation across the full pipeline. We 

employ Interval Bound Propagation (IBP), as implemented within auto-LiRPA, to 

compute end-to-end bounds on the perturbed outputs. This baseline allows us to 

evaluate how a fully relaxed, approximate strategy behaves when applied to complete 

NeSy models. 

2. Hybrid Verification (R+SLV): The second baseline adopts a hybrid strategy that 

combines relaxation-based analysis for the neural modules with solver-based exact 

bound computation for the symbolic reasoning layer. More concretely, IBP in auto-

LiRPA is used to derive bounds on the outputs of the neural networks, while the 

symbolic component is processed using exact optimization. Following the 

transformation of the symbolic circuit into an equivalent polynomial representation, 

we perform constrained optimization using the Gurobi solver to compute tight 

bounds. This hybrid method serves as a point of comparison to assess the trade-off 

between computational scalability and verification precision. Contrasting this 

approach with E2E-R highlights the relative benefits of exact symbolic reasoning 

versus the efficiency of fully relaxed, approximate propagation. 

7.3.1.1 Dataset and Experimental Setup 

To examine scalability, a synthetic dataset is curated that allows precise control over the 

complexity of the symbolic reasoning component while keeping the neural architecture fixed. 

Specifically, we construct a modified version of the multi-digit MNIST addition benchmark 

[REF-35]. In this setting, each data instance is composed of several MNIST digit images and is 

annotated with the arithmetic sum of the depicted digits. By varying the number of digits 

included in each sample, we can directly manipulate the size and depth of the symbolic 

computation required; for example, in a 3-digit addition scenario, a single instance may 

consist of images such as , , and , with a corresponding label of 18. The verification 

dataset is derived from the 10,000 samples of the MNIST test set, ensuring that each image 

is used exactly once. Consequently, the number of verification instances for a given choice of 

#digits is 10,000 divided by the number of digits per sample, enabling controlled 

experimentation across symbolic complexities of increasing scale. 

The experimental setup employs a convolutional neural network (CNN) trained to classify 

individual MNIST digits. Using the full MNIST training set of 60,000 images in a supervised 
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learning setup, the model achieves a test-set accuracy of 98%. The symbolic reasoning 

component encodes the arithmetic rules governing multi-digit addition. It takes as input the 

probabilistic digit predictions produced by the CNN and infers a probability distribution over 

all possible sums. As the number of summands increases, the size and complexity of the 

reasoning circuit grow accordingly, since more combinatorial pathways exist for generating a 

given total (for example, there are multiple ways in which 2-digit, and 5-digit combinations 

can yield the sum of 17). 

To evaluate scalability under increasing symbolic complexity and varying levels of input 

uncertainty, we systematically vary both the number of digits per instance and the magnitude 

of input perturbation. Specifically, we consider five configurations for the number of digits: 

{2, 3, 4, 5, 6}, and three perturbation budgets ϵ ∈ {10⁻², 10⁻³, 10⁻⁴}, resulting in fifteen distinct 

experimental settings. Each experiment—defined by a particular (#digits, ϵ) pair—is executed 

with a timeout threshold of 72 hours. The end-to-end relaxation-based method (E2E-R) is 

executed on a single computational thread, whereas the hybrid solver-based approach 

(R+SLV) leverages the Gurobi optimizer, which dynamically allocates up to 1024 threads to 

accelerate the constrained optimization phase. 

 

Figure 56: Comparison of verification runtimes for E2E-R and R+SLV. The experiments are 
evaluated for 3 different ϵ perturbations.  

7.3.1.2 Scalability of the approaches and verification results 

Figure 56 provides a comparative analysis of the scalability of the two verification methods. 

The plot reports the average time required to verify the robustness of a single NeSy instance 

across the test dataset. All experimental configurations complete within the 72-hour timeout, 

with two notable exceptions for the R+SLV approach. Specifically, for the configurations ⟨ϵ = 

10⁻², #digits = 5⟩ and ⟨ϵ = 10⁻², #digits = 6⟩, R+SLV fails to verify any sample before the timeout, 

which explains why the corresponding curves for ϵ = 10⁻² terminate at four digits. Additionally, 

for ⟨ϵ = 10⁻³, #digits = 6⟩, R+SLV can verify fewer than 5% of the inputs; the values shown in 

Figure 56 therefore reflect the average runtime computed over this small subset. 
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As clearly illustrated by the log-scale plot, E2E-R exhibits dramatically superior scalability 

compared to R+SLV. This advantage stems from the inherent computational burden of 

performing exact bound propagation through the symbolic probabilistic reasoning 

component. For context, verifying the robustness of the CNN alone using Marabou requires 

an average of 314 seconds per sample across 100 MNIST test images—demonstrating that 

solver-based verification of even a single neural module is several orders of magnitude slower 

than our full end-to-end relaxation-based approach. 

These findings are consistent with both theoretical results [REF-36] and recent empirical 

analyses [REF-37] which highlight the limited scalability of SMT-based verification techniques. 

The experimental outcomes strongly indicate that, in the NeSy setting—where verification 

routinely involves multiple neural networks coupled with complex symbolic reasoning—the 

trade-off favouring approximate but scalable methods is not only acceptable but essential. 

We next analyse how increasing the complexity of the symbolic reasoning component 

influences the quality of the verification outcomes. Table 3 summarises two key metrics 

across different experimental configurations. First, we report the tightness of the computed 

output bounds, expressed as the lower–upper interval for the probability assigned to the 

correct sum, averaged over all samples in the test set. This metric provides insight into how 

precisely each method can characterise the behaviour of the NeSy system under 

perturbations. Second, we evaluate robustness, defined as the proportion of test instances 

for which the system remains provably robust, i.e., the number of verified robust samples 

divided by the total number of samples. Together, these metrics enable us to assess how 

symbolic complexity impacts both the accuracy and reliability of the verification process. 

Table 3: Verification method performance for MNIST digit addition at ϵ= 0.001. 

Verification 
Method 

Metric #MNIST digits 

2 3 4 5 

 
R+SLV 

Lower/Upper Bound 0.871-0.981 0.815-0.972 0.764-0.962 0.731-0.928 

Robustness (%) 90.60 86.17 81.33 78.31 

 
E2E-R 

Lower/Upper Bound 0.871-0.982 0.815-0.974 0.763-0.965 0.716-0.958 

Robustness (%) 90.60 86.11 81.21 76.67 

 

7.3.2 Autonomous driving - ROAD-R 

In this experiment, we evaluate our proposed verification framework on a real-world dataset 

drawn from the autonomous driving domain. The objective is to assess the robustness of a 

neural autonomous driving system with respect to the safety and commonsense constraints 

illustrated in Figure 55. Specifically, we aim to determine whether small perturbations to the 

input can cause the underlying neural components to violate logical constraints that were 

originally satisfied. This setting enables us to examine how well the system maintains correct 

and safe behaviour under realistic variations in sensory input, thereby providing a practical 

test of robustness in a domain where reliability is critical. 
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7.3.2.1 Dataset and experimental setup 

To conduct this evaluation, we make use of the ROad event Awareness Dataset with logical 

Requirements (ROAD-R) [REF-38]. This dataset contains 22 dashcam videos recorded from the 

perspective of an autonomous vehicle (AV), with each frame annotated using bounding boxes 

that identify agents (e.g., pedestrians), the actions they are performing (e.g., approaching the 

vehicle), and their spatial locations (e.g., on the right pavement). 

For the experiments, we restrict attention to the subset of frames that are relevant to the 

symbolic constraints. Specifically, we select only those frames that satisfy either of the 

following conditions: 

1. the AV is moving forward, and the scene contains neither a red traffic light nor a 

stopped car in front; or 

2. the AV is stationary, and either a red traffic light or a stopped car is present. 

Sampling every two seconds across the videos yields a curated dataset of 3,143 instances. 

Each sample consists of a 3 × 240 × 320 RGB image and four associated binary labels: red light, 

car in front, stop, and move forward. 

The neural component of the NeSy system includes two six-layer convolutional neural 

networks, one performing object detection and the other determining the appropriate driving 

action. Both models are trained using an 80/20 train–test split over the selected frames. The 

object detection network attains 97.2% accuracy, while the action selection network reaches 

96.3% accuracy on their respective test sets. To evaluate robustness, we perturb the test 

images using five perturbation magnitudes, ϵ ∈ {10⁻⁵, 5×10⁻⁵, 10⁻⁴, 5×10⁻⁴, 10⁻³}. 

Table 4: ROAD-R network verification results, indicating robustness for various epsilon noise. 

Metric Epsilon 

1e-5 5e-5 1e-4 5e-4 1e-3 

Robustness (%) 96.82% 92.68% 82.64% 6.21% 0.00% 

Runtime per Sample (s) 0.091 0.092 0.091 0.092 0.092 

 
Table 4 summarizes the experimental results. We report two key metrics: robustness, defined 

as the proportion of test instances that are provably robust, and the verification runtime for 

the E2E-R method. Because this task involves a relatively small symbolic arithmetic circuit 

paired with a substantially larger neural component, the computational cost and bound-

propagation error are dominated by the neural network rather than the symbolic reasoning 

module. Consequently, E2E-R and R+SLV—which differ only in how the symbolic component 

is handled—yield nearly identical outcomes, and we therefore omit the redundant R+SLV 

results from the table. As anticipated, the verified robust accuracy decreases as the 

perturbation magnitude increases. With respect to runtime, the findings further support the 

trends observed in Section 7.3.1.2: the overall verification time for our approach is largely 

insensitive to changes in the perturbation bound ϵ, underscoring its practical scalability even 

under varying adversarial budgets. 
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7.4 Complex Event Verification for Temporal Neuro-Symbolic Models 

While Sections 7.2 and 7.3 address the verification of static neuro-symbolic models, 

EVENFLOW use cases often rely on streaming data, necessitating the verification of temporal 

neuro-symbolic systems. This introduces an additional axis of complexity: time. In such 

systems, a neural network processes perception data at each time step 𝑡, extracting high-level 

attributes (symbols) that feed into a symbolic component—specifically a finite state 

automaton—which maintains state over a sequence. 

Verifying properties in this context requires unrolling the system over a time horizon 𝑇. This 

effectively creates a deep computational graph where errors and uncertainties can compound 

rapidly. A primary challenge identified in temporal verification is that standard Interval Bound 

Propagation (IBP) becomes insufficiently precise. As the system is unrolled, the coarse over-

approximations of IBP accumulate, leading to "exploded" bounds that fail to verify valid 

properties. 

7.4.1 Verification Methodologies 

To address these challenges, we move beyond simple IBP end-end verification and evaluate 

three distinct methodologies for verifying temporal neuro-symbolic systems. These 

techniques range from purely neural approaches to hybrid optimization techniques: 

1. End-to-End Verification: The entire temporal neuro-symbolic system (neural network 

+ unrolled automaton) is compiled into a single, end-to-end differentiable 

computational graph. Standard neural verification tools (e.g., auto_LiRPA) are then 

applied using IBP or CROWN (a linear bound propagation method). 

2. IBP/CROWN + Step Gurobi: This is a decomposed approach. The neural network is 

verified first using IBP or CROWN to obtain bounds on the symbolic inputs. The 

automaton verification is then handled by solving a local optimization problem at each 

time step using the Gurobi solver. Because the symbolic interaction is multilinear, the 

resulting optimization problem is quadratic. We evaluate using both Exact and Relaxed 

solving, where the latter employs McCormick relaxations to handle bilinear 

constraints. 

3. IBP/CROWN + Unrolled Gurobi: Similar to the stepwise approach, but the verification 

of the automata is constructed as one large, monolithic optimization problem covering 

the entire trace. Due to the scale of unrolled traces, this is solved only using relaxed 

McCormick constraints (Linear Programming). 

7.4.2 Evaluation Scenario: Temporal Complex Event Recognition 

To validate the proposed verification techniques, we utilize a Temporal Complex Event 

Recognition task on video sequences. This scenario is designed to stress-test temporal neuro-

symbolic reasoning by requiring the system to identify complex patterns over a stream of 

inputs. As illustrated in Figure 57, the example system is composed of the following stages: 

1. Input Stream: A sequence of standard MNIST digit images (e.g., 7, 8, 2, 1, 4). 

2. Multi-Attribute Perception: Unlike simple digit classification, the CNN here acts as a 

multi-head classifier that predicts specific semantic attributes for each frame: 
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a. Parity: Classifies the digit as Odd or Even. 

b. Magnitude: Classifies the digit into ranges: 𝑥 <  3, 3 <  𝑥 <  6, or 𝑥 >  6. 

3. Temporal Reasoning: The sequence of attribute probabilities is processed by a finite 

state automaton that monitors for a specific complex event pattern: "An even digit 

larger than 6, followed eventually by an odd digit smaller than 6, followed eventually 

by a digit smaller than 3". 

a. State S0 (Start): Loops until it detects an input satisfying 𝑒𝑣𝑒𝑛 ∧

𝑙𝑎𝑟𝑔𝑒𝑟𝑡ℎ𝑎𝑛6(e.g., digit 8), transitioning to S1. 

b. State S1: Loops until it detects 𝑜𝑑𝑑 ∧ 𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝑡ℎ𝑎𝑛6 (e.g., digit 1, 3, 5), 

transitioning to S2. 

c. State S2: Loops until it detects 𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝑡ℎ𝑎𝑛3 (e.g., digit 0, 1, 2), transitioning 

to the accepting state S3. 

Robustness in this scenario requires proving that no combination of adversarial perturbations 

across the input image sequence can alter the final acceptance/rejection decision of the 

automaton, where S3 is the acceptance state. 

 

 

Figure 57: The Temporal Complex Event Recognition evaluation scenario. A sequence of 
MNIST digits is processed by a multi-head CNN to extract semantic attributes (Parity and 

Magnitude), which trigger transitions in a finite state automaton. 

7.4.3 Experimental Evaluation of Temporal Verification 

We evaluated the robustness of these methodologies against adversarial perturbations (ϵ) 

ranging from 10-5 to 10-2. The comprehensive results are detailed in Table 5. 
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Table 5: Verification Accuracy and Execution Time for Temporal Neuro-Symbolic Systems. 

Method 
Type 

Specific 
Method 

Variation ϵ=10−5 ϵ=10−4 ϵ=10−3 ϵ=10−2 

End-to-End IBP - 50.20% 
(09s) 

44.22% 
(09s) 

20.35% 
(09s) 

- 

 
CROWN - 99.80% 

(26m) 
99.95% 
(26m) 

81.96% 
(25m) 

- 

 
CROWN-IBP - 59.05% 

(12s) 
44.22% 
(12s) 

20.45% 
(10s) 

- 

Step Gurobi IBP Exact 99.69% 
(2m) 

98.21% 
(2m) 

51.74% 
(5m) 

0.00% (2m) 

 
IBP Relaxed 99.69% 

(1m) 
98.01% 
(1m) 

51.23% 
(1m) 

0.00% (1m) 

 
CROWN Exact 100.0% 

(3m) 
100.0% 
(4m) 

99.28% 
(4m) 

86.96% 
(5m)  

CROWN Relaxed 99.95% 
(2m) 

99.95% 
(3m) 

99.34% 
(3m) 

86.81% 
(3m) 

Unrolled 
Gurobi 

IBP Relaxed 99.69% 
(1m) 

98.06% 
(1m) 

51.28% 
(1m) 

0.00% (1m) 

 
CROWN Relaxed 99.95% 

(2m) 
99.95% 
(3m) 

99.34% 
(3m) 

86.86% 
(3m)  

alpha-
CROWN 

Relaxed - - - 88.55% (3h 
41m) 

 

7.4.4 Analysis of Results 

The experimental data reveals distinct performance tiers among the verification strategies: 

• Inefficacy of IBP: Pure IBP-based methods struggle significantly with temporal depth. 

The End-to-End IBP verification accuracy collapses from ~50% at ϵ = 10−5 to ~18% at 

ϵ = 10−3. Even when combined with symbolic optimization (IBP + Step/Unrolled 

Gurobi), IBP bounds are too loose to support verification at higher perturbations (ϵ =

10−2 results in 0.00% accuracy). 

• Robustness of CROWN-based Hybrids: Using CROWN bounds results in far greater 

resilience. The CROWN + Step Gurobi (Relaxed) and CROWN + Unrolled Gurobi 

(Relaxed) approaches maintain near-perfect accuracy (>99%) up to ϵ = 10−3. At ϵ =

10−2, where IBP methods fail completely, CROWN-based unrolling retains 

approximately 86.6% verification accuracy. 

• High-Precision Trade-off: For the most demanding scenarios (ϵ = 10−2), the 

specialized alpha-CROWN + Unrolled Gurobi method achieved the highest robustness 

of 88.55%. However, this precision incurs a massive computational cost, requiring 

over 3 hours and 41 minutes compared to just a few minutes for the relaxed CROWN 

approaches. We note that we utilize the computationally intensive alpha-CROWN 

method exclusively for the largest perturbation level (ϵ = 10−2). For smaller 

perturbations (ϵ ≤ 10−3), the standard CROWN-based relaxed methods already 
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achieve near-perfect verification accuracy (> 99%), rendering the significant 

computational overhead of alpha-CROWN unnecessary. 

These results suggest that for EVENFLOW's real-time constraints, CROWN + Unrolled Gurobi 

(Relaxed) offers the most balanced trade-off, providing high robustness with execution times 

(approx. 3 minutes) that promises feasibility for scalable deployment. 
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 The SCANNV Approach for Parallel Verification 
This chapter summarises a Scalable Neural Network Verification (SCANNV) approach, a set of 

techniques that can reduce the execution time of parallel neural network (NN) verification by 

optimising (i) how an input property is split into subproblems that can be verified in parallel 

and (ii) how these subproblems are scheduled for execution. 

Most state-of-the-art verifiers expose only a coarse interface. They accept a verification 

property and internally manage subproblem generation, branching and scheduling. SCANNV 

treats such a verifier as a black box and adds a thin optimisation layer on top of it. This adds 

on layer: 

• Controls the initial input splitting: it decides how to partition the precondition of the 

property into a set of subproblems (input polytopes). 

• Uses Bayesian Optimisation (BO) to search over possible splitting strategies, using 

either verification time or internal structural metrics (ReLU stability information) as an 

optimization objective. 

• Optionally performs transfer learning of BO models across related properties on the 

same neural network, and 

As a result, the verifier receives an, expectedly, more “verification-friendly” set of initial 

subproblems and an execution order that tends to reduce overall wall-clock time. 

In our discussion, we henceforth use Venus [REF-25] as the verifier, but the SCANVV 

framework remains independent of the underlying verification tool.  

 

Figure 58: Bayesian Optimization-based Input Splitting Architecture. 

The precondition of each property is defined as an axis-aligned box over the input dimensions 

(e.g., sensor ranges, distances, angles). SCANNV introduces a splitting vector V, where each 

component Vi specifies into how many equal sub-intervals the i-th input dimension is split. 

Given a splitting vector, the Input Splitting Module: 

• Splits each input dimension into the required number of equally sized sub-intervals. 
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• Forms the Cartesian product of these sub-intervals across all dimensions. 

• Treats each resulting box (polytope) as an initial subproblem and passes the set of 

subproblems to the verifier. 

This procedure preserves the semantics of the original property (the union of all subproblems 

equals the initial input domain), but exposes a large design space of possible initial splits. 

Different splitting vectors can lead to very different verification times, even though they are 

all logically equivalent. 

8.1 Input Splitting Black-box Optimization and Transfer Learning 

SCANNV models the total verification time corresponding to a given splitting vector as a black-

box function. The objective is to find a splitting vector V that minimises this time. To do so, 

SCANNV applies Bayesian Optimisation with a Gaussian Process (GP) surrogate model, using 

an RBF kernel and a suitable acquisition function. 

For time-based optimisation, it uses a Lower Confidence Bound (LCB) acquisition with a high 

exploration parameter. This is motivated by the fact that the search space of splitting vectors 

is discrete and relatively small, but only a limited fraction (e.g., 10%–20%) of candidate splits 

can be evaluated via micro-benchmarks. Each BO iteration proposes a candidate splitting 

vector V. SCANNV generates the corresponding set of subproblems, runs a full verification on 

that set, and measures the overall wall-clock time. The GP is then updated with this pair (split, 

time), and the acquisition function is maximised again to propose the next split. After a 

predefined budget of micro-benchmarks is exhausted, the best-performing split observed so 

far is selected as the optimised initial split. This process is illustrated in Figure 58. 

 

Figure 59: BO Model Transfer Architecture. 

But this approach by itself, does not reduce verification time. This is because we do perform 

a number of parallel splits and corresponding verification tasks to acquire knowledge about 

the best-performing split. But, under the same philosophy of RATS+, having acquired 

knowledge about a property, we can then transfer the GP model to another property and 

with a minimal number of additional benchmarks we can acquire knowledge about the best-

performing input splitting for that new property. If the process continuous for a sufficiently 
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large number of queries/properties, every new property will be served by the developed BO 

Model, virtually without additional micro-benchmarks.  

 
Figure 60: Fine-Tuning of Transferred BO model. 

SCANNV therefore extends the above BO process with transfer learning across properties. A 

BO model trained on a source property is reused as an initial surrogate for a target property, 

instead of training a new model from scratch (Figure 59). Because the input domains of the 

two properties may differ, SCANNV performs a fine-tuning phase on the target property with 

a small number of micro-benchmarks (Figure 60). In this phase, the acquisition function is 

switched to Expected Improvement (EI) with a large exploration parameter to quickly adapt 

the surrogate to the new domain. This transfer can substantially reduce the optimisation cost 

for new properties, especially when the input domains overlap or are subset/superset 

relations. 
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8.2 ReLU-Based “Grey-Box” Optimisation 

 

Figure 61: Bayesian Optimization-based ReLU Monitoring Architecture. 

Beyond purely black-box optimisation, SCANNV also exploits internal information exposed by 

the verifier, in particular the stability of ReLU neurons. A neuron is considered stable on a 

subproblem if its input interval is entirely non-negative or non-positive, i.e., its activation 

pattern does not depend on the exact input within that subproblem. For each candidate 

splitting vector, SCANNV computes an average stability ratio across all resulting subproblems, 

without running full verification, but only inference on Vis. Instead of minimising verification 

time directly, SCANNV minimises this average stability ratio via BO (using EI as acquisition 

function). The ReLU-based Grey-Box operation of SCANVV is illustrated in Figure 61. 

Experimentally, we show that for UNSAT properties, this counter-intuitively leads to lower 

verification times than the heuristic currently implemented by Venus, which aims to increase 

stability. The explanation is that less stable initial regions trigger more pruning and faster 

proof of unsatisfiability in the specific parallel setup. 

8.3 SCANVV Experimental Evaluation 

SCANVV experiments are conducted on the ACAS Xu benchmark [REF-26], a widely used suite 

of 45 feed-forward ReLU networks for airborne collision avoidance. Each network has 6 

hidden layers and 300 ReLU neurons and replaces a large look-up table-based legacy system. 

Inputs include relative distances and headings of aircraft, as well as own and intruder speeds. 

Outputs are discrete advices (e.g., “clear-of-conflict”, “weak left”, “hard right”). 

The evaluations focus on a subset of the standard ACAS Xu safety properties, including 

Properties 2 and 3, resulting in 172 verification queries in total. All experiments use the Venus 

verifier in a fixed parallel configuration (two splitter processes and four worker processes), 

with internal heuristics such as the dependency analyser disabled to avoid confounding 

effects. A maximum of 243 initial subproblems is allowed (e.g., splitting each of 5 input 
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dimensions into up to 3 equal parts), as higher levels of splitting are not consistently 

manageable within memory and time constraints. 

8.3.1 Performance of BO-Based Input Splitting Optimisation 

The BO-based input splitting experiments consider two micro-benchmark budgets: (a)10% 

coverage of the splitting space (e.g., 24 BO evaluations out of 243 possible splits), and (b) 20% 

coverage (e.g., 48 evaluations). Each BO evaluation runs a full verification of all subproblems 

generated by the candidate split. Over all properties and networks, the theoretical upper 

bound of pure verification time is estimated at around three to four months of continuous 

execution, assuming no timeouts. In practice, due to time limits and early terminations, the 

effective duration is lower but remains substantial, illustrating the need for sample-efficient 

BO strategies. 

When targeting verification time as objective on property 2 across all associated networks, 

we compare the BO-selected split against a full grid search over all 243 candidate splits. The 

quality metric is the rank of the selected by BO split (1 = globally fastest). 

With 10% coverage, BO finds a valid split for 22 out of 36 queries. For these: 

• All selected splits rank within the top 50; 

• 21/22 are within the top 20; 

• 18/22 within the top 10; and 

• 12/22 within the top 5. 

With 20% coverage, BO finds a valid split for 26 out of 36 queries. For these: 

• 25/26 are within the top 20; 

• 21/26 within the top 10; 

• 12/26 within the top 5. 

These results show that even with a small fraction of the search space explored, BO identifies 

near-optimal splits in the majority of cases. 

Having acquired good knowledge on a source domain, we proceed to evaluate SCANNV on 

three transfer scenarios for the BO model: 

Subset property (Custom Property 1): whose domain is a subset of Property 2. The 

transferred model, fine-tuned with a small (e.g., 5%) budget, achieves ranks comparable to 

or better than those of a newly trained 10% model, and in several networks it even provides 

strictly better splits. 

Table 6: Solution Rank comparison between Transferred Optimizer with 5% domain 
adaptation vs a 10% Optimizer trained from scratch (Custom Property 1). 

ACAS Neural 
Network ID  

Transferred 10% 
Solution Rank 

From scratch 
10% 

3_6 3 3 

4_6 2 3 
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ACAS Neural 
Network ID  

Transferred 10% 
Solution Rank 

From scratch 
10% 

5_6 1 1 

 

Superset property (Custom Property 2): whose domain is a superset of Property 2. Again, the 

transferred + fine-tuning configuration consistently yields splits in the top ranks, often 

matching or surpassing the from-scratch BO runs. 

Table 7: Solution Rank comparison between Transferred Optimizer with 5% domain 
adaptation vs a 10% Optimizer trained from scratch (Custom property 2). 

ACAS Neural 
Network ID  

Transferred 10% 
Solution Rank 

From scratch 
10% 

3_6 2 6 

4_6 1 1 

5_6 2 2 

 

Completely Different Property (Property 3): with only partial overlap in input dimensions. 

Here the domain shift is larger. While the transferred model can perform worse than the 

newly trained one in some networks, in others it still identifies top-ranked splits.  

Table 8: Solution Rank comparison between Transferred Optimizer with 5% domain 
adaptation vs a 10% Optimizer trained from scratch (Custom property 2) 

ACAS Neural 
Network ID  

Transferred 10% 
Solution Rank 

From scratch 
10% 

3_6 216 5 

4_6 2 6 

5_6 234 3 

 

Overall, transfer remains beneficial when properties are sufficiently related (subset/superset 

or substantial overlap). In more distant cases where every dimension of a property is varied, 

a BO model developed from scratch is preferable.  

8.3.2 Impact of ReLU-Based Optimisation and Scheduling 

The ReLU-monitoring variant of SCANNV is evaluated by comparing plain Venus against Venus 

augmented with SCANNV’s ReLU-based initial split and schedule. 

For UNSAT queries of Property 2, the SCANNV-augmented configuration achieves 

approximately a 2× reduction in both total and average verification time across the relevant 

networks. Reducing the total verification time from 619 seconds to 293 seconds  

For SAT queries of Property 3, SCANNV achieves equivalent to Venus verification time, 

although the magnitude of improvement is property dependent. 
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Overall, ReLU-Based Optimisation and Scheduling seems to favour UNSAT queries, without 

harming the input splitting performance of SAT ones. Additional validation runs confirm that 

these improvements are robust and not artifacts of specific random seeds or machine 

conditions. 

Table 9: Comparison between total verification times for standalone Venus, Random Splits + 
Venus and SCANVV ReLU Monitoring 

Venus  Random Split + 
Venus 

SCANVV 

705.86 secs 731.12 secs 319.71 secs 

 

To further validate our claim, we design an experiment where we compare Venus, Random 

Splits + Venus and SCANVV ReLU-based Optimization, on Property 2. As Table 9 shows, the 

verification time of standalone Venus is comparable to Venus upon being provided initial 

random splits. On the contrary, SCANVV reduces the total verification time by more than 2 

times. 
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 Verification of Spatio-Temporal Systems 
Formal robustness guarantees for neural networks have yet to achieve broad practical 

adoption, primarily due to fundamental scalability limitations. Contemporary verification 

techniques often fail when applied to high-dimensional input spaces, either because they rely 

on overly coarse relaxations that weaken the resulting guarantees or because the exact 

verification procedures become computationally intractable. However, in domains where 

inputs exhibit inherent spatial or temporal structure—such as consecutive frames in video 

data or sequential slices in medical imaging—the effective adversarial search space can be 

substantially reduced. By constraining perturbations to respect realistic spatio-temporal 

correlations, it becomes possible to narrow the adversary’s strength and obtain more 

meaningful verification outcomes. 

In this work, we address the challenge of formally certifying adversarial robustness under such 

structured perturbation regimes. We introduce spatio-temporal bound propagation (STBP), 

a new computational technique that begins by solving a mixed-integer linear program (MILP) 

over the network’s initial layer and then propagates the resulting tight bounds through the 

subsequent layers using a combination of exact and relaxed reasoning. This hybrid design 

enables the method to capture fine-grained constraints in the early stages of computation 

while maintaining tractability throughout the network. 

Our experiments demonstrate that STBP delivers stronger certified guarantees than standard 

adversarial training and offers practical advantages over certified training approaches. 

Notably, STBP achieves more than a 1.7× improvement in robust accuracy for equivalent 

perturbation budgets, highlighting its potential to make formally verified robustness more 

achievable in realistic, temporally structured settings.  

Despite the clear value of formal certification in safety-critical machine learning, certified 

robustness techniques have seen limited practical adoption. This gap arises primarily because 

existing verification methods either (a) rely on coarse approximations that produce 

guarantees too loose to be actionable, or (b) require computational resources far beyond 

what is feasible for large-scale models. These issues become even more pronounced as input 

dimensionality increases. Approximate abstract-interpretation methods, such as interval 

bound propagation, tend to be overly conservative in high-dimensional spaces and thus fail 

to produce meaningful robustness guarantees [REF-39]. Conversely, exact verification 

approaches, such as mixed-integer linear programming (MILP), scale poorly and become 

prohibitively expensive for modern architectures [[REF-40], [REF-41], [REF-42]]. As a result, 

current verification efforts are largely restricted to low-dimensional datasets and relatively 

small neural models [[REF-43], [REF-32]]. 

To address these limitations, we propose a computational framework that leverages domain 

knowledge to impose realistic spatio-temporal constraints on input perturbations. Such 

constraints are highly relevant in domains involving video data [[REF-44], [REF-45]] or 

volumetric medical imaging [REF-46], where common verification approaches implicitly 

assume that an adversary is capable of independently perturbing video frames occurring 

milliseconds apart. In practice, adversarial manipulations—such as placing misleading traffic 
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signs or altering visual artifacts—tend to be externally induced and therefore temporally 

correlated. Likewise, sensor-induced noise exhibits well-documented spatial correlation 

patterns [[REF-46], [REF-47], [REF-48]]. Motivated by these observations, we introduce 

spatio-temporal shared interval bound propagation (S-IBP), a hybrid verification technique 

that combines the precision of MILP with the scalability of abstract interpretation. Our 

method first uses MILP to compute exact, tightly bounded perturbations at the network’s first 

layer under the given spatio-temporal constraints and then propagates these bounds through 

the remaining layers using abstract interpretation. Furthermore, by exploiting the 

differentiable components of the bound-propagation process, we formulate new training 

objectives that enable learning neural networks that are provably robust to structured spatio-

temporal perturbations. 

We conduct extensive experiments validating the effectiveness of our approach across 

diverse datasets, including UCF-101 for action recognition [REF-49], the Udacity self-driving 

car dataset [REF-51], and several medical imaging benchmarks [REF-50]. To evaluate 

robustness in a manner grounded in real-world behaviour, we construct novel spatio-

temporal verification benchmarks. For autonomous driving, we design perturbation scenarios 

that identify plausible regions in each frame where adversarial elements—such as spoofed 

road signs or artificial bumper stickers—could be introduced. For medical imaging, guided by 

known sensitivity patterns in MRI acquisition, we develop procedures that generate spatio-

temporal perturbation constraints aligned with realistic acquisition errors. 

Our results demonstrate that, under these structured robustness specifications, S-IBP enables 

the training of neural networks with certified robustness an order of magnitude higher than 

that provided by standard adversarial training. Moreover, when compared with existing 

certification-based training approaches calibrated to the same robustness thresholds, our 

method achieves over 30% higher accuracy on clean data, indicating substantial practical 

utility. Beyond these performance gains, we also conduct a systematic analysis of widely used 

spatio-temporal neural architectures, characterizing the extent to which they can be made 

provably robust to realistic perturbation patterns. 
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Figure 62: Overview of Spatio-Temporal Bound propagation. 

Figure 62 illustrates the overall architecture of the Spatio-Temporal Bound Propagation 

(STBP) framework. In this setup, adversarial patches are generated using a YOLO-based 

pipeline, which provides realistic, structured perturbations aligned with the spatial and 

temporal characteristics of the input domain. STBP achieves tight robustness guarantees by 

applying linear programming to the network’s first layer, enabling the computation of highly 

precise bounds at the point where perturbations first enter the model. For the subsequent 

layers, where exact methods would be computationally prohibitive, the framework 

transitions to more efficient relaxation techniques—specifically Interval Bound Propagation 

(IBP)—to propagate the bounds forward through the network. This hybrid strategy balances 

tightness and scalability, ensuring that STBP captures fine-grained adversarial constraints 

without incurring the full cost of exact verification across the entire architecture. 

9.1 Spatio-Temporal Bound Propagation Method 

We consider a supervised learning setting in which a model 

𝑓: ℝ𝐶×𝐻×𝐿 → 𝒴 

maps an input tensor 𝐱 ∈ ℝ𝐶×𝐻×𝐿to an output in a label space 𝒴. Here, 𝐶denotes the number 

of channels, 𝐻the spatial resolution, and 𝐿the temporal or sequential dimension, such as 

video frames or stacked imaging slices. The model 𝑓is typically instantiated as a deep neural 

network composed of alternating affine transformations and nonlinear activations. We 

assume a data distribution 𝒟over input–label pairs (𝐱, 𝑦) ∈ ℝ𝐶×𝐻×𝐿 × 𝒴, and our goal is to 

verify not only the model’s behaviour at individual data points, but its behaviour over entire 

neighbourhoods defined by allowable perturbations. 

To formalize this, we define an input specification 𝑇(𝐱) ⊆ ℝ𝐶×𝐻×𝐿capturing the set of 

perturbed inputs considered semantically equivalent to a given 𝐱. Robustness verification 
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aims to show that the model’s predicted label remains invariant across this set. Specifically, 

we seek to prove that 𝑓(𝐱′) = 𝑓(𝐱)for all 𝐱′ ∈ 𝑇(𝐱). 

A certificate of this form constitutes a formal guarantee that the network is robust to all 

perturbations permitted by the specification. However, verifying such guarantees becomes 

increasingly challenging in high-dimensional spatio-temporal domains, where existing 

methods struggle to propagate tight bounds through deep architectures. This motivates the 

development of new verification techniques that can exploit structured spatial and temporal 

dependencies in the input. 

9.1.1 Modelling Spatio-Temporal Constraints 

We next introduce a mixed-integer linear programming (MILP) formulation to compute tight, 

certified bounds on the activations of the first layer under structured perturbations. Let 

𝐱 ∈ ℝ𝐶×𝐷×𝐻×𝑊 

be a four-dimensional input tensor and let 

𝑇(𝐱) ⊆ ℝ𝐶×𝐷×𝐻×𝑊 

denote the set of admissible perturbed inputs constrained to satisfy realistic spatio-temporal 

coherence. Let 𝜹 ∈ ℝ𝑛be the flattened perturbation tensor, with 𝑛 = 𝐶 ∗  𝐷 ∗ 𝐻 ∗ 𝑊. 

The perturbed input is 𝐱 + 𝜹. We impose structured constraints on 𝜹via the following sets: 

• Bounded perturbations: for 𝑖 ∈ ℬ ⊆ {1, … , 𝑛}, 

−𝜖𝑖 ≤ 𝛿𝑖 ≤ 𝜖𝑖. 

• Shared perturbations: for all index pairs (𝑖, 𝑗) ∈ 𝒮, 

𝛿𝑗 = 𝛿𝑖. 

• Fixed (non-perturbed) entries: for 𝑖 ∈ ℱ ⊆ {1, … , 𝑛}, 

𝛿𝑖 = 0. 

These constraints encode known structural priors such as temporal smoothness or anatomical 

consistency across slices, thereby reducing adversarial degrees of freedom. 

9.1.1.1 Affine layer 

Let the network’s first layer be affine, with weight matrix 𝐖 ∈ ℝ𝑚×𝑛and bias 𝐛 ∈ ℝ𝑚. The 

pre-activation response is 

𝐳 = 𝐖(𝐱 + 𝜹) + 𝐛 ∈ ℝ𝑚. 
 
To obtain tight bounds on 𝑧𝑗over all valid perturbations, we solve two MILPs per output 

coordinate 𝑗 ∈ {1, … , 𝑚}: 
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9.1.1.2 MILP Formulation 

max 
𝜹

/min 
𝜹

𝑧𝑗 = 𝐰𝑗
⊤(𝐱 + 𝜹) + 𝑏𝑗

subject to 𝛿𝑖 ∈ [−𝜖𝑖, 𝜖𝑖]∀𝑖 ∈ ℬ,

𝛿𝑖 = 𝛿𝑘∀(𝑖, 𝑘) ∈ 𝒮,

𝛿𝑖 = 0∀𝑖 ∈ ℱ.

 

 
Although each problem is a linear program with bound and equality constraints, the shared 

perturbation sets introduce nontrivial coupling among variables. Nonetheless, the resulting 

optimal values give certified, input-dependent intervals for the activations of the first layer, 

which form the foundation of the hybrid verification pipeline. 

9.1.2 Spatio-Temporal Bound Propagation (STBP) 

Given the structured input specification 𝑇(𝐱) ⊆ ℝ𝑛, our goal is to compute sound output 

bounds for the neural network 

𝑓 = 𝑓(𝑘) ∘ ⋯ ∘ 𝑓(1) 
under all admissible perturbations. To accomplish this, we propose Spatio-Temporal Bound 

Propagation (STBP), a hybrid verification algorithm combining exact MILP-based bounds at 

the input layer with efficient relaxation-based propagation for deeper layers. 

For each neuron 𝑗in the first layer, we compute exact bounds 

ℓ𝑗
(1)

: = min 
𝐱′∈𝑇(𝐱)

𝑧𝑗
(1)

(𝐱′), 𝑢𝑗
(1)

: = max 
𝐱′∈𝑇(𝐱)

𝑧𝑗
(1)

(𝐱′), 

where 𝑧𝑗
(1)

(𝐱′) = 𝐰𝑗
⊤𝐱′ + 𝑏𝑗. These MILP-certified bounds provide a tight enclosure of the 

first-layer activations. 

For subsequent layers (𝑖 > 1), we propagate bounds using interval bound propagation (IBP) 

or similar linear relaxations. Given bounds ℓ(𝑖−1)and 𝑢(𝑖−1), define the center and radius: 

𝐜(𝑖−1) =
1

2
(ℓ(𝑖−1) + 𝑢(𝑖−1)) , 𝐫(𝑖−1) =

1

2
(𝑢(𝑖−1) − ℓ(𝑖−1)). 

 

For an affine transformation with weights 𝐖 and bias 𝐛: 

ℓ(𝑖) = 𝐖𝐜(𝑖−1)−∣ 𝐖 ∣ 𝐫(𝑖−1) + 𝐛, 𝑢(𝑖) = 𝐖𝐜(𝑖−1)+∣ 𝐖 ∣ 𝐫(𝑖−1) + 𝐛,  

where the absolute value is elementwise. 

The key innovation of STBP lies in combining exact layer-1 MILP bounds, which encode 

detailed spatio-temporal structure, with fast, conservative relaxation methods for deeper 

layers. This results in a verification approach that is both scalable and significantly tighter than 

standard IBP, particularly in domains where spatio-temporal correlations substantially reduce 

the effective perturbation dimension. 
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9.2 Datasets and Models 

We evaluate the proposed verification methods across four heterogeneous datasets 

encompassing synthetic, real-world, and medical imaging domains. For MNIST, we construct 

a video-style variant by temporally concatenating individual digit frames, enabling the 

evaluation of two 3D CNN architectures operating at different spatial resolutions; these 

models achieve classification accuracies of up to 94.67%. For UCF-101, a standard video 

action-recognition benchmark, we reduce both the spatial resolution and the number of 

action classes to improve the tractability of verification. Under this simplified setting—

restricted to five broad action categories—the resulting model attains a clean accuracy of 

74.41%. 

For the Udacity self-driving dataset, we convert the original steering-angle regression task 

into a three-way classification problem. To facilitate verification, we downsample the input 

images and employ a compact CNN, which achieves 84.24% accuracy. Finally, for MEDMNIST, 

we focus on the Synapse-3D subset, where the task is to classify neuron types from 3D voxel 

representations. Using a model architecturally aligned with the MNIST baseline, we obtain an 

accuracy of 73.01%. 

Across all experiments, the neural networks are deliberately designed to be compact—each 

containing no more than ten layers—to ensure that spatio-temporal verification remains 

computationally feasible. These models nonetheless capture the essential complexity of their 

respective domains, enabling a meaningful evaluation of the scalability and effectiveness of 

our verification techniques. 

9.3 Experiments 

We empirically assess the effectiveness of the proposed approach in certifying the adversarial 

robustness of neural networks across a diverse set of spatio-temporal tasks. Our evaluation 

demonstrates consistent and significant improvements in certified robustness over standard 

verification techniques for every dataset and model considered. In particular, we study 

robustness under perturbation magnitudes 𝜖 ∈ {10−5, 10−4, 10−3, 10−2, 10−1}and 

adversarial patch sizes 𝑘 ∈ {1, … ,10}, comparing standard Interval Bound Propagation (IBP) 

against our hybrid Spatio-Temporal Bound Propagation (STBP) method. 

Figure 63 presents the certified robust accuracy of the MNIST video model—constructed 

using 10 frames at 28 × 28resolution—under increasing perturbation magnitudes (left) and 

patch sizes (right). Across all settings, STBP consistently outperforms IBP, with particularly 

pronounced gains under structured perturbations. The patch-based version of STBP achieves 

near-perfect robustness for perturbations up to 𝜖 = 10−4and for small patch sizes, 

underscoring the advantage of integrating domain-specific spatial and temporal structure 

into the verification pipeline. 
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Figure 63: Adversarial Robustness of IBP, STBP, STBP using adversarial patches for MNIST 10 

frame 28 x 28 video model; left: against perturbations (ϵ); right: against patch size (k). 

A consolidated summary of results is provided in Table 10, reporting both clean and certified 

robust accuracies across the four benchmark domains: MNIST, UCF-101, Udacity self-driving, 

and MEDMNIST Synapse3D. STBP yields substantial improvements compared to IBP—for 

example, on the MNIST video model, STBP with patch constraints increases certified robust 

accuracy from 49.32% to 77.05% at 𝜖 = 10−4. For the autonomous driving and medical 

imaging tasks, STBP achieves over 85% certified robustness under patch perturbations, 

demonstrating that the method scales effectively to more complex real-world systems. 

Although STBP scales well for moderate-sized 3D CNNs, verifying larger architectures—such 

as ResNet-style backbones—remains challenging even when using shared perturbation 

models. As expected, the inclusion of a MILP optimization step on the first layer introduces 

additional computational overhead, but this cost is offset by the substantial improvements in 

certification quality. 

Table 10: Summary of results for MNIST, UCF-101, Udacity self-driving, and MEDMNIST 
Synapse3D.  

Experiment  Clean Acc.  Input Dim Output Dim # Samples 

MNIST Toy Model 93.1% 1×5×8×8 10 10000 

MNIST Toy Model 94.67% 1×10×28×28 10 1000 

UCF-101 74.41% 3×30×32×32 5 7 

Udacity Steering 
Angle 

84.23% 3×30×32×32 3 15 

MEDMNIST 
Synapse3D 

73.01% 32×32×32 2 100 
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Experiment 

IBP Acc. STBP Acc. 

ε=0.1 ε=0.01 ε=10-3 ε=10-4 ε=10-5 ε=0.1 ε=0.01 ε=10-3 ε=10-4 ε=10-5 

MNIST Toy 
Model 

0.0 0.0 1.2 53.2 89.1 0.0 1.15 42.0 91.2 93.10 

MNIST Toy 
Model 

0.0 0.0 0.0 49.32 93.75 0.0 0.0 58.20 77.05 78.71 

UCF-101 0.0 0.0 0.0 23.03 26.36 0.0 7.3 19.36 21.9 53.81 

Udacity 
Steering Angle 

0.0 0.0 0.0 85.71 85.71 85.71 85.71 85.71 85.71 85.71 

MEDMNIST 
Synapse3D 

0.0 0.0 19.0 72.0 72.0 0.0 72 72 72 72 

 

 



D5.2 – Final Version of Verification and Scalability Techniques 

Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  96 

 

 

 Probabilistic Verification of Neural Networks via PAC-

Interval Estimation 

10.1  The Verification Criterion 

PAC Interval Estimation defines verification in the context of the local Lipschitz constant. Let 

𝐵𝜖(𝑥0) = {𝑥: ∥ 𝑥 − 𝑥0 ∥≤ 𝜖} be the input region of interest (an 𝜖-ball).  

Let 𝑀(𝑥0) be the margin (distance) from the output 𝑓(𝑥0) to the nearest decision boundary. 

A sufficient condition for robustness is given by: 

𝐿∗ ⋅ 𝜖 < 𝑀(𝑥0) 

where 𝐿∗ = max𝑥∈𝐵𝜖(𝑥0) ∥ 𝐽𝑓(𝑥) ∥ is the maximum operator norm of the Jacobian (the local 

Lipschitz constant) within the ball. If this inequality holds, it is geometrically impossible for 

the network to misclassify an input within the region. 

10.1.1  The Estimation Challenge 

Calculating 𝐿∗ exactly is an NP-hard problem for general neural networks. The optimization 

landscape of ∥ 𝐽𝑓(𝑥) ∥ is highly non-convex, filled with local maxima and sharp peaks. 

• Analytical Bound Propagation (e.g., AutoLIRPA): These methods propagate error 

intervals layer-by-layer through the network. While computationally fast, they often 

suffer from the dependency problem (the "wrapping effect"), resulting in loose upper 

bounds that are orders of magnitude larger than the true constant. This often leads to 

a failure to satisfy Eq. (1) even for robust networks. 

• Exact Methods (e.g., LipMIP): Mixed Integer Programming (MIP) can theoretically find 

the true global maximum. However, these solvers scale poorly with network depth 

and width, often timing out before finding a solution. 

To overcome these limitations, we relax the requirement for a deterministic maximum in 

favour of a probabilistic bound that is tight enough to be useful but rigorous enough to 

provide safety guarantees. 

10.2  Theoretical Framework: The PAC Interval 

We frame the verification task as a statistical estimation problem. Instead of a single point 

estimate, we seek a Probably Approximately Correct (PAC) Interval [𝐿𝑙𝑜𝑤, 𝐿ℎ𝑖𝑔ℎ] for the true 

maximum 𝐿∗. 

10.2.1 Understanding the PAC Framework 

The concept of Probably Approximately Correct (PAC) learning originates from computational 

learning theory. In its standard form, it addresses the question: "How many samples do we 

need to learn a hypothesis that is accurate with high probability?" 

In the context of Lipschitz estimation, we adapt this framework to quantify uncertainty. Since 

we cannot evaluate the gradient at every single point in the continuous domain 𝐵𝜖(𝑥0) (which 
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would require infinite time), we must rely on a finite set of samples. Consequently, there is 

always a non-zero probability that the true maximum lies in an unobserved region. 

The PAC framework allows us to formalize this risk. We seek an upper bound 𝐿ℎ𝑖𝑔ℎ such that 

the probability of the true maximum exceeding this bound is bounded by a small parameter 

𝛾. In simple terms, we are making a statistical contract: 

"We cannot guarantee with 100% certainty that 𝐿∗ is below 𝐿ℎ𝑖𝑔ℎ. However, we 

have constructed 𝐿ℎ𝑖𝑔ℎ such that the chance of us being wrong is less than 𝛾 (e.g., 

0.1% or 0.001%)." 

Mathematically, our verification guarantee is probabilistic: 

Pr(𝐿𝑙𝑜𝑤 ≤ 𝐿∗ ≤ 𝐿ℎ𝑖𝑔ℎ) ≥ 1 − 𝛾 

If 𝐿ℎ𝑖𝑔ℎ ⋅ 𝜖 < 𝑀(𝑥0), the network is verified with confidence 1 − 𝛾. This approach trades the 

intractable certainty of deterministic methods for the tractable, high-confidence guarantees 

of statistical methods. 

10.2.2 The Cumulative Distribution Function (CDF) 

To implement the PAC framework, we analyse the statistical behaviour of the gradient norms. 

Let 𝑋 be a random variable representing the input chosen by our sampling strategy and let 

𝑌 = 𝑔(𝑋) =∥ 𝐽𝑓(𝑋) ∥ be the gradient norm at that input. 

The central object of our study is the Cumulative Distribution Function (CDF), denoted as 

𝐹(𝑦). The CDF describes the probability that a random sample will have a gradient norm less 

than or equal to a value 𝑦: 

𝐹(𝑦) = Pr(𝑌 ≤ 𝑦) 

For example, if 𝐹(50) = 0.95, it means that 95% of the sampled gradients are less than or 

equal to 50. The value of 𝑦 where 𝐹(𝑦) = 1 is the theoretical maximum 𝐿∗. Our goal is to 

estimate the behavior of 𝐹(𝑦) as it approaches 1. 

Since we do not know the true CDF 𝐹(𝑦), we approximate it using the Empirical CDF, 𝐹̂𝑁(𝑦), 

constructed from 𝑁 observed samples. The empirical CDF is a step function that jumps by 

1/𝑁 at each observed data point. As 𝑁 → ∞, the Law of Large Numbers guarantees that 

𝐹̂𝑁(𝑦) converges to 𝐹(𝑦). 

10.2.3  The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality 

While 𝐹̂𝑁(𝑦) converges to the truth, for finite 𝑁 there is an error. We need to bound this error 

to maintain our safety guarantee. We utilize the Dvoretzky-Kiefer-Wolfowitz (DKW) 

inequality, a powerful theorem in non-parametric statistics. 

10.2.3.1 Concept: The Confidence Tube 

The DKW inequality allows us to build a "confidence tube" (or confidence band) around our 

empirical data. Imagine plotting the empirical CDF step function on a graph. The DKW 

inequality draws two boundary curves—one above and one below—creating a corridor. 
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The theorem guarantees that the invisible, true CDF 𝐹(𝑦) lies entirely within this corridor with 
probability at least 1 − 𝛾. It provides a strict, global bound on the distance between the 
observed data and the ground truth. 

10.2.3.2 Mathematical Formulation 

Given 𝑁 independent and identically distributed (i.i.d.) samples, the DKW inequality states: 

Pr (sup
𝑦

|𝐹̂𝑁(𝑦) − 𝐹(𝑦)| > 𝛼) ≤ 2𝑒−2𝑁𝛼2
 

By setting the right side to our desired confidence level 𝛾 and solving for the bandwidth 𝛼, 

we get: 

𝛼 = √
ln(2/𝛾)

2𝑁
 

We then define the lower and upper bounds of the confidence tube as: 

𝐹𝐿(𝑦) = max(0, 𝐹̂𝑁(𝑦) − 𝛼)

𝐹𝑈(𝑦) = min(1, 𝐹̂𝑁(𝑦) + 𝛼)
  

This tube serves as the primary constraint for our verification. Any statistical model we 

propose for the tail of the distribution must effectively "live" within this tube to be considered 

a plausible explanation of the data. 

10.2.4  Parameter Space Search for the Worst-Case Model 

A simple statistical approach would be to fit a single "best-fit" curve to the tail data and report 

its endpoint. However, there might be many slightly different curves that fit the data almost 

equally well but imply very different maximum values. 

To adhere to the safety-critical nature of verification, we employ a robust optimization 

procedure: 

1. We define a family of curves (Generalized Pareto Distributions) that are theoretically 

justified to model the tail. 

2. We identify the subset of these curves that are "statistically plausible." A curve is 

plausible if and only if it lies entirely within the DKW confidence tube (𝐹𝐿 ≤ 𝐺 ≤ 𝐹𝑈). 

3. From this plausible set, we find the single curve that is the most pessimistic—i.e., the 

one with the largest upper endpoint. 
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This yields 𝐿ℎ𝑖𝑔ℎ, the worst-case Lipschitz constant consistent with our data and our 

confidence level 𝛾. A practical illustration is shown in Figure 64.  

 

10.3  Targeted Sampling: The Adam-Sobol Method 

The mathematical guarantees of the PAC framework (specifically the DKW inequality) rely on 

the assumption that the samples are representative of the underlying distribution. In the 

context of neural network verification, this is a significant hurdle. 

The input space 𝐵𝜖(𝑥0) is a high-dimensional hyperball. As the dimension 𝑑 increases, the 

volume of the space explodes exponentially (the Curse of Dimensionality). The regions where 

the gradient norm is maximized—the "peaks" of the landscape—are typically extremely small 

and sparse relative to the total volume. 

If we were to use simple uniform random sampling, the probability of landing near a peak 

would be vanishingly small. We would mostly observe gradients from the "flat" low-value 

regions. Consequently, our DKW tube would accurately model the body of the distribution 

but would contain no information about the tail, leading to a gross underestimation of 𝐿∗. 

To solve this, we require a sampling strategy that is biased towards high values. We developed 

a specialized, multi-stage strategy named Adam-Sobol. 

10.3.1  Modularity of the Sampling Engine 

It is crucial to note that this specific sampling method is not a fixed constraint of the 
proposed framework. The core contribution is the PAC-Interval analysis (Chapter 2), which 
acts as a statistical backend agnostic to the data source. We employ Adam-Sobol here because 

Figure 64: The observed exceedances (blue line), fitted GPD (green line) and maximum plausible 
fit (purple line). The goal of the algorithm is to find the GPD fit with the largest endpoint that 

fits entirely in the confidence tube. 
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it performs well empirically. However, the framework is modular: if a superior sampling 
strategy—such as one based on generative models, flow-matching, or more advanced 
adversarial attacks—can populate the distribution tail more densely, it can replace Adam-
Sobol without altering the statistical core of the verification. 

10.3.2  Stage 1: Global Peak Discovery (Adam Attack) 

The first challenge is to locate the general "basins of attraction" where the gradient norms 

are high. To do this, we treat the sampling problem as an optimization problem. We want to 

find input vectors 𝑥 that maximize the scalar function 𝑔(𝑥) =∥ 𝐽𝑓(𝑥) ∥. 

We employ an adversarial attack strategy based on the Adam optimizer. Adam is a gradient-

based optimization algorithm widely used in training neural networks. Here, instead of 

updating network weights to minimize loss, we update the input vector 𝑥 to maximize the 

gradient norm. 

• Initialization: We define 𝑊 parallel particles, each initialized randomly within the 

input ball 𝐵𝜖(𝑥0). 

• Ascent: For each particle, we calculate the gradient of our objective function with 

respect to the input, ∇𝑥𝑔(𝑥). We then move the particle in the direction of this 

gradient. 

• Restarts: Optimizers can get stuck in local optima (smaller peaks). By running many 

restarts in parallel, we increase the coverage of the search space. 

This stage results in a set of samples 𝑆𝐴𝑑𝑎𝑚 clustered around the local maxima of the function. 

10.3.3  Stage 2: Local Distributional Refinement (K-Box Sobol) 

While the Adam attack is excellent at finding single high points, it is not a sampler in the 

statistical sense; it creates a biased cluster of points at the very tips of the peaks. To perform 

Extreme Value Theory analysis, we need to understand the shape of the peak—how the 

values fall off as we move away from the maximum. We need to sample the "exceedances" 

(values above a threshold). 

To achieve this, we refine the output of the Adam stage: 

1. Selection: We take the top 𝐾 distinct candidates from 𝑆𝐴𝑑𝑎𝑚. These represent the 𝐾 
most promising regions found. 

2. Bounding (The K-Box): Around each candidate peak 𝑥𝑘, we define a small hypercube 
(a "box") 𝐵𝑘 constrained within the original 𝜖-ball. 

3. Sobol Sampling: Within each of these small boxes, we generate a high-density set of 
samples. Crucially, we do not use pseudo-random numbers. Instead, we use Sobol 
sequences. 

10.3.3.1 Why Sobol Sequences? 

Sobol sequences are a type of Quasi-Monte Carlo (QMC) method. Unlike pseudo-random 

numbers, which are independent and can randomly clump together leaving gaps in the space, 
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Sobol sequences are deterministic and designed to be "low discrepancy." They are self-

avoiding, meaning they spread out as evenly as possible to fill the available space. 

By using Sobol sequences within the K-Boxes, we obtain a high-fidelity, uniform scan of the 

geometry around the peaks. This provides the rich distributional data—the shape of the tail—

necessary for rigorous GPD fitting. The final dataset 𝑆𝑓𝑖𝑛𝑎𝑙 is the union of these local scans. 

It is important to note that algorithms for generating Sobol sequences are well defined only 

up to a certain (albeit very large) dimension. In problems where the size of the input 

dimension is larger than 21201, we have to employ Latin Hypercube Sampling, which is a 

different method to generate samples that are "not too clustered". 

10.4  Estimation Engine: Peaks-over-Threshold (POT) 

The theoretical foundation of the POT method is the Pickands-Balkema-de Haan theorem. 

This theorem is to extreme values what the Central Limit Theorem is to averages. 

The Central Limit Theorem states that if you sum up many random variables, the result 

converges to a Gaussian (Normal) distribution, regardless of the original distribution. 

Similarly, the Pickands-Balkema-de Haan theorem states that if you look at the distribution of 

values that exceed a sufficiently high threshold 𝑢, that conditional distribution converges to 

the Generalized Pareto Distribution (GPD). 

The CDF of the GPD is given by: 

𝐺𝜉,𝜎(𝑦) = 1 − (1 +
𝜉𝑦

𝜎
)

−1/𝜉

 

where 𝜎 is a scale parameter and 𝜉 is the shape parameter. 

10.4.1.1 The Shape Parameter and the Reverse Weibull 

The shape parameter 𝜉 determines the behavior of the tail. There are three regimes: 

1. Fréchet (𝜉 > 0): Heavy-tailed distributions (e.g., wealth distribution). These have no 
upper limit and decay polynomially. 

2. Gumbel (𝜉 = 0): Light-tailed distributions (e.g., normal distribution). These have no 
upper limit but decay exponentially. 

3. Reverse Weibull (𝜉 < 0): Short-tailed distributions. These have a mathematically 
finite upper endpoint. 

For neural network verification, we strictly restrict our search to the Reverse Weibull domain 

(𝜉 < 0). This is not an arbitrary choice but a physical constraint. A neural network with finite 

weights, operating on a compact input domain 𝐵𝜖(𝑥0), defines a continuous function. By the 

Extreme Value Theorem of calculus, a continuous function on a compact set is bounded. 

Therefore, the distribution of gradients must have a finite endpoint. 

Our goal is to estimate this finite endpoint, given by: 
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𝑦𝑚𝑎𝑥 = 𝑢 +
𝜎

|𝜉|
 

This 𝑦𝑚𝑎𝑥  is our estimator for 𝐿ℎ𝑖𝑔ℎ. 

10.4.2 Automated Threshold Selection: Balancing Bias and Variance 

The application of POT requires selecting a threshold 𝑢. This choice is subtle and represents 

a fundamental Bias-Variance Trade-off. 

• Threshold Too Low (High Bias): If we set 𝑢 too low, we include data points from the 

"body" of the distribution. These points do not follow the GPD (which is an asymptotic 

limit for extremes). Including them violates the assumptions of the theorem, biasing 

our estimates of 𝜉 and 𝜎. 

• Threshold Too High (High Variance): If we set 𝑢 extremely high, we satisfy the 

theorem’s assumptions perfectly, but we are left with very few data points (only the 

very tip of the tail). With small sample sizes, statistical estimation becomes unstable, 

leading to massive variance and wide confidence intervals. 

We automate this selection using the Mean Residual Life Plot (MRLP). The "Mean Residual 

Life" is the expected amount by which a value will exceed the threshold, given that it exceeds 

it. 

𝑒(𝑢) = 𝐸[𝑌 − 𝑢|𝑌 > 𝑢] 

A unique property of the GPD is that the mean residual life is a linear function of the threshold 

𝑢. 

Our Algorithm: 

1. We compute the empirical mean residual life for a range of candidate thresholds. 

2. We fit a Weighted Least Squares (WLS) line to this plot. 

3. We perform a sequential hypothesis test (using 𝜒2 statistics) to find the lowest 
threshold 𝑢𝑜𝑝𝑡 where the linearity hypothesis cannot be rejected. 

This identifies the "sweet spot": the lowest threshold (maximizing sample size) where the 

distribution is sufficiently "extreme" (minimizing bias). An illustrative example using 

synthetically generated data is shown in Figure 65, where the algorithmically selected 

threshold is very close to the true threshold of the synthetic data. 
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Figure 65: Top: Illustration of synthetic data lying above the detected and true threshold. 
Bottom: Mean Residual Life (MRL) plot for synthetic data; the algorithm seeks to find the 

smallest value at which the MRL begins to showcase a linear behaviour. This synthetic data is 
composed of random uniform sampling and a GPD distribution imposed on the top range of 

data, hence there is a true threshold which we use as comparison. 

10.4.3 Constraint-Based Verification Bound 

Once 𝑢𝑜𝑝𝑡 is determined, we construct the final verification bound. As discussed in the PAC 

section, we do not simply take the maximum likelihood parameters. We search the (𝜉, 𝜎) 

space for the GPD that maximizes 𝑦𝑚𝑎𝑥  while remaining inside the DKW confidence tube. 

𝐿ℎ𝑖𝑔ℎ = max
𝜉,𝜎

(𝑢𝑜𝑝𝑡 +
𝜎

|𝜉|
)  s.t. 𝐹𝐿(𝑦) ≤ 𝐺𝜉,𝜎(𝑦) ≤ 𝐹𝑈(𝑦) 

10.5  Experimental Results 

We validated the Adam-Sobol + LipPOT pipeline on the SMALLMNIST5 network. This network, 

while small enough to be analysed by exact solvers, presents a sufficiently complex landscape 

to test the efficacy of our statistical approach. 

10.5.1  Performance on Small Domain 

In this regime, the domain is small enough that the Mixed Integer Programming solver 

(LipMIP) can converge to the exact global maximum within a reasonable timeframe. This 

provides a "Ground Truth" against which we can evaluate our method. 
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Table 11: Comparison on SMALLMNIST5 (Local 0.01 Domain, L_∞ Norm) 

Algorithm Upper Bound Lower Bound Time (s) Outcome 

LipPOT (Ours) 80.92 80.06 94.18 Tight Interval 

auto_LIRPA 1308.26 NaN 0.67 Loose 

LipMIP 84.30 NaN 704.18 Exact Global Max 

 

10.5.1.1 Analysis of Underestimation 

Table 11 reveals a critical insight into the nature of our method. LipMIP finds the exact 

maximum to be 84.30. Our method, LipPOT, reports a high-confidence upper bound of 80.92. 

Crucially, LipPOT underestimates the true constant. The upper bound (80.92) is slightly lower 

than the true maximum (84.30). This discrepancy (approx. 4%) is the "smoking gun" of 

statistical verification. It indicates that despite our specialized Adam-Sobol sampling, the very 

highest peak in the landscape was extremely narrow and was missed by the sampler. The EVT 

model correctly fitted the tail of the observed peaks, but it cannot infer the existence of a 

singular, unobserved spike that behaves differently from the rest of the tail. This confirms 

that our method provides a probabilistic certificate, not a deterministic guarantee. 

In this particular instance, the reason for the underestimation was because the network had 

a discontinuity contained within the input region. However, compared to the analytical 

method (auto_LIRPA), which overestimated the bound by over 1500% (1308.26), LipPOT 

provides a far more distinct and useful signal of the network’s behaviour, albeit with a known 

statistical risk. 

10.5.2 Performance on Large Domain 

We tested the largest domain from our experimental set (𝜖 = 0.13) to demonstrate 

robustness under extreme expansion. In this regime, the search space is exponentially larger. 

Table 12: Comparison on SMALLMNIST5 (Local 0.13 Domain, L_∞ Norm) 

Algorithm Upper Bound Lower Bound Time (s) Outcome 

LipPOT (Ours) 102.80 101.98 40.46 Stable 

auto_LIRPA 6143.19 NaN 0.80 Exploded 

LipMIP 5484.33 NaN 1833.00 Timeout 

 

10.5.2.1 Scalability and Stability 

Table 12 demonstrates the failure modes of deterministic methods: 

• LipMIP (Timeout): The exact solver runs for 30 minutes (1833s) and fails to converge. 
It returns an upper bound of 5484.33, which is likely just a loose bound from the 
branch-and-bound tree, not a verified tight bound. 

• auto_LIRPA (Explosion): The analytical bound propagation suffers from the wrapping 
effect, returning a value (6143.19) that is useless for verification purposes. 
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• LipPOT (Stable): Our method remains computationally efficient (40s) and returns a 
tight, stable interval [101.98,102.80]. 

While the result of 102.80 allows for a verification decision where other methods fail, we must 

interpret it in light of the underestimation seen in Table 11. It is probable that the true 

maximum is slightly higher than 102.80, but remarkably unlikely to be anywhere near the 

5000+ range reported by the baselines. LipPOT effectively filters out the loose 

overestimations to reveal the true scale of the Lipschitz constant. 

10.5.3  Limitations: Sources of Underestimation 

The results highlight that LipPOT provides a statistical certification, distinct from 

deterministic verification. There are two primary theoretical risks where the method may 

underestimate the true constant: 

1. Sampling Failure (Statistical Risk): As evidenced by the 𝜖 = 0.01 experiment, if the 
sampler misses the global peak entirely, the EVT model will be fit to the local peaks it 
did observe. The resulting 𝐿ℎ𝑖𝑔ℎ will be a valid upper bound for the observed 

distribution, but invalid for the unobserved global anomaly. This risk is controlled by 
the quality of the sampling engine but can never be reduced to zero. 

2. Non-Local Lipschitz Behavior (Geometric Risk): Our approach assumes that the 
Lipschitz constant is well-characterized by the maximum local gradient norm max ∥
𝐽𝑓(𝑥) ∥. For neural networks with ReLU activations, the function is continuous but non-

smooth. The global Lipschitz constant is defined as sup𝑥≠𝑦
∥𝑓(𝑥)−𝑓(𝑦)∥

∥𝑥−𝑦∥
. In most cases, 

this equals the maximum gradient norm. However, theoretically, the Lipschitz constant 
could be defined by a "short-circuit" between two distant points across a decision 
boundary or a sharp valley, which would not be reflected in any local Jacobian. Since 
our method relies on gradient norms, it cannot detect non-local Lipschitz violations. 

10.6  Conclusion 

In this chapter, we have presented a comprehensive statistical framework for the verification 

of neural networks. By shifting the verification paradigm from intractable deterministic 

guarantees to high-confidence PAC Intervals, we have developed a method that scales to 

problems where exact solvers fail. 

Our contribution is twofold. First, we established the DKW-Constrained POT method, a 

rigorous statistical engine that translates tail samples into a conservative upper bound for the 

Lipschitz constant. We showed how the Generalized Pareto Distribution, constrained by the 

Reverse Weibull assumption, provides a physically motivated model for the finite limits of 

neural network gradients. 

Second, we addressed the scarcity of tail data with the Adam-Sobol sampling strategy. We 

demonstrated that simple random sampling is insufficient in high dimensions and that a 

targeted adversarial attack coupled with low-discrepancy Sobol refinement is necessary to 

populate the tail of the distribution. 
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The experimental results validate this approach as a pragmatic trade-off. While we sacrifice 

the absolute certainty of exact methods—accepting a small, quantifiable risk of 

underestimation—we gain the ability to generate tight, meaningful bounds in seconds where 

other methods take hours or fail completely. This suggests that statistical verification, when 

grounded in rigorous Extreme Value Theory, offers a viable path forward for certifying the 

robustness of increasingly complex deep learning systems. 
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 Verification of EVENFLOW Use Cases 

11.1 Verification of Industry 4.0 use case 

Autonomous robots are poised to become a foundational component of next-generation 

factory automation, yet their dependable operation in highly dynamic industrial 

environments remains a major challenge. A critical limitation lies in ensuring that the neural 

networks governing perception, prediction, and control behave reliably under all possible 

operating conditions. To address this formal verification techniques are applied to neural 

systems deployed on autonomous mobile robots (AMRs), with the goal of providing provable 

safety guarantees. 

AMRs use deep neural networks to interpret sensor data, detect obstacles, recognise objects, 

and make navigation decisions. However, these models are inherently opaque and can 

behave unpredictably when exposed to noisy, adversarial, or rare environmental conditions. 

In industrial settings—where robots must operate among workers, other robots, and fast-

changing surroundings—such unpredictability may result in unsafe stops, near-misses, or 

collisions, disrupting production and posing significant safety risks. Traditional testing and 

empirical evaluation cannot feasibly cover the enormous space of possible inputs generated 

by high-frequency sensors. 

Formal verification provides a principled solution by mathematically analysing neural 

networks to ensure that their outputs remain safe under all input variations within a specified 

range. These methods can reason over entire sets of sensor readings, certify robustness to 

perturbations, and verify that safety-critical decisions (e.g., obstacle detection, emergency 

braking, or collision avoidance) hold across all relevant scenarios. For factory-deployed AMRs 

with constrained computational resources, verification must also account for the large 

volumes of sensor data and the need for lightweight, efficient neural models. 

Emerging work combines advanced verification algorithms, symbolic reasoning, and scalable 

neural approximations to validate AMR behaviours before deployment. By leveraging large 

datasets, simulations, and domain-specific safety constraints, researchers aim to produce 

certifiably robust autonomous systems that can anticipate problematic situations while 

guaranteeing safe responses. Integrating formal verification into the development pipeline 

promises not only to increase the reliability and safety of AMRs but also to enhance 

manufacturing productivity and trust in AI-enabled automation. 

11.1.1 Neurosymbolic model for robot path planning and collision avoidance  

To facilitate tractable formal verification, we employ a deliberately compact yet sufficiently 

expressive convolutional neural network (CNN) to serve as the perception component of the 

neurosymbolic collision-avoidance system. The model processes raw visual observations from 

an autonomous robot platform and predicts whether the robot’s current trajectory is on a 

collision course with another robot in the environment. The dataset used for this study was 

provided by the German Research Center for Artificial Intelligence (DFKI). It consists of 

synchronized left- and right-camera video streams recorded from two mobile robots 

operating in a shared indoor space. Each image captures the robot’s first-person viewpoint, 
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and potential collision events can be inferred when the second robot appears within the 

camera’s field of view. 

The original camera frames have a resolution of 1280 × 720 pixels. To reduce computational 

overhead and improve verification scalability, all images are down sampled to 160 ×

90 before being fed into the neural network. The resulting input tensor has shape 

3 × 160 × 90, corresponding to RGB channels and reduced spatial dimensions. The output of 

the neural network is classified into 20 bins representing different spatial configurations and 

motion patterns associated with the two robots, enabling symbolic reasoning modules to 

determine whether their trajectories are likely to intersect. 

Figure 66 shows the overall neuro-symbolic architecture. The CNN comprises a sequence of 

convolutional layers with ReLU activations and periodic max-pooling, progressively reducing 

spatial resolution while increasing feature depth. After ten convolutional blocks, the feature 

map is flattened into a 384-dimensional vector and passed through a two-layer classifier 

(384→20→num_classes).  

 

Figure 66: Neurosymbolic model for robot collision avoidance using the DFKI dataset. 

11.1.2 Verification of the Neurosymbolic system for Industry 4.0 

In this section, we report the formal verification results obtained for the neuro-symbolic 

collision-avoidance model developed for the DFKI robotic perception use case. The underlying 

neural architecture was trained using a 5-fold cross-validation strategy to ensure robustness 

and mitigate overfitting. For each fold, an independently trained model was subjected to 

verification, enabling us to assess the consistency and reliability of the verification outcomes 

across five distinct data splits. This evaluation methodology provides a comprehensive view 

of the model’s behaviour under varying training distributions and supports a statistically 

grounded assessment of its safety properties. 

To analyse robustness, we compute certified guarantees under a range of 𝜖-bounded 

perturbations applied to the input images. These perturbations simulate realistic sensor noise 

and environmental variability that may arise during robot operation. Verification is performed 

using a custom verification toolkit built on top of the auto_LiRPA framework, which enables 

sound relaxation-based bound propagation for convolutional neural networks. The toolkit 

supports the computation of lower and upper bounds on network outputs under adversarially 

bounded perturbations, thereby allowing us to determine whether safety-critical 

classification decisions—such as detecting potential robot trajectory collisions—remain 
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invariant within specified perturbation sets. IBP is used to verify the network across various 

noise perturbations. 

The resulting certified robustness metrics for all five cross-validation splits (Split 1 ... 5) are 

summarized in Table 13 showing the proportion of test samples for which safety predictions 

remain formally guaranteed across different perturbation magnitudes.  

Table 13: Verification results using IBP across 5 splits for various perturbation ranges. 

 
Split 

Epsilons 

1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-10 

Split 1 75.73% 75.73% 72.52% 24.05% 0.0063% 0.00% 75.73% 

Split 2 79.03% 79.01% 68.36% 0.10% 0.00% 0.00% 79.03% 

Split 3 76.55% 76.53% 67.58% 0.31% 0.00% 0.00% 76.55% 

Split 4 76.21% 76.21% 64.09% 0.49% 0.00% 0.00% 76.21% 

Split 5 78.48% 78.47% 72.92% 1.08% 0.00% 0.00% 78.48% 

 

 

Figure 67: Robust accuracy of the NeSy model at various noise perturbations. 

To further enhance the verification performance of the proposed neuro-symbolic model, 

future work will focus on tightening the verification bounds through the integration of more 

advanced and expressive certification techniques. In particular, we plan to employ hybrid 

bound-propagation methods such as CROWN+IBP, which combine linear relaxation with 

interval reasoning to obtain significantly tighter output bounds while maintaining 

computational tractability. Such methods have been shown to reduce over-approximation 
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error and are expected to yield stronger certified robustness guarantees for high-dimensional 

perceptual models. 

In parallel, we intend to investigate training strategies that explicitly promote robustness 

during model optimization. This includes adversarial training, where the model is exposed to 

worst-case perturbations during training to improve empirical robustness, as well as certified 

training, which incorporates verification-aware objectives that encourage the network to 

produce representations more amenable to formal certification. Together, these approaches 

aim to systematically strengthen the model’s resilience to input perturbations, ultimately 

improving both its empirical performance and its provable safety properties. 
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 Status of the EVENFLOW Verification Toolkit 
The EVENFLOW verification toolkit is available as a public repository at - 

https://github.com/EVENFLOW-project-EU/nesy-veri. 

 

Figure 68: The verification toolkit at GitHub. 

The verification toolkit for the Industry 4.0 robot navigation use case with Neuro-Symbolic 

models built on the DFKI dataset is available at - https://github.com/EVENFLOW-project-

EU/dfki-robots. 

 

Figure 69: The verification toolkit for the Industry 4.0 robot navigation use case at GitHub. 

https://github.com/EVENFLOW-project-EU/nesy-veri
https://github.com/EVENFLOW-project-EU/dfki-robots
https://github.com/EVENFLOW-project-EU/dfki-robots
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