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Executive Summary

Deliverable D5.2 reports EVENFLOW's final outcomes (for the second half of the project, since
April 2024) on scalability and verification techniques for online neuro-symbolic learning and
reasoning in real-time streaming settings. It consolidates methods, tools, and use-case
applications addressing the project’s core challenges.

The scalability of EVENFLOW is based on two pillars. Stream synopses and parallelism. On the
stream synopses side, a synopsis-driven optimization paradigm is introduced for continuous
learning. The SuBiTO Framework operationalizes the principle that training must adapt to
stream dynamics by jointly optimizing (i) synopsis/compression configuration, (ii) training
duration (e.g., epochs), and (iii) neural architecture, explicitly searching for strong accuracy vs
training-time trade-offs and presenting these choices through supporting tooling. Parallelism
cooperatively works with synopses through parallel synopsis maintenance and through a
data-driven synchronization protocol suite that reduces coordination and communication
costs in distributed learners. These components are integrated in Distribuito SuBiTO,
combining parallel synopsis derivation, smart synchronization, and batched/parallel inference
to increase throughput. In parallel, the NeuroFlinkCEP framework delivers scalable
neurosymbolic Complex Event Recognition by integrating neural simple-event inference with
symbolic, Apache Flink CEP pattern matching, supported by logical-to-physical workflow
optimization and monitored deployment across cloud—edge/loT environments.

Scalability grounds these techniques in three vertical use cases via: SSTRESSED for Industry
4.0 simple event detection, RATS+ for personalized medicine with transfer-learning elements,
and infrastructure monitoring via reverse random hyperplane projection plus uncertainty-
aware synchronization.

On the verification side, the deliverable defines an EVENFLOW verification stack that spans:
(i) formal neural network verification, (ii) probabilistic neuro-symbolic verification, and (iii)
temporal verification for streaming neuro-symbolic pipelines where neural perception feeds
symbolic automata.

For neuro-symbolic (NeSy) pipelines, where neural outputs feed symbolic arithmetic circuits,
we found exact verification to be intractable in our evaluation. Therefore relaxation-based
and hybrid pipelines were proposed to balance completeness with scalability requirements.
These constitute abstract verification techniques and enable us to achieve robustness
guarantees for NeSy systems also using CNN networks.

The contributions include Spatio-Temporal Bound Propagation (STBP) and Spatio-Temporal
shared IBP (S-IBP). These are hybrid schemes that solve MILPs for the first layer under
structured (shared / fixed / bounded) perturbation constraints, then propagate tight layer-1
bounds forward with efficient interval or linear relaxations. The work also develops
probabilistic verification via PAC-interval estimation (LipPOT): a targeted Adam-Sobol
sampling engine plus Extreme Value Theory (POT/GPD) constrained by DKW confidence
bands to produce high-confidence upper bounds on local Lipschitz constants. For parallel
verification, SCANNV applies Bayesian optimisation (with transfer learning and ReLU-stability
grey-box signals) to find input splits that reduce wall-clock verification time.
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Experiments on synthetic MNIST addition, ROAD-R autonomous driving, temporal complex-
event traces, and medical/video benchmarks show STBP and PAC methods substantially
improve certified robustness and runtime compared to vanilla IBP and naive solver
approaches, at a marginal cost of additional MILP or sampling overhead.

Verification is further grounded in EVENFLOW use cases through a neuro-symbolic robot
navigation/collision-avoidance scenario, where robustness is assessed across multiple
perturbation levels and validation splits. We discuss routes to improve guarantee tightness
through stronger bound methods and robustness-aware training.
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Definitions, Acronyms and Abbreviations

Acronym/ Title
Abbreviation

AMR Autonomous Mobile Robot

ARC Athena Research Center

BO Bayesian Optimization

CE Complex Event

CER Complex Event Recognition

CEP Complex Event Processing

GP(R) Gaussian Process (Regressor)

HPC High Performance Computing

ICL Imperial College London

NAS Neural Architecture Search

NeSy Neurosymbolic

PS Parameter Server

SE Simple Even

SDEaaS Synopses Data Engine-as-a-Service
SDE Synopses Data Engine or Simple Derived Events (depending on the context)
SCANNV Scalable Neural Network Verification
TNF Tumor Necrosis Factor

WP Work Package

Term Definition
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1 Introduction

1.1 Project Information

EVENFLOW develops hybrid learning techniques for complex event forecasting, which
combine deep learning with logic-based learning and reasoning into neuro-symbolic
forecasting models. This approach combines neural representation learning techniques that
construct event-driven features from streams of perception-level data with powerful
symbolic learning and reasoning tools, which utilize such features to synthesize high-level,
interpretable patterns for forecasting critical events.

To deal with the brittleness of neural predictors and the high volume/velocity of temporal
data flows, the EVENFLOW techniques rely on novel, formal verification techniques for
machine learning, in addition to a suite of scalability algorithms for training based on data
synopsis, federated training and incremental model construction. The learnt forecasters will
be interpretable and scalable, allowing for explainable and robust insights, delivered in a
timely fashion and enabling proactive decision making.

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting
in healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart
factories and (3) reliable life cycle assessment of critical infrastructure.

Table 1: The EVENFLOW consortium.

Number! Name Country Short name
1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA
1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU
2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH  Greece NCSR
"DEMOKRITOS"
3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS Greece ARC

STIS TECHNOLOGIES TIS PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS

4 BARCELONA SUPERCOMPUTING CENTER- Spain BSC
CENTRO NACIONAL DE SUPERCOMPUTACION
5 DEUTSCHES FORSCHUNGSZENTRUM FUR Germany DFKI
KUNSTLICHE INTELLIGENZ GMBH
6 EKSO SRL Italy EKSO
7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY  United ICL
AND MEDICINE Kingdom

'CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner.
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1.2 Document Scope

This document provides the advancements made within the scope of EVENFLOW with special
emphasis on the time period between M19 (April 2024) to M39 (December 2025). It
elaborates on the developed algorithms and prototypes that serve as scalability and
verification pillars for the project. It also explains the way they are applied in real world
scenarios both derived from EVENFLOW use cases and broader application domains and/or
on standard benchmarks and testbeds. It also reports on the evolution of Scalability and
Verification Toolkit as exploitable assets of the project. In that, it describes the outcomes of
high-quality research in EVENFLOW with anticipated highly impactful software modules.

1.3 Document Structure

This document is comprised of the following chapters:
Chapter 1 presents an introduction to the project and the document.

Chapter 2 summarises the main advancements till M18 of the project as reported in
Deliverable D5.1.

Chapter 3 emphasizes on the scalability aspects by means of data stream synopses and
distributed/parallel learning and inference presenting the developed prototypes.

Chapter 4 discusses scalable neurosymbolic CER over loT platforms pushing the
developments on scalability made throughout the project, not only at the cloud side but
across the cloud to edge continuum.

Chapter 5 presents the current open-source contributions of the scalability approaches
developed throughout the project.

Chapter 6 emphasizes on use case-specific adaptations of the generic techniques described
in Chapters 3-4 to EVENFLOW use cases and novel scalable techniques for these specific
application fields.

Chapter 8 discusses techniques for improving scheduling and augmenting parallelization of
verification frameworks, such as Venus, for enhanced scalability in neural network verifiers
upon being treated as black or grey boxes.

Chapter 7 introduces the foundational concepts of formal verification for neural networks,
outlining core techniques and discussing their applicability to neuro-symbolic architectures.
It further examines methods for verifying complex temporal events within neurosymbolic
systems.

Chapter 8 extends these verification techniques to spatio-temporal models. It presents hybrid
approaches that combine linear programming with interval bound propagation, enabling
robustness analysis for high-dimensional perturbations and larger neural network
architectures.
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Chapter 10 explores verification through probabilistically approximately correct (PAC)
bounds. It evaluates the tightness of PAC intervals and assesses their suitability for providing
reliable robustness guarantees in comparison to deterministic methods.

Chapter 11 applies these verification techniques to the EVENFLOW Industry 4.0 use case,
demonstrating end-to-end verification of a neurosymbolic system deployed in an industrial
robotic environment.

Chapter 12 presents the current open-source contributions of the verification approaches
and the toolkits developed for verification of the EVENFLOW Industry 4.0 use case.
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2 Overview of Progress till M18

2.1 Recap on Scalability Aspects in EVENFLOW

As documented in Deliverable D5.1, EVENFLOW training and inference pipelines target three
types of scalability: (a) horizontal scalability, i.e., scaling with the volume and velocity of the
incoming data streams, (b) vertical scalability, i.e., scaling with the number of processed
streams and (c) federated scalability, i.e., scaling the computation in (geo-)distributed
environments by reducing the amount of transmitted data to preserve bandwidth and reduce
network latencies.

The focal point of developing effective and efficient training and inference pipelines in
streaming settings revolves around the challenge of achieving appropriate balance/trade-off
between accuracy and training time. In streaming setups, the statistical properties and the
distribution of incoming streams are highly volatile. Consequently, a neural model that is
currently suitable for inference purposes may quickly become obsolete. Therefore, the
training process evolves continuously and on par with the prediction/inference process. As
soon as an up-to-date trained model becomes available, it should be directly deployed on the
prediction pipeline to maintain high quality inference, not only at the current time but, most
importantly, in the long run. Figure 1 illustrates the evolution of training and prediction
pipelines, instantiated using state-of-the-art frameworks for stream ingestion (i.e., Apache
Kafka) and neural learning (PyTorch). The architectural scheme though is independent of the
underlying technologies.

Wt
Labeled Training Streams .NN tl
‘ . Weight |W-;
] PYTbRCH Updates
e 8 katka_ LW
et d
Training Learner T gnts
Topis Topic_J |
: 3 e
Prediction P edicton | | Tapeted | DLE
Topic Streams |\& &=
~
Unlabeled Application Streams & kafka

—— Training Pipeline
T Prediction Pipeline

Figure 1: Streaming Training and Inference Pipelines operating on par with one another [REF-
01].

The main pillars for achieving scalability in EVENFLOW involve (a) data streams synopses, (b)
parallelism/distribution of computation and (c) optimal (or preferable) resource allocation
for the involved neural, symbolic or neurosymbolic (NeSy) tasks.

The use of synopses is motivated by the fact that, to establish accurate and rapid training
pipelines, it is important to train over representative, good quality data. This does not
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necessarily include the lot of training data streams that may reach a training pipeline.
Therefore, by presenting a carefully crafted data summary in the training pipeline, an accurate
model can be continuously produced, simultaneously avoiding exacerbated training times.

However, synopses alone do not suffice for scalable processing. First, even if synopses do
manage to controllably reduce the portion of streams that are ingested in a training pipeline,
data summaries can still be voluminous. For instance, a recent stream of 10GB reduced by an
order of magnitude still yields a training volume of 1GB which may entail important training
latency for deep neural network architectures. Second, synopses can reduce the burden in
the training pipeline only. The prediction/inference pipeline still needs to operate on the
entire stream because client applications do not have the liberty of choosing to apply
predictions and forecasts only to a subset of the ingested, unlabelled streams. For these
reasons, besides synopses, parallelism on the training and prediction pipelines is the second
scalability pillar of EVENFLOW. Figure 2 enhances the streaming architecture of Figure 1 with
parallelism across the involved training and prediction pipelines.

Labeled Streams @ Partition 1
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"PYTORCTH

Learner 1
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Learner 2 Updates
iti ' NN
Labeled Streams @ Partition N Learner n PYTORCH .
3 Weight _
Local Models on local streams / Updates th
w5
Parameter tohts
Server Topic
!
r i n Predictors
Topic Streams
Unlabeled St Partition 1
nlabeled Streams @ Partition PYTBRCH kafka
L] L 466 nmmmmmm‘
Unlabeled Streams @ Partition P
,.... x x _—~_Predictorp

Figure 2: Parallel Streaming Training and Inference Pipelines [REF-01].

The third scalability pillar related to resource allocation in EVENFLOW comes in two forms.
First in continuously configuring the degree of parallelism, the size of the synopses, the size
of the neural network and the duration of the training process so that the aforementioned
accuracy vs training time trade-offs and the preferable combination of such parameters
ensure high quality models in an online real-time fashion. Second, models deployed on
parallel predictors can be assigned not only at parallel threads being executed on powerful
clouds, but also across devices of the computing continuum, in loT settings.

The progress achieved in EVENFLOW by M18, as reported in Deliverable D5.1, can be
summarized as follows:
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EVENFLOW proposed and developed the Synopses-as-a-Service paradigm (Figure 3)
introducing a state-of-the-art stream summarization engine implemented on Apache Flink
[REF-03].

§§ kafka )
Filter

Output
Topic

federator

FlatMap
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Topic
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Estimation

—Data Path ——Requests Path

Figure 3: Synopses Data Engine-as-a-Service (SDEaaS) Paradigm in EVENFLOW by M18 [REF-
02].

The Synopses-based Training Optimization Paradigm was introduced, which leveraged
Bayesian Optimization to continuously prescribe preferable configurations for (a) the size of
synopses, (b) the number of training epochs for the training pipelines, for a fixed — a priori
defined — neural network architecture.
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Figure 4: Synopses-based Training Figure 5: Demo prototype of Synopses-
Optimization by M18. based Training Optimization by M18.

For parallel training, preliminary protocols and experimentation were presented to overcome
the limitation of the vanilla synchronous and asynchronous protocols of the Parameter Server
paradigm. The basic idea behind the proposed, preliminary protocols was to define a concept
drift based on any given thresholded function applied on neural network global (accumulated
in a Parameter Server) weights. Decompose this global concept drift trigger to local filters
installed on parallel learners and trigger a synchronization only when some learner finds its
local filter violated based on a geometric monitoring criterion.
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2.2 Recap on Verification Aspects in EVENFLOW

Deliverable D5.1 describes the verification approach for the EVENFLOW project in which we
mention about the need for formal verification, the scalability challenges of verification and
the approaches for verification of Neurosymbolic systems.

Modern neural networks (NNs) power critical Al applications but remain highly vulnerable to
adversarial perturbations—small, often imperceptible input changes that can lead to
catastrophic misclassifications. This raises significant safety concerns, especially in domains
such as autonomous driving, robotics, smart manufacturing, healthcare diagnostics, and
decision-support systems. Due to their black box behaviour and high input dimensionality,
understanding and guaranteeing NN behaviour is extremely challenging. Formal verification
aims to deliver provable guarantees about system behaviour by mathematically ensuring that
certain properties—primarily robustness—hold for all inputs within a perturbation set.

E ] ‘Dog’
1 even in
S the
Xo worst

case
C

Figure 6: Perturbations on the input should not affect the classification.

Adversarial attacks in both 2D and 3D settings show the extent of NN fragility. Methods such
as adversarial image noise, point-cloud manipulation, and mesh perturbation can reliably fool
state-of-the-art models without visibly altering the input, strengthening the need for scalable
verification tools.

ndary

Decision Bou

X*
<o f*>0
i
0 X,
Label flipped, 0 Provably ‘ 0
not robust! robust! » ]
Class +1 'y .
f(x) >0 ‘ C

Figure 7: Formal Verification as an Optimization problem.

Verification seeks to determine whether the NN satisfies a desired property (e.g., robustness)
over an input region. This can be expressed as an optimization problem that checks whether
the network’s minimum logit margin remains positive across all admissible perturbations.
Exact verification approaches (MILP, SMT) are complete but computationally infeasible for
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large networks. In contrast, incomplete or relaxation-based methods (IBP, LP relaxation,
CROWN) scale better but provide weaker guarantees due to over-approximation.

A central challenge stems from nonlinear activations such as RelLU, which must be
approximated using linear inequalities when the activation is unstable. These relaxations
allow propagation of lower/upper bounds but accumulate approximation errors as depth
increases.

Neural Network Verification

Error

Input Set Classifications

NP-Hard! Property is satisfied
Figure 8: Neural Network Verification.

Exact verification is NP-hard and rapidly becomes intractable for deep networks or high-
dimensional data. Nonlinearities, combinatorial explosion of RelLU states, and large input
spaces limit real-world applicability. This motivates abstraction-based techniques, which
replace nonlinear functions with sound convex relaxations, enabling propagation of
approximate bounds while maintaining efficiency. However, these techniques often vyield
overly loose bounds, particularly in architectures with attention mechanisms or heavy matrix
multiplications.

Neuro-symbolic systems combine neural perception modules (CNNs, MLPs) with symbolic
reasoning engines such as Deterministic Finite Automata (DFAs). This decomposition reduces
architectural complexity and allows verification at two separate levels:

1. Neural level: Obtain probability intervals for simple-event detectors using relaxation
methods such as IBP.

2. Symbolic level: Propagate these intervals through DFA transitions to produce
lower/upper acceptance probabilities for temporal patterns.

This approach allows the verification of complex temporal events by combining probabilistic
bounds from multiple simple events. Experiments on MNIST-based sequence tasks show that
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NeSy models drastically reduce the verification—accuracy gap (£2%), demonstrating greater
verifiability compared with monolithic temporal models.
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Figure 9: MINIST based sequential model for sequence classification.

Verified Training: Combining Adversarial and Formal Objectives

A major challenge is training models that are both empirically robust and formally verifiable.
Standard adversarial training improves empirical robustness but degrades verified
robustness. The report discusses two new expressive loss functions (CC-IBP, MTL-IBP) that
jointly optimise adversarial and verified objectives. These losses achieve state-of-the-art
trade-offs on datasets such as CIFAR-10, TinylmageNet, and ImageNet64, enabling models
that are more suitable for deployment in safety-critical settings.

CC-1IBP

\ L(—[1-a) +a L 1y)
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Figure 10: Convex combinations between adversarial attacks and IBP bounds.
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3 Scalable Neural Learning and Inference over Data Streams

3.1 Leveraging Synopses for Training Optimization — The SuBiTO
Framework

The SuBiTO Framework, developed in EVENFLOW, comes in three different versions. The
synopses-driven SuBiTO framework [REF-03] for synopses-based training optimization. The
NeSy SuBiTO proof-of-concept for supporting entire NeSy pipelines and the Distribuito SuBiTO
which leverages both synopses and parallelism across all its architectural components. In this
section we initially focus on the synopses-driven SuBiTO [REF-03], which we will henceforth
term as simply SuBiTO. Section 3.1.2 presents the NeSy SuBiTO and Section 3.6 details
Distribuito SuBITO.

3.1.1 The SuBiTO Architecture

The architecture of the SuBiTO framework is illustrated in Figure 11. Compared to our
discussion in Section 2.1, SuBiTO performs Neural Architecture Search (NAS) besides
configuring the size of ingested stream synopses and the number of epochs. In that, SuBiTO’s
functionality is severely enhanced because it can examine a wide variety of additional options
that may involve deeper neural networks with highly compressed streaming input or
shallower networks with greater number of ingested streams being processed. Additionally,
the up-to-date neural models that are produced by the training pipelines are directly
delivered via Kafka to a Prediction Pipeline for online, real-time inference purposes.

As shown in Figure 11, SuBiTO is composed of three architectural elements. The training
pipeline, the prediction pipeline and the SuBiTO Optimizer.

The Training pipeline (middle of Figure 11) receives labelled streams and trains a neural
model, for a number of epochs using only a fraction of the labelled streams specified by a
stream compression ratio. These are specified by the SuBiTO Optimizer every time a concept
drift is detected.

The SuBiTO Optimizer (top of Figure 11) runs every time a concept drift if detected. It
accumulates a recent portion of the labelled stream and performs a number of Bayesian
Optimization [REF-04][REF-05] trials to learn the accuracy vs training time trade-offs under
different {stream compression ratio, neural architecture, number of epochs} configurations.
At the end of the optimization process, it devices the optimal such triplet based on a scoring
- 1) is the

. training time,
function, currently score(c) = w; - Accuracy, + w, - tanh (#
target latency

default, which is deployed in the Training Pipeline.

The Prediction Pipeline processes unlabelled streams. It continuously receives the up-to-date
neural model produced by the Training Pipeline and deploys it for inference purposes.
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Figure 11: SuBiTO Framework Architecture [REF-03]. SuBiTO Optimizer, Training and
Prediction pipelines. NAS along with configuring synopses compression ratio and number of
epochs as supported participating in the examined trade-offs.
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Figure 12: The SuBiTO Dashboard [REF-03]. The SuBiTO Optimizer has devised three
alternative Neural Network Architectures along with synopses compression ratios and number
of training epochs. The user has not picked any of the devised options, therefore the training
latency (right middle part of the dashboard) is in the order of tens of seconds.
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3.1.2 The SuBiTO Dashboard

The SuBiTO Dashboard, implemented on streamlit?, is illustrated in Figure 12. The vertical
middle of the dashboard displays the SuBiTO Optimizer operation and suggestions. After a
concept drift or a manually triggered optimization cycle, the optimizer presents the top-3
training configurations {neural network, compression ratio, number of epochs} based on a
scoring function. It also plots their expected training accuracy and loss. To further aid the user
cherry-pick among the top-rated alternatives, it also plots the expected accuracy, training
time trade-offs of each. As soon as the user activates one among the suggested alternatives,
the training pipeline is accordingly renewed as long as it finishes the current training round.

The upper right of the dashboard is devoted to the Training Pipeline. It shows the currently
deployed neural network architecture, the devised compression ratio and the number of
training epochs. Moreover, it plots the actual training accuracy, loss as well as the training
latency throughout the training process. The lower right of the dashboard plots a histogram
on stream label frequencies.

Finally, at the vertical left part of the dashboard, a panel is available for the user to specify
the parameters of the available search space to be taken into account during exploration. The
user can configure the stream train size, stream test size, default numbers of convolution,
pooling, dense or other types of layers, plus the learning rate and batch size. In the SuBiTO
dashboard the user can also choose the SuBiTO train and test sizes (portion of stream to be
collected during the optimization process), the compression ratio range (low/high), the range
on the number of epochs and the per-layer search ranges for architecture components:
number of convolution layers (low/high), pooling layers (low/high), dense layers (low/high),
as well as LSTM, GRU, vanilla RNN counts (each with low/high), and the dropout range
(low/high).

3.2 A NeSy SuBiTO Proof-of-Concept

The NeSy SuBiTO proof-of-concept accepts MNIST images as inputs and attempts to pinpoint
temporal sequences of numeric symbols on them. In particular, a positive sequence is one
where an even number larger than 6 is observed, followed at some point by an odd number
< 6, followed by a number < 3. Expressed as a Regular Expression: A[0-9]*8[0-9]*[135][0-
9]*[0-3][0-9]*$

Concretely, the automaton encodes:
e f(1,2) :- equals(even,1), equals(gt_6,1). - see an even & >6 digit - go to state 2.
e f(2,3) :- equals(odd,1), equals(leq_6,1). - later see an odd & <6 digit - go to state 3.

e f(3,4) :- equals(leq_3,1). > later see a digit <3 = go to state 4 (accepting state).
e Self-loops/backoffs keep the automaton in the same state when a guard is not met.

So the symbolic part is monitoring the temporal pattern: ... > (even & >6) - ... > (odd & <6)
- ... 2 (£3) and accepts sequences reaching state 4.

2 https://streamlit.io/
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Figure 13: Forward pass (blue arrows) and backpropagation (red arrows) for the NeSy SuBiTO
proof-of-concept.

During the forward pass, images arrive as short sequences and are processed by a
convolutional neural network (Convolutional Neural Network, CNN). The network produces,
for every time step, a vector of class probabilities—the “soft symbols” that represent the
likelihood of each digit. In parallel, the rules you wrote in Answer Set Programming (ASP) are
compiled once into differentiable logic. Concretely, the ASP program is turned into circuits in
Negation Normal Form (Negation Normal Form, NNF) by the Sentential Decision Diagram
builder, and those circuits are then executed as a Symbolic Finite Automaton (SFA). The fusion
step ties these two sides together: a labelling function maps each symbolic variable in the
automaton to the corresponding slice of the CNN probability tensor, and the SFA evaluates
the sequence to produce a single acceptance score that reflects whether the rule-defined
pattern is present. That acceptance score is optionally clamped and length-decayed and then
compared with the ground-truth sequence label inside the loss and metrics block, where the
loss used is binary cross-entropy (BCE). For online use, the prediction pipeline simply runs
CNN to SFA to acceptance score.

During backpropagation, gradients originate at the loss and flow first into the fusion step.
From fusion they pass into the Symbolic Finite Automaton through its differentiable tensor
operations that implement the compiled rules; the rules and circuits themselves are fixed, but
the operations are differentiable so the gradient can traverse them. The gradient then crosses
the labelling function, which carries it from symbolic variables back to the appropriate
probability slices. Once it reaches the probability tensor, it continues into the logits and
through all layers of the Convolutional Neural Network, updating only the neural weights via
the optimizer. The ASP program and the Negation Normal Form circuits remain unchanged
during training, while the Convolutional Neural Network is the sole learnable component.
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The configurations provided by SuBiTO are as discussed in Section 3.1. Indicatively, in this
scenario SuBiTO provides more than an order of magnitude reduction in training time with a
negligible compromise in accuracy, lower than 5%.

3.3 Enriching the Algorithmic Foundations of Synopses-based
Training Optimization

So far, we have described the functionality of SuBiTO assuming the SuBiTO optimizer runs
under Bayesian Optimization and under a specific scoring function, as presented in [REF-03].
In this section we unveil the algorithmic foundation of synopses-based training optimization
introducing, besides Bayesian Optimization, Exhaustive, Greedy, Evolutionary and Heuristic
algorithms for the parameter space exploration by the SuBiTO optimizer. As we
experimentally show, for a variety of scoring functions, these algorithms exhibit
complementary characteristics with respect to the accuracy vs training time trade-offs of their
proposed solutions, as well as the execution time of each algorithm. Since these algorithms
are under peer-review by the time this deliverable is submitted, we here provide only
algorithmic sketches of their functionality.

Exhaustive Search Algorithm: The Exhaustive Search Algorithm constructs all valid
combinations of hyperparameters and layer structures up to a predefined maximum network
depth. For each candidate configuration, the corresponding model is generated, trained and
evaluated using the scoring function. The optimizer then selects the configuration with the
highest score as the optimal solution. While Exhaustive search guarantees that the optimizer
will return the global optimum configuration, its major drawback is the fact that it is
computationally intensive as the search space grows exponentially with the number of
parameters and possible layer types.

Greedy Search Algorithm: The Greedy Search Algorithm adopts an incremental strategy to
construct and tune neural network architectures under streaming constraints. In the initial
phase, the algorithm explores all valid combinations of epoch numbers, sampling rates, and
first-layer types. For each candidate, it creates a simple one-layer network and evaluates it
using the scoring function. The configuration achieving the highest score, reflecting the most
favourable balance between computational efficiency and model accuracy is selected as the
initial structure. Subsequently, once initialized, the algorithm proceeds iteratively by
expanding the network one layer at a time. During each iteration, it examines all valid layer
types and temporarily integrates each into the current network.

Heuristic Search Algorithm: The Heuristic Search Algorithm follows an iterative, Pareto-based
strategy. Unlike Greedy and BO approaches, Heuristic operates under the principle of Pareto
dominance, where a configuration is considered superior (or dominant) if no other
configuration performs better in both objectives, i.e., accuracy and training time,
simultaneously. The optimization process begins with an initial exhaustive search over all valid
combinations of epoch counts, sampling rates, and single-layer architectures. Each
configuration is trained, and its performance is evaluated with respect to accuracy and
training time. These results define a two-dimensional objective space from which the Pareto
front is derived. The configurations on the Pareto front will be explored further in the next
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iterations as promising alternatives. Next, each Pareto-optimal (from the previous step)
configuration is expanded by adding one new layer. This process continues iteratively until a
maximum number of iterations is reached.

Evolutionary Search Algorithm: The Evolutionary Search Algorithm, similar to the other
variants, incrementally constructs the neural network by employing notions from
evolutionary theory, e.g., crossovers and mutations. Generally, this variant evolves a
population of configurations, i.e., triplets of neural network architectures, number of epochs
and sampling rates, across successive generations, and its goal is to find configurations that
‘fit’ well in a setting/environment that is defined by the user’s constraints. The optimization
process begins with an initial exhaustive evaluation of all valid combinations of epoch counts,
sampling rates, and single-layer architectures. From this set of candidates, the optimizer
selects a subset of top-performing networks. These networks represent the most promising
trade-offs between accuracy and training speed. Then, a subset of these elite architectures is
directly ‘promoted’ to the next generation. The remaining configurations, which will be
‘promoted’ to the next generation, are produced by crossover and mutation operations
applied to the current elites. This process continues until a fixed number of generations is
reached.

3.3.1 Experimental Evaluation on SuBiTO algorithms

To stress test the SuBiTO algorithms we utilize two real-world datasets, namely the CIFAR10
and the UCF50 dataset [REF-06]. We examine the performance of the Bayesian Optimization,
Greedy, Heuristic and Evolutionary (termed EVO) algorithms in terms of accuracy, training
time trade-off of the proposed solution as well as based on their execution time.

We further alter the scoring function used while exploring the search space. Besides the
scoring function discussed in Section 3.1.1, which we term ‘Original’, we employ the following
scoring functions:

e Original Scoring Function: see Section 3.1.1.

e F1-like Harmonic Trade-off: inspired by the harmonic mean structure of the Fl-score,
this formulation balances accuracy and training time.

e Exponential Decay Penalty: emphasizes that the score decreases exponentially with
increasing training time.

e Inverse Additive Penalty: a fraction of accuracy over normalized training time. The
denominator increases with training time, gradually reducing the score without sharp
penalties, unlike the Exponential Decay variant.

e Min-based Trade-off: directly captures the ‘weaker’ (the minimum) performance
criterion among accuracy and normalized training time. As such, it benefits
configurations that perform well across all desired properties, i.e., achieve high
accuracy and low training latency.

e Log-Sigmoid Dominance Function: treats the difference between accuracy and
normalized training time as an indicator of relative performance. This is essentially a
sigmoid function which keeps the score within (0, 1) and produces smooth transitions,
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i.e., models that perform slightly better in one aspect gain an adequate advantage,
while large imbalances are downgraded toward the middle of the scale.

We execute our experiments under a Google Colab Pro+ subscription using the A100 GPU
configuration. To show the complementarity of the various algorithms, in Figure 14, we plot
the median accuracy, training time of the solution yielded by each algorithm. In that, each of
the provided features in Figure 14, holds for at least half of the cases of scoring functions in a
per dataset fashion. Relative execution time is encoded in the figure by marker area and
labelled by its multiple vs. the fastest method in the same dataset (1x = fastest).
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Figure 14: Median performance of SuBiTO algorithms across scoring functions for the
CIFAR10 and UCF datasets. Relative execution time is encoded by marker area and labelled
by its multiple vs. the fastest method in the same dataset (1x = fastest).

The complementarity of the algorithms is justified by the following observations:

Bayesian Optimization (BO) is always the fastest in terms of execution time. It is therefore the
best solution in cases of highly volatile data streams which yield frequent concept drifts and,
therefore, frequent optimization decisions. However, the accuracy vs training time trade-off
that it provides is inferior compared to the other alternatives, especially in the, more
demanding, video stream scenario.

Greedy provides solutions of good accuracy but it yields the highest training times. The
training time of Greedy is up to 2x worse than the best training time induced by EVO. In other
words, Greedy can keep high accuracy levels but moderately compromises the real timeliness
of the training pipeline of SuBITO. Its execution time is the second best, though it remains 2x
and up to 4x slower than BO. It is suitable in case high accuracy and fast optimization times
for volatile data streams are prioritized higher than rapid training times.

EVO provides solutions of slightly worse (up to 7%) accuracy compared to the algorithm that
provides the most accurate solutions across these datasets, but it yields the fastest training
times. Therefore, it ensures the real timeliness of the training process. The caveat is that its
execution time is up to 10x times slower than BO and up to 2.5x slower compared to Greedy.
It is therefore suitable for settings where rapid training times and high accuracy are of the
essence, but with lower data stream volatility and rarer concept drifts.

Heuristic yields the best solutions in terms of execution vs training time trade-offs. It often
provides the best accuracy with only 15-20% higher training time compared to EVO. lIts
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execution time though is the highest among all algorithms. Heuristic is an order of magnitude
slower than BO and 3-4 times slower than Greedy. It is also 20-25% slower than EVO.

Overall, our experimental evaluation results in the following main findings:

e Highly Volatile Streams, real timeliness of training pipeline aBO

e High/Moderately Volatile Streams, prioritization on accuracy over training time a
Greedy

e Non-volatile Streams, real timeliness of training pipeline a EVO

e Non-volatile Streams, prioritization on accuracy over training time a Heuristic

3.4 Parallel Synopses Maintenance Revisited

However novel and practical SDEaaS [REF-02] was, it had an important limitation: it emitted
synopses via Apache Flink’s streaming APIs (e.g., DataStream/Table) that were not natively
tensor-compatible for neural training. Each time new synopses were produced, they first had
to be written to Kafka and then loaded into tensor-friendly structures (e.g., Pandas
DataFrames or NumPy ndarrays) for the training pipeline. This extra hop can undermine the
benefits of parallel synopsis maintenance, because the conversion/ingestion steps relied on
tools that are not inherently distributed. To remove this bottleneck, we re-implemented the
SDE on Dask?, enabling parallel synopsis maintenance with direct tensor-compatibility,
eliminating interleaving format transformations and preserving the potential for end-to-end
parallel training.

We further incorporated an inherently parallel synopsis technique, namely the (Weighted)
Priority Sampling Scheme introduced in [REF-07]. The Weighted Priority Sampler (WPS) is a
parallel streaming sampling algorithm designed to efficiently maintain a representative
subset of items from a continuous data stream. It keeps the k items with the smallest priorities
(implemented with a min-heap), where each item’s priority is defined as:

log(U)

ority =
priority weight

Here, U is a uniformly distributed random variable in the interval (0, 1), and weight is a user-
defined importance score for each item. This formulation ensures that higher-weight items
have a higher chance of being included in the sample, while also introducing randomness to
prevent bias. If all items are assigned equal weights, the sampling scheme reduces to uniform
sampling. Figure 15 illustrates the operation of the WPS on a single worker.

3 https://www.dask.org/
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Step 0: Original Values Step 1: Compute Priorities
Index Value Weight U Value Weight Priority
1 3.2 1.0 0.92 51 25 0.419
2 51 25 0.35 1.5 2.0 1.151
3 0.9 1.8 0.72 4.9 0.8 2.014
4 4.0 1.2 0.50 4.0 1.2 0.576
5 23 09 060 priority = 24t 0.9 18 0.198
6 6.7 1.0 0.95 23 0.9 0.568
7 1.5 2.0 0.10 3.8 1.5 0.398
8 3.8 1.5 0.55 2.6 1.1 0.356
9 49 0.8 0.20 3.2 1.0 0.083
10 26 11 0.65 6.7 1.0 0.051
Step 2: Sort by Priority Step 3: Keep Top-k =4 Items
Value Priority Kept Value Priority
6.7 0.051 6.7 0.051
3.2 0.083 . 3.2 0.083
0.9 0.198 0.9 0.198

2.6 0.356 26 0.356

Figure 15: Operation of the Weighted Priority Sampling on a single worker.

Each worker applies the procedure of Figure 15 on its local stream using an add operation
(see [REF-02]). The overall sample is formed in a merge step (see [REF-02]) by choosing the
overall top-K tuples. The following code snippet sketches the operation of WPS in Dask, while
Figure 16, illustrates the parallel execution of priority sampling on 4 workers as presented at
the Dask Dashboard.

# Map over each Dask array block, applying ‘self.add" to produce per-block results.

# - ".compute()’ gathers all per-worker outputs to the driver (in-memory) as a NumPy array.
top_ks_splitted = stream.map_blocks(self.add, dtype=stream.dtype).compute()

# Merge the per-block results into a single global result using your sampler’s merge logic.

merged_PS = self.merge(top_ks_splitted)
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Figure 16: Priority Sampling parallel execution as illustrated at Dask Dashboard under 4
workers.

WPS is a highly useful parallel sampling scheme that is utilized in the SuBiTO optimizer and
across SuBiTO’s training pipelines as described in Section 3.6.

3.5 Data-driven Synchronization and the EVENFLOW Protocol Suite

As noted in Deliverable D5.1, the aim of the smart synchronization protocols for
distributed/parallel neural learning, introduced in EVENFLOW is to provide data-driven
synchronization mechanisms. The vanilla synchronous and asynchronous protocols entailed
in the Parameter Server paradigm [REF-08][REF-09], trigger laggy, full synchronizations on
predefined rounds (synchronous) or allow partial, inaccurate synchronizations
(asynchronous). The EVENFLOW protocol suite [REF-01], instead, requires a sync only when a
concept drift may have occurred based on data driven criteria.

In EVENFLOW, the application provides any thresholded function f(w(t)): RYaR and a threshold
T. w(t) corresponds to the global neural network weights at time t. A global sync is required
only when f surpasses the given threshold T. EVENFLOW decomposes this global trigger to
local tests which can be individually checked by each parallel learner locally, without
communicating with its peers. To achieve that, EVENFLOW employs a geometric approach
which, instead of distributively monitoring the function value, it monitors the input domain
of w(t) and their gradients.

More formally, we consider n learners i € {1,...,n} training a shared model with weight vector
w(t) € R%. Learner i computes a local gradient gi(t) = VWLi(W(t)) Local steps between two
synchronizations are indexed by k = 0,1,... An application-supplied monitoring function
f:R* x R* - R with tolerance T > 0 decides whether a global synchronization is required: a
sync is needed iff f(w(t +x+ 1),W(t)) >T.
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3.5.1 The Basic EVENFLOW Synchronization Protocol

Local updates (per learner i): The learner performs standard gradient steps with learning rate
n>o0:

(t+k) (t+r)

wit+k+1D) =wi(t+x)—n-g; ~ =w)—n-Zog;

Geometric filter (distributed, no communication unless needed): Define the alarm set A =
X € Rd:f(x,w(t)) > T. Each learner i forms a d-dimensional sphere B; = B(c;, 1;) with:

(t+71)

Ef=ogi

c 1= w(t) = (1/2) - Zeog i = 0/2) - |

If B; N A = @, the learner stays silent; if B; N A + @, it requests a synchronization. If no
learner requires a sync, local training continues (no global round completion).

Figure 17: Basic EVENFLOW Protocol Rationale. Since no sphere intersects A, no sync is
triggered.

Global aggregation (upon any sync): The aggregator computes a weighted average of current
local models and broadcasts it:

wt+r+1) =Ty -wi(t+x+1)/(Cy), withy; >0.

;s can quantify cases of learners that receive inequivalent number of tuples, therefore, their
participation in the global average is weighted accordingly. Finally, all learners set w &
w(t+k+1), reset k & 0, and continue.

Correctness: The global model lies in the convex hull of w(t) —anzogi(Hr)i, which is

contained in U; B;. Therefore, if each B; is disjoint from A, then f(w(t+k+1), w(t)) < T. An
intersection on any learner indicates a potential threshold crossing and triggers a
synchronization (potentially false positive).

A fundamental limitation of the Basic EVENFLOW protocol is that in neural learning, the
number of weights may well reach the order of millions. Having learners perform sphere
intersection checks against A in case of high d values may slow down, instead of benefitting,
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the training process. To overcome this limitation, we introduce the Fast EVENFLOW protocol
which utilizes only m << d important values, based on Discrete Fourier Transform (DFT)
coefficients of the local weight vectors, to speed up local intersection checks.

3.5.2 The Fast EVENFLOW Synchronization Protocol

The Fast EVENFLOW protocol operates on offsets from the last global model computed during
a synchronization: Aw(t+k+ 1) =w(t+x+ 1) —w(t). The monitoring task now
becomes f(Aw(t + k + 1),0) > Ty for an equivalent but transformed threshold T;,. For

each learner i, Fast EVENFLOW computes the DFT of the cumulative gradients Gi(K) =
2;‘=0gi(t+r). We denote Gi(K) = DFT(Gi(K)), and retain only the top-m (m <« d) coefficients by

magnitude: G- The linearity of DFT ensures DFT(2,g{"*") = £,DFT(g{**").

Reduced-space filter (per learner): We Define the m-dimensional sphere B; = B(¢;, ;) with:

= —(n/2) - 6,7 = /2) |G

Intersection of B; with the transformed alarm set A, = x: f(x,0) > T, triggers a sync.
Otherwise, the learning step stays local. Aggregation/broadcast proceed as in Basic
EVENFLOW.

Deterministic quality bounds. Using Parseval’s identity and highest-m reduction, the time-
domain approximation error satisfies (IDFT is the Inverse Discrete Fourier Transform):

|Gi(K) IDFT( ("))|

Thus, the center and radius in the reduced space approximate those of the Basic protocol
within (n/2) times the bound above, which upper-bounds both center displacement and
radius approximation due to dimensionality reduction.

3.5.3 Handling Sliding Windows

In streaming settings, a sliding window model is often used in order to account for the most
recent observations, while mark older observations as expired obsolete. The Fast EVENFLOW
protocol can be trivially extended to make synchronization decisions depend only on the most
recent W global steps, rather than all steps since the last global sync.

(t+r)

<J(@x+1) /(1 —m/d) - max,

® _ Zt

Windowed cumulatlve gradients (per learner i): We define §; —t— W+1gl ) and its DFT

Sl.(t) =Xt W+191 . The window-slide recursion is exact due to DFT linearity: S~i(t+1) =

S~l.(t) gl(t WD) + gi““). Each learner maintains Si(t) and keeps only the top-m coefficients
so®

L im’

Windowed reduced-space filter: We replace G(K) with S(t) in the Fast EVENFLOW test:

lm’

By = B(&¥™, #¥), where &' = —(/2) - $& 7V = (/2) - ||sf§31
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If El‘"’i" N Ay # 0, learner | requests a sync; else it keeps up local training. Aggregation upon
a sync remains unchanged.

Error and correctness: The same deterministic bound applies with k+1 replaced by W, i.e.,

m/2) - VW - vV (1-m/d)- MaXre[t—-w+1,t]

track those in full space up to the stated bound.

|gi(r)||. Therefore, decisions in reduced space

Complexity (per step, per learner). Compute in O(dfog(d)) FFTs and reuse FFTs of per-batch
gradients; update the sliding DFT via the O(d) recursion above; maintain top-m coefficients
(selection/heap); run the m-dimensional sphere check. After caching §;, monitoring is
essentially O(m) per step.

3.6 Distribuito SuBiTO: Synopses, Parallelism & Smart Sync All in One

The fully distributed version of SuBiTO incorporates the EVENFLOW advancements described
in Section 3.4 and Section 3.5.2. The architecture of Distribuito SuBiTO is illustrated in Figure
18. The entire implementation of Distribuito SuBiTO is on Dask for parallel synopses
maintenance and Ray* for distributed/parallel training and inference purposes.

As shown in Figure 18, data streams arrive partitioned across Kafka topics. Parallel synopses
maintenance over Dask (Section 3.4) plays a role at both the SuBiTO optimizer and the SuBiTO
training pipeline. At the SuBiTO Optimizer side, Distribuito SuBiTO examines different
parallelization degrees on par with NAS, compression ratio and epoch numbers. Bayesian
Optimization is still used here since, as shown in Section 3.3.1, it is the most preferable option
for highly volatile streams, across scoring functions.

The solution {parallelism, Neural Architecture, epoch number, compression ratio} returned
by BO is conveyed to the Training Pipeline at runtime. This then becomes the currently
deployed configuration. That is, the training pipeline now dynamically configures the
parallelism of synopses maintenance at runtime.

At both the SuBiTO Optimizer and the Training Pipeline, Fast EVENFLOW (Section 3.5.2) is
adopted, across the parallel learners, to provide rapid training times, reducing inter-learner
communication and maintaining high accuracy.

Finally, at the Prediction Pipeline, unlabelled streams are consumed by parallel predictors.
Again, the most up-to-date global neural model extracted by the Training Pipeline is
transferred to the parallel predictors via Kafka. Based on this updated model, the parallel
predictors label the streaming tuples belonging to their assigned partitions. Besides
parallelism, predictors incorporate an important optimization that boosts throughput
(number of tuples being labelled per second). The talk involves prediction batching. As we
experimentally show in Section 3.6.1, throughput is dramatically increased when —instead of
labelling streaming tuples one by one — streaming tuples are first organized into batches and

4 https://www.ray.io/
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are labelled all together. This optimization reduces data exchanges between RAM and GPU

RAM, therefore boosting throughput.
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Figure 18: Distribuito SuBIiTO Architecture. Synopses are derived using SDE on Dask (Section
3.4). The Fast EVENFLOW protocol (Section 3.5.2) is incorporated for smart, data-driven
synchronization. Parallel predictors and prediction batching used to boost inference speed.

3.6.1 Experimental Evaluation of Distribuito SuBiTO

The experiments conducted regarding the distributed SuBiTO are based on the three main
parts of the framework: synopses construction, training and inference. We start by discussing
the experiments on the synopses’ construction part of the framework, focusing on parallel
sampling scalability. We continue by presenting the experiments carried out on the new
distributed Training Pipeline, using the novel Fast EVENFLOW protocol, under the PS
paradigm. The experiments regarding the Prediction Pipeline are presented in the end, testing
the scalability of the inference mechanism, by examining the throughput of its new version.

3.6.1.1 Synopses Scalability

The experiments presented in this section focus on testing the new scalable sampling
approach of the Distribuito SuBiTO framework, using Priority Sampling on Dask and assigning
random weights on each data point (Section 3.4). On this experiment we stream the NSFW
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Dataset (available from HauggingFace) through Kafka and test the sampling execution time
on both the original SuBiTO framework, which uses stratified sampling over NumPy, and the
Distribuito SuBiTO framework, which uses Weighted Priority Sampling over Dask.

The original SuBiTO performs sampling centrally using NumPy, while the Distribuito SuBiTO
uses 6 Dask Workers, performing sampling on Dask. Recall that 6 Dask Workers are used only
for experimental purposes, during the deployment of SuBiTO the number of Dask Workers is
set by the SuBiTO Optimizer. In order to compare the two approaches, we chose to
experiment using sample sizes of 20%, 40%, 60% and 80% of varying dataset size. On each
experiment the dataset is duplicated 25, 30, 35, 40, 45 and 50 times for stress testing SuBiTO
and Distribuito SuBiTO on various stream volumes. The sampling times reported are the mean
across 5 trials, performed on the same computation hardware.

On this experiment we test both sampling approaches on a single machine. It should be noted
that NumPy offers no way of scaling on a large cluster. On the contrary, Dask offers the ability
to scale our application on large clusters, leveraging the computing power of multiple
processors on multiple servers.
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Figure 19: Synopses Scalability, original SuBiTO uses Stratified Sampling on NumPy while
Distribuito SuBiTO uses Priority Sampling on Dask with a parallelism of 6.

As we can see in Figure 19, when the dataset can fit in memory of a machine, the original
approach of stratified sampling on NumPy achieves a quicker execution time compared to the
Dask approach, on nearly all sample size cases. This trend can be observed on the duplication
factors of 25 and 30. This behaviour is expected as NumPy is very efficient when computing
within the limits of system memory, compared to Dask which introduces unnecessary
computation overhead (Task Graph building, Execution Optimization, etc.). When the dataset
is extended 35 times, stretching the system’s memory limits, we observe that NumPy needs
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more time for sampling, compared to Dask, for 40% sample size. As the datasets duplication
factor grows from 40 to 45 and 50 times, surpassing the system’s memory limits, it becomes
evident that Dask’s sampling time scales linearly, compared to NumPy’s exponential scaling.
In the particular case of duplicating the dataset 50 times, we observe that NumPy needs twice
the time for sampling on 20% sample size, compared to Dask and 60 times as long in the case
of 80% sampling size.

The observations made above show clearly that using Priority Sampling on Dask, gives the
Distribuito SuBiTO framework’s sampling approach the ability to handle large data streams
with ease and therefore maintain the real-time character of the application on both medium
and large scale environments.

3.6.1.2 Training Scalability

This section includes the experimental evaluation of the Distribuito SuBiTO Training Pipeline.
This set of experiments focuses on testing the Distribuito SuBiTO learning approach of using
the PS paradigm and the Fast EVENFLOW synchronization protocol, across multiple Learner
instances. Therefore, the execution times reported in this section denote only the time that
the set of Learners needed for training, excluding stream ingestion and sampling. Our results
are compared to the Distribuito SuBiTO framework using the vanilla synchronous protocol
under the PS paradigm. Our tests vary the number of Learners between 2 and 4 and conduct
the experiments using the NSFW Image Dataset® and a subset of the UCF50 Video Dataset,
containing 10 out of the 50 classes. Moreover, we report the number of the PS’s
synchronizations invoked on each case, in order to examine the overall communication
overhead of our approach. The Datasets are continuously streamed on Kafka on a loop. Our
training limit is 1400 batches on the NSFW Dataset and 4000 batches on the UCF Dataset [REF-
06], essentially letting each learning approach process the entire data stream two times. After
reaching the batch processing limit, deducted only when the Learners synchronize with the
PS, each learning process is terminated. On both approaches we use a learning rate of 1073
and batch sizes of 32 and 10, on the NSFW Dataset and UCF Datasets, respectively. Regarding
the Fast EVENFLOW Protocol, our threshold decay function is set empirically, through careful
examination of the learning process and the loss function, with the aim to stabilize learning
throughout the batch processing:

T = 2e O4cwrrentround 4 ()15 for the NSFW dataset,
T = 64 e 0-2current_ round + 0.5

We start by observing the results of the NSFW Dataset, with 2 Learner instances, using the
vanilla Synchronous protocol and the Fast EVENFLOW synchronization protocol, in Figure 20
and Figure 21, respectively. As we can see both synchronization protocols achieve high test
and train accuracy scores, indicating that both the Fast EVENFLOW and the Synchronous
protocols achieve adequate model generalization.

5 https://huggingface.co/datasets/deepghs/nsfw_detect
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Comparing the test accuracy metric of both synchronization techniques, the Fast EVENFLOW
protocol only lacks on test accuracy by 4% shining in terms of both reduced training time and
number of synchronizations. The number of synchronizations is perceived here as a measure
of communication cost between the workers and the Parameter Server. The training time
achieved by the Fast EVENFLOW protocol is 4 times less, compared to the synchronous
protocol, while the number of synchronizations is reduced from 701 to only 7.

70— Train Accuracy
- Test Accuracy
) Aad
60 j#n‘hfw"mmv"| i L
"ln"" — 1 :
F‘il’m !/
504 " —
N
P o
x ki
o 1
g 404 Al, Y
S W"
o W
g i
< 30 i
i
;
20 -"ﬂ
)
!
104 - -
Learning Time: 142.97 s
Number of Syncs: 701
0 T T T T T T T T
0 200 400 600 800 1000 1200 1400

Batches

Figure 20: Synchronous Protocol using 2 Learners on the NSFW Dataset.
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Figure 21: Fast EVENFLOW Protocol using 2 Learners on the NSFW Dataset.

We continue by examining the same experimental setup, with the only exception of using 4
Learners this time. As we can see in Figure 22 and Figure 23 regarding the Synchronous and
Fast EVENFLOW synchronization protocols, we observe similar results. Both approaches
achieve equally high test accuracy scores, generalizing their models adequately. The training
time of the synchronous protocol is reduced to 92 seconds (s), compared to the 143s needed
on the 2 Learner approach, while the training time of Fast EVENFLOW is decreased only
slightly going from 35s to 31s. The use of more Learners did not benefit the FAST EVENFLOW
approach on the number of synchronizations but reduced the synchronizations of
Synchronous in half. This training time of the Fast EVENFLOW protocol is a consequence of
processing more than 2000 batches, compared to the 1400 batches that the synchronous
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approach processes on the same experiment. As we mentioned earlier the NSFW Dataset
contains 700 batches and is streamed on a loop, though due to the nature of the Fast
EVENFLOW protocol we are able to deduct the number of batches that are processed by the
Learners, only when the synchronization process is initiated. Therefore, we stop the training
process when the Learners synchronize with the PS and we have processed at least 1400
batches, leaving the experiments regarding the Fast EVENFLOW protocol, always processing
more batches compared to the synchronous approach. But the important finding resides to a
different, more important observation.
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Figure 22: Synchronous Protocol using 4 Learners on the NSFW Dataset.
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Figure 23: Fast EVENFLOW Protocol using 4 Learners on the NSFW Dataset.

The Fast EVENFLOW synchronization protocol using 2 Learners (Figure 21) provides the
same accuracy as the Synchronous protocol using 4 Learners (Figure 22) while reducing the
training time by a factor of 3 and the number of synchronizations by 2 orders of magnitude,
all while using less hardware, specifically half the number of Learners and therefore half
the number of GPUs. Regarding the communication overhead, Fast EVENFLOW transmits 21
messages during the training process while the synchronous approach transmits 1755,
reducing drastically the communication cost of the training process. This indicates that the
Fast EVENFLOW protocol can indeed provide a scalable solution to perform Distributed
Learning on the Distribuito SuBiTO platform, while maintaining the real-time character of the
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application, through reduced training time and communication cost, with half the hardware
requirements.

We continue the experimental evaluation by presenting the experiments conducted using the
UCF Dataset. The UCF Dataset is larger in size compared to the NSFW Dataset used in the
previous experiments both in terms of data items and item size, as videos carry much more
information compared to images. Therefore, we utilized the Ray Store library, essentially
sharing the data across the Actors (Learners), minimizing the memory footprint of the training
process. This resulted in a memory efficient training process, which indeed impacted the
training time. Given this remark, it is evident that there should be no comparison of the
training times between the experiments conducted with the NSFW and the UCF datasets.
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Figure 24: Synchronous Protocol using 2 Learners on the UCF Dataset.
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Figure 25: Fast EVENFLOW Protocol using 2 Learners on the UCF Dataset.

The results of using 2 Learners with the Synchronous and the Fast EVENFLOW protocol on the
UCF dataset are provided in Figure 24 and Figure 25, respectively. Both approaches reach a
Test accuracy score of 60%, while the synchronous approach seems to lack in terms of model
generalization given a train accuracy score of nearly 70%. The Fast EVENFLOW occasionally
improves Synchronous on model generalization, due to the fact that by synchronizing less
frequently, it avoids overfitting that occurs during the streaming training process. In terms of
communication cost, Fast EVENFLOW requires only 12 synchronizations compared to 201 of
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the synchronous approach, reducing synchronization by an order of magnitude, and therefore
the communication cost, while achieving the same training performance. This observation is
reflected on training time as well, with the Synchronous approach 35s training time,
compared with the 8s of Fast EVENFLOW.
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Figure 26: Synchronous Protocol using 4 Learners on the UCF Dataset.
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Figure 27: Fast EVENFLOW Protocol using 4 Learners on the UCF Dataset.

We can see the results of on the UCF dataset using 4 Learners in Figure 26 and Figure 27. We
observe that the training time is improved in both cases, compared to the 2 Learner approach
discussed above. Both protocols achieve concise accuracy metrics with the Fast EVENFLOW
approach lacking just by 7%. The use of more Learners, reduced the synchronizations of
Synchronous in half. This observation is related to the fact that Fast EVENFLOW already
performs a very limited number of synchronizations, with further reduction risking the
stability of the training process. Regarding learning time, Fast EVENFLOW is again faster,
needing 7s compared to the 24s of Synchronous approach. Again, we can see that comparing
the use of Fast EVENFLOW with 2 Learners (Figure 25) and the use of Synchronous with 4
Learners (Figure 26), Fast EVENFLOW achieves the same test accuracy, while reducing
training time by a factor of 3 and the number of synchronizations by an order of magnitude,
all while using half the number of Learners and therefore half the number of GPUs.
Regarding the communication overhead, Fast EVENFLOW transmits 36 messages during the
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training process while the synchronous approach transmits 505, reducing drastically the
communication cost of the training process, once again.

3.6.1.3 Inference Scalability

Our last set of experiments focus on the Prediction Pipeline and the updated SuBiTO
Predictors. Our approach uses parallel Predictors performing inference and communicating
their results to a server orchestrator process. This experimental setup focuses only on
examining the throughput of the updated Predictor and therefore uses a static pre-trained
neural network throughout the experiment. It should be noted that on a real deployment
setting the orchestrator process constantly receives the up-to-date model of Training Pipeline
and deploys it for inference on the fly. These experiments focus on measuring the increase in
throughput that we get when using multiple Predictor instances, compared to the original
SuBiTO approach of using a single Predictor. In these experiments we utilise the NSFW dataset
and various types of hardware. Each result presented below is the mean value of 10 trials.

We start by examining the limits of a single Predictor running on a standard T4 GPU on Google
Colab Pro+. We experiment with various batch sizes and a parallelism of 1 and report the
achieved throughput in Figure 28. The results indicate that we achieve higher throughput on
batch sizes ranging from 32 to 512, with the maximum being achieved by a batch size of 512.
This result indicates that our next experiments should be conducted with a batch size within
the aforementioned range.
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Figure 28: Throughput across batch sizes.

Using the same hardware we utilise a varying number of Predictors, each as a separate Google
Colab Pro+ instance, and examine the effect that multiple Predictors can have on throughput.
The results regarding T4 Predictors using batch sizes of 32 are presented in Figure 29. We
observe that going from 1 to 2 Predictors yields nearly twice the throughput. When scaling to
more Predictors we observe that throughput increases almost linearly. The “almost” linear
increase is due to the effect of the orchestration process that handles model reception,
transmission and fetching of the inference results, therefore introducing latencies.

We continue our experiments by deploying the Prediction Pipeline on state-of-the-art
hardware, namely the A100 GPU. Each Predictor is modelled as a separate Google Colab
instance, though limited to 3 instances due to Google’s policy restrictions. Our experiments
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examine throughput by varying the number of Predictors within Google’s policy limits and use
a batch size of 32. The results are presented in Figure 30.
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Figure 29: Throughput of T4 Predictors with batch size = 32.
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Figure 30: Throughput of A100 Predictors with batch size = 32.

The results indicate twice the throughput, compared to the respective same amount of T4
Predictors, which is a result of using more advanced hardware. Specifically, using 3 A100
Predictors we perform inference on more than 50000 images/s, whereas using 3 T4 Predictors
the throughput is decreased by 26000 images/s.
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4 Scalable Neurosymbolic Complex Event Recognition

Consider the following pattern, stemming from a smart factory scenario, similar to the
Industry 4.0 EVENFLOW use case, where raw robot navigation data are monitored:

R_successful_delivery := (-StationDetected)* - (-StationDetected) - (StationDetected A
-DeliveryManeuver)* - (StationDetected A DeliveryManeuver)

The Simple Event (SE) StationDetected occurs when a robot detects a station in the smart
factory. The DeliveryManeuver SE occurs when the robot is moving at a certain speed,
changing directions while manoeuvring to approach the detected factory station. The
Complex Event (CE) R_successful_delivery is satisfied when initially a robot has not detected
a station, then it detects one and, having detected the station, attains the required speed and
repeated change of movement direction to approach it. The Complex Event Recognition (CER)
system continuously evaluates the rapidly ingested robot streams, converts them to the
aforementioned SEs and deduces a successful delivery CE.

In such a scenario, each SE represents the detection of a behaviour that can only be deduced
by a machine or neural learning model. The role of the neural model is to receive streams of
frames (e.g., from vision, LIDAR, or other contextual cues) and the manoeuvring behaviour
for delivery and provide classification outcomes, i.e., class/symbol A = StationDetected and
symbol B = DeliveryManeuver, for CER to be possible. Then, a CER engine will ingest the
aforementioned SEs (symbols A, B) and evaluate the occurrence of the involved CEs.
Evidently, such scenarios call for both neural inference and symbolic CER to operate
synergistically.

FlinkCEP is the CER API of a state-of-the-art Big Data platform, namely Apache Flink. FlinkCEP
focuses on scaling-out the computation to a number of machines in a computer cluster/cloud,
working in parallel on partitions of the streams, to speed up continuous analytic outcomes.
FlinkCEP provides a CER language of high expressive power in terms of formulating patterns
for CEs. However, there are certain barriers to the adoption of FlinkCEP. First, FlinkCEP
requires business analysts, who are not necessarily expert programmers, to write functional
programming code. Second, pattern expression and parameterization involve cumbersome
notation, making the whole code writing process error prone. Third, with the proliferation of
loT devices as SE producers, the classic paradigm in which we first accumulate raw data at the
cloud and then submit a FlinkCEP job is severely suboptimal. For instance, in our running
example, sending video frames from robots to the cloud and then performing CER would
deplete the available bandwidth, causing network latencies that would prevent the real-time
character of the involved applications. What should be done instead, is to ship trained neural
models and FlinkCEP jobs to network devices, assign parts of the SE and/or CER process
directly on them, and only a subset of SEs and/or CEs should be delivered to the cloud, alerting
for the occurred events.

Despite the fact that few previous efforts have integrated neural and symbolic CER, no
existing approach has enabled neither parallel processing of neurosymbolic CER nor
optimized, distributed neurosymbolic CER over loT settings. The work presented in this section
contributes to advancing the state-of-the-art by tackling all the aforementioned challenges.
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We introduce NeuroFlinkCEP [REF-10], the first framework that integrates neural (aka sub-
symbolic) and symbolic CER over a state-of-the art Big Data platform for parallel processing
that is also optimized to operate distributedly over loT settings composed of various devices.
To alleviate business analysts from the burden of writing FlinkCEP programs, NeuroFlinkCEP
receives expressed patterns in the form of extended regular expressions (RegEx) and
transforms them to FlinkCEP jobs. To enable detection of SEs and CEs, NeuroFlinkCEP
integrates any chosen, domain-specific neural model inside the FlinkCEP job deployed per
device. To optimally decide whether operators of the CER workflow should be executed at
the cloud or the device network side, NeuroFlinkCEP enhances a state-of-the-art 1oT optimizer
with CER-specific optimizations.

4.1.1 NeuroFlinkCEP Architecture

NeuroFlinkCEP’s key architectural components are: (i) the RegEx2-NeuroFlinkCEP operator,
(ii) the synapSEflow operator and (iii) the DAG*4CER Optimizer. RegEx2NeuroFlinkCEP and
synapSEflow operators are nested into a newly introduced NeuroFlinkCEP operator. We have
developed a NeuroFlinkCEP GUI for graphical workflow design using NeuroFlinkCEP operators
and we have incorporated it as an extension to a commercial platform, Altair Al Studio®.

The RegEx2NeuroFlinkCEP operator receives as input Extended Regular Expressions
describing the pattern based on which a CE would be detected, i.e., this nested operator
describes the symbolic part of a NeuroFlinkCEP operator. As shown in Figure 31, each such
pattern can be parameterized with time windowing constraints as well as selection strategies
and consumption policies supported by FlinkCEP. FlinkCEP supports the following SE selection
strategies: (i) Strict Contiguity, (ii) Relaxed Contiguity, and (iii) Non-Deterministic Relaxed
Contiguity. For event consumption policies, FlinkCEP provides: NO_SKIP, SKIP_TO_NEXT,
SKIP_PAST_LAST_EVENT, SKIP_TO_FIRST[p], and SKIP_TO_LAST[p]. These can be graphically
parameterized in a NeuroFlinkCEP operator via the developed extension on Altair Al Studio
(Figure 32).

The synapSEflow operator nests the TensorFlow Java API within the NeuroFlinkCEP operator.
It receives as input the TensorFlow (.pb) file with a trained neural model. The operator loads
the model, composes features from incoming raw streams (e.g., video frames, positional
streams), feeds them through the model, and derives labels/symbols. It then (i) directs the
simple event outputs to the core of FlinkCEP for pattern matching and (ii) listens to a
broadcast stream for model updates via Kafka, installing received models so predictions use
the latest version. If no .pb file is specified, the input to a downstream NeuroFlinkCEP
operator should be another, upstream NeuroFlinkCEP operator feeding SEs for pattern
matching.

The DAG*4CER Optimizer incorporates a state-of-the-art loT optimization algorithm, DAG*
[REF-11], and extends it with FlinkCEP-specific optimizations. DAG* topologically sorts the
logical workflow and progressively examines physical instantiations to network devices for
the involved operators, computing g(n)=f(n)+h(n) where f(n) is the current partial-plan cost

6 https://altair.com/altair-ai-studio
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and h(n) is an admissible heuristic. Two rules enforce graph (not path) outputs: (i) at each
step, only one operator can be examined for instantiation; (ii) no logical operator can be
instantiated unless all upstream operators are already in the current partial plan.

DAG*4CER adds CER-oriented rewritings:

e Pattern Decomposition: assigns SE detection across devices instead of placing the
entire pattern at one device),

e Early Filtering: prunes irrelevant events with DataStream.filter() before FlinkCEP,

e Reordering: evaluates selective predicates first within FlinkCEP), and

e Pushing Predicates Upstream: moves filtering to source connectors like KafkaSource
to save network costs.
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Figure 33: NeuroFlinkCEP Workflow Design, loT Optimization & Distributed Execution.

4.1.2 From Logical CER workflows to Physical CER over loT Executions

NeuroFlinkCEP’s users and applications are able to perform the numbered tasks in Figure 33.
(@ The user interacts with the NeuroFlinkCEP GUI in Altair Al Studio to design and
parameterize their own logical workflows. The user drags and drops each NeuroFlinkCEP
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operator on a canvas and connects NeuroFlinkCEP operators and Kafka Source/Sinks to define
the data flow as shown on the upper right part of Figure 33. As shown in Figure 32, for each
NeuroFLinkCEP operator, the user graphically defines the pattern of interest, selection
strategy, consumption policy, time window for the nested RegEx2NeuroFlinkCEP operator.
Also, they specify the .pb file path for the nested synapSEflow operator. @ When the user
submits the logical workflow, a Logical Workflow Parser checks its validity. It then converts
this logical plan to a JSON file that is fed to DAG*4CEP optimizer and to a Neural Net Repo.
@ The DAG*4CER optimizer detects the available network devices via a Device Registry and
examines physical assignments to devices for each NeuroFLinkCEP operator, outputting the
optimal physical plan. It also projects the optimized physical plan back to the GUI of Altair Al
Studio. There are 3 options for the user to interact with the DAG*4CER Optimizer: (a) optimize
and deploy: which instructs the Optimizer to directly feed the optimal plan to the Job
Dispatcher, (b) only optimize: which instructs the Optimizer to show the suggested physical
plan in the GUI for the user to inspect it or change it, before deploying it, (c) only deploy:
which will feed the workflow, after (b), to the Dispatcher. @ In @(a), @ (c), the DAG*4CER
optimizer feeds the physical plan to the Job Dispatcher, while the Neural Net Repo provides
the .pb files for the neural nets engaged in the CER workflow. @The Job Dispatcher submits
Flink jobs to the network sites based on the assignment of NeuroFlinkCEP operators by
DAG*4CER. @ Detected CEs are continuously visualized in an interactive dashboard (Figure
34). @The deployed plan is monitored and statistics including processing and network
latency, throughput and other relevant metrics are collected for future DAG*4CER plan cost
estimations.
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Figure 34: NeuroFlinkCEP dashboard for the Industry 4.0 Use Case.
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5 Status of the EVENFLOW Scalability Toolkit

In addition to what was reported in Deliverable D5.1, the EVENFLOW code repository and the
Scalability Toolkit in particular, now hosts the 3 main pillars of EVENFLOW scalability. Namely,
a) the Synopses-as-a-Service (SDEaaS), (b) SuBiTO and (c) NeuroFlinkCEP. SDE on Dask along
with Distribuito SuBiTO on Ray will be provided open source directly after the corresponding
systems’ papers are published.

"% Scalability-Toolkit  Pubiic X7 EditPins v ®Watch 0 v % Fork 0 @~ ¥ Star 0~

# main v+ ¥ 1Branch © 0Tags Q Go to file + Add file ~ About bic
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Figure 35: Status of the Scalability Toolkit at EVENFLOW Repository.

Each of these pillars have also dedicated github.io sites that are continuously in sync with the
overall Scalability Toolkit advancements at the EVENFLOW main branch. In particular, SDEaaS
has a dedicated site at https://sdeaas.github.io/.

And Synopses for All: a Synopses Data Engine for Extreme Scale Analytics-as-a-Service
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Figure 36: SDEaasS at https://sdeaas.qgithub.io/.
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SuBiTO has a dedicated site available at: https://subito-ai-for-bigdata.github.io/.

SuBITO: Synopsis- based Training Optimization for Continuous Real-Time Meural Learning over Big Streaming Data
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Figure 37: SuBiTO at https://subito-ai-for-bigdata.qgithub.io/.

NeuroFlinkCEP has a dedicated site available at https://neuroflinkcep.github.io/.
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%Nmrﬂinﬁﬂt Meurosymbolic Complex Event Recognition Optimized across loT Platforms
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Figure 38: NeuroFlinkCEP at https.//neuroflinkcep.github.io/ (part 1).
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Figure 39: NeuroFlinkCEP at https://neuroflinkcep.qgithub.io/ (Part 2).

Each dedicated site provides additional material including the published papers, videos and
images as well as posters and presentation slides of the involved scalability pillars.
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6 Scaling EVENFLOW Use Cases

6.1 The SSTRESSED Framework for the Industry 4.0 Use Case

Detecting Simple, Derived Events (SDEs) is the first step towards Complex Event Recognition.
In time critical applications, such as safe robot navigation in dynamic smart factory
environments of Use Case Il, SDE detection should be performed continuously over
voluminous streams of movement data arriving at high speeds. In such scenarios, extracting
SDEs out of raw streams is a challenging task engaging (a) online neural network training for
continuously maintaining an up-to-date model for SDE labelling purposes and (b) semantic-
aware trajectory processing for identifying homogeneous movement portions, defining the
SDE duration, before using the neural model for labelling it. By definition, output SDEs are
simple pieces of information, but the volume and velocity of the original raw streams (Figure
40) in large scale smart factory applications call for scaling out (parallelizing) the computation
to a number of machines to ensure real-time processing. Therefore, both (a) and (b) should
be set up in state-of-the-art, relevant platforms. To tackle these challenges, we developed
SSTRESED, a prototype for scalable SDE detection over streaming movement data. For the
first time, SSTRESED establishes a direct connection between semantic trajectory
computation and SDE detection in the streaming context. This is in contrast to prior art which
uses predetermined, application-defined time windows to a priori restrict eligible SDE
durations.

time e pos_x pos_ v pos_® - rot_w SDE

8.35 —3.626 14.921 0.258 0.9951 stopped at Stationl
30.57

41.15 —7.446 23.866  0.257 0.0977 moves to Stationd
41.12 —7.444 23 867 0.258 0.0972 rotating

Figure 40: Example training stream for a single simulated robot. Unlabelled movement
streams.

The SSTRESSED Framework [REF-12], illustrated in Figure 41 and described in Deliverable
D5.1, composes two connected pipelines distributed across worker machines. In the Industry
4.0 use case of EVENFLOW, truthful, timestamped and labelled movement streams are
continuously produced by robotic simulators, as SDEs and their raw features, per robot.

The training pipeline (blue-coloured path) in Figure 41 abides by the one reported in Figure 2.
It continuously receives these robot movement time series ingested in Apache Kafka
partitions of the Training Topic. The Training Topic is read by parallel PyTorch Learners. Each
such learner utilizes an identical neural model (specified by the application) but performs the
training process on a separate set of robots. The local models learned at each Learner i (top
of Figure 41) are synchronized into a global neural model maintained by a Parameter Server.
At a global model update, new weights of the neural network are written to a Weights Topic
of Kafka.
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Figure 41: SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines [REF-12].

The SDE detection pipeline (red-coloured path in Figure 41) also abides by Figure 2 and
extends it with semantic trajectory episode determination via SeTraStream [REF-13]. It
receives raw, unlabelled streaming movement data, partitioned in the Movement Streams
Kafka Topic. These incoming tuples, ingested directly from the application field, have the
same schema as those of the Training Topic, but lack a label/SDE field. Ingested Movement
Streams of robots (or, optionally, samples of them) are processed by a distributed version of
SeTraStream [REF-13] developed in Apache Flink. Distributed SeTraStream uses each parallel
Segmentor i to continuously identify homogeneous movement portions based on the
ingested features per robot, thus semantically and temporally segmenting each trajectory. In
that, the duration of a SDE is determined, which also bounds the feature tensors that should
then be used for labelling the SDE.

Let us assume that there is a buffer containing batches of records of a homogenous
movement. The segmentation algorithm of SeTraStream starts by extracting a batch of m
records from the streaming data. Once the batch is extracted, its similarity is evaluated
against the last batch that was found to be consistent with the previous batches within the
current buffer of a specific movement. If similarity is satisfied, the algorithm continues by
testing the new batch against the last 2n batches in the buffer, where n starts from 0 and
increases until 2n reaches the buffer length. This process continues until the batch is found
to be similar to the entire buffer, in which case it is appended to it. When no similarity is
detected, the current buffer is assumed to be a separate movement, and the new batch
initializes a new buffer corresponding to the next movement. The algorithm then repeats.
Similarity is quantified using a metric known as the RV coefficient. The RV-coefficient
constitutes a generalization of the correlation coefficient for matrix data. We organize W, into
a d x m matrix, where d is the number of movement features and m represents a number of
vectors (at different timestamps) that are the columns of the matrix. Similarly, W, is organized
in a d x m matrix i.e. n columns exist. The RV coefficient is mathematically defined as follows:
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TT(WIWITVVrM/rT)
VTr((W,w)2) Tr((W,W,T)?)

RV(W, W;) =

Where W, and W, are the matrices to be tested if similar, WT,, WT, refer to the transpose
matrices, Tr() denotes the trace of a matrix and 0 < RV < 1. RV values closer to zero are
indicative of uncorrelated movement patterns. Based on a division point threshold o, matrices
WI, Wr can be either assigned to a pair of different episodes or to a single episode.

Each parallel Segmentor i writes the result of its processing to an intermediate Kafka topic
connecting Distributed SeTraStream with a PyTorch Semantic Tagger in the red-coloured
path. Each parallel Tagger i (bottom of Figure 41) of the Semantic Tagger, at any given time
instance, reads the up-to-date weights from the Weights Topic and uses the updated neural
model to label SDEs. The final SSTRESED output goes to the SDEs Kafka topic in the form of
tuples as illustrated in Figure 42 (per robot).

Time_from Time_to SDE

4.25 8.35 moving to Station2
8.35 8.36 stopped at Station2
39.00 41.15 rotating

Figure 42: SSTRESED output SDE Stream for the movement of a single robot.

6.1.1 SSTRESED Experimental Evaluation

In Deliverable D5.1 of EVENFLOW we introduced the SSTRESSED architecture [REF-12] and
reasoned about its utility in the Industry 4.0 use case. In this section, we experimentally
validate the feasibility and scalability of SSTRESSED implementation over robot movement
data.

To evaluate the performance of the SeTraStream in accurately classifying robot motion data
of homogeneous movement segments, three widely used classification metrics are employed:
Precision, Recall, and F1-Score. These measures provide complementary insights into the
model’s predictive behaviour and are suitable for problems where class imbalance or partial
misclassifications may occur.

The training pipeline, in the scheme of streaming data input, employs a distributed learning
method so that the system can benefit significantly in terms of time through data allocation.
In applications such as robot navigation within a smart factory environment, where robots
are prone to intermediate collisions, the distributed approach helps prevent system latencies
and ensures a more stable processing flow. The training pipeline was executed for 1, 2, and 4
workers, and the results of the training time per number of workers are presented in the
diagram below. As Figure 43 illustrates the training time upon using 2 learners reduces by
1.7x, while it further decreases to 2.7x times in the case of 4 learners, compared to the single
learner alternative. The difference between the linear decrease in training time i.e., 2 times
for 2 learners and 4 times for 4 learners, is due to the fact that in this experiment we utilized
the synchronous, instead of the EVENFLOW, protocol of the parameter server paradigm for
parallel training. We did so, in order to stress-test the accuracy of the Prediction Pipeline of
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SSTRESED even in the presence of laggy transfer of the most up-to-date model, from the
Training to the Prediction Pipeline.

Training time

160

140 4

=
[ ]
o

=
(=]
o

80
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40
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2
Number of workers

Figure 43: SSTRESED Training Pipeline performance.

Figure 44 presents the SSTRESED throughput, illustrating the number of predictions per
second with respect to the number of taggers (predictors) operating in parallel. As shown in
the following diagram, the system throughput increases with the number of taggers. In
particular, making the transition from 1 to 2 predictors/taggers increases the throughput by
4x, while from 4a8 taggers throughput increases by 3x. This super linear increase in
throughput comes from the fact that predictors, contrary to learners, do not need to
synchronize and can operate independently provided they have the most up-to-date neural
model at any given time.

Throughput

2000 4

1500 -

1000

Number of predictions / sec

500 +

2
Number of taggers

Figure 44: Performance of SSTRESED Prediction Pipeline.

An important question that needs to be answered involves the accuracy of SSTRESED. Instead
of evaluating the accuracy of the Training Pipeline and the Prediction Pipeline independently,
we choose to directly show the overall accuracy of SSTRESED in the detected SDEs. This is
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because, by reporting accuracy of the detected SDEs we provide the cumulative accuracy of
the framework across (i) the Training Pipeline: not only how accurate is the neural network
but also how the small time lap between producing the most up-to-date neural model at each
epoch and deploying it across predictors affects the overall accuracy, (ii) the Segmentation
part of the Prediction Pipeline: how well robot trajectories are segmented to homogeneous
portions of movements (episodes) and (iii) how well the neural model deployed at the
Prediction Pipeline, generalizes to unseen data.

Cumulative accuracy over time - 1 workers Cumulative accuracy over time - 2 workers Cumulative accuracy over time - 4 workers
0.8

07
0.6 4 0.6
0.5 4 05

5 0.4 4 0.4
0.3 03
024 0.2
0.1+ 0.1 0.1

0.0+ 0.0 0.0

0 100 200 300 400 500 600 700 800 0 50 100 150 200 250 300 350 400 o 25 50 75 100 125 150 175 200
Epoch Epoch Epoch

Figure 45: Cumulative SSTRESED accuracy vs Number of Epochs.

Figure 45 shows SSTRESED accuracy across the number of epochs. The number of epochs here
denotes the time frame of SSTRESED operation since each new epoch yields a new neural
model that is conveyed from the Training to the Prediction Pipeline. This is the reason the
number of epochs in the horizontal axis of the figure is halved across the plots, every time we
double the number of workers, i.e., the entire dataset is partitioned to more workers. As
Figure 45 shows, SSTRESED achieves a cumulative accuracy of 80% with the exception of 4
workers where accuracy reaches 70%, but for early stopping at epoch 200 due to the reason
mentioned above. This 70% accuracy at epoch 200 is consistent with the rest of the cases (1
worker, 2 workers) proving that the only reason for the 10% lack is the boundedness of the
robot dataset rather than convergence issues of the framework.

Finally, it is important to note that the lower absolute throughput numbers in Figure 44
compared to Figure 29 and Figure 30 comes from the fact that the current Prediction Pipeline
includes SeTraStream for segmentation purposes. SeTraStream must not be considered as a
performance bottleneck though, since the absence of SeTraStream significantly compromises
the accuracy of the framework. This is due to omitting the segmentation step in a setup where
SDEs are durative. Therefore, even if a version of SSTRESED without SeTraStream provides
much higher throughput, the accuracy of the framework remains significantly low. This is due
to the fact that the predictors retain correct tagging of individual motion tuples due to the
neural model, but even a single incorrectly tagged tuple splits durative SDEs into non-
consecutive time periods and introduced erroneous interleaved SDEs, as well. In other works,
if SSTRESED makes predictions on individual tuples, instead of episodes, most of the labels
remain correct, but even few wrongly labelled tuples lead to SDEs of invalid duration.
Therefore, the overall prediction accuracy is diminished.

To validate our claim, Figure 46 shows the accuracy and throughput of SSTRESED without
SeTraStream. As shown in Figure 46, throughput dramatically increases up to 15x for 1
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predictor upon omitting SeTraStream from the prediction pipeline, but accuracy receives a
maximum value below 0.25

Throughput

11000

Accuracy over time

0.25
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Number of predictions / sec

00s 6000
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Number of taggers
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Figure 46: SSTRESED performance without SeTraStream.

6.2 The RATS+ Framework for the Personalized Medicine Use Case

6.2.1 Overview on the RATS Framework

Tumour simulations such as those run on PhysiBoSS 2.0 are expensive, highly parallel, and
parameter-rich. Each simulation corresponds to a tumour treatment methodology under
examination, described by three TNF parameters—drug administration frequency, duration,
and concentration. To cut down time to market for new therapies, each set of simulations
needs to be properly scheduled. That is, there is a need to aid life scientists reserve a sufficient
number of core hours for their medical study each time, devote the proper number of cores
to each simulation so that the study finishes as early as possible and prioritize higher the most
promising simulations so that early, useful results can be extracted and prematurely end the
rest of the unpromising simulations if needed. In realistic studies, the number of possible TNF
combinations is large: in the initial RATS framework [REF-14], described in Deliverable D5.1,
our experiments consider 512 TNF triplets and core configurations up to 32 cores per
simulation, resulting in 2,560 different {TNF, cores} configurations that could potentially be
executed on the MareNostrum 4 supercomputer. Running all these configurations just to
learn how performance and treatments behave is clearly infeasible. At the same time, life
scientists need answers to three tightly coupled questions: (i) how many cores should be
assigned to each simulation so that cores are not under- or over-utilized, (ii) under a global
core-capacity cap, which simulations should run at each time step, and with how many cores,
to minimize the overall time of the study, and (iii) among all candidate treatments, which ones
look most promising and should therefore be prioritized. RATS addresses this full chain of
decisions: it learns performance models from a small number of micro-benchmarks and then
solves a series of knapsack-style optimization problems to prescribe core allocations and
derive a schedule.

The RATS framework [REF-14] starts from a discretized treatment space. TNF Frequency,
Duration, and Concentration are discretized into fine-grained ranges via [low, high, step]
triplets. All combinations form the set SS of TNF triplets under study. For each simulation S; in
SS, the user may choose a core count k from a set of valid core configurations (e.g., 2, 4, 8,
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16, 32). For every pair (simulation, core count), three quantities matter: throughput (THP;(k)),
simulation time (STi(k)), and utility (UTLi). RATS tackles two optimization problems. First, it
chooses, for each simulation, the “sweet-spot” number of cores—the value of k where
doubling the cores from k/2 to k still yields a good throughput ratio but avoids diminishing
returns. Second, if not all simulations can be started at once due to capacity constraints, it
must schedule the simulations in time, subject to a global core capacity cap, so that the total
completion time is minimized and high-utility treatments tend to finish earlier. This second
problem is formulated as a multiple-choice knapsack: for each simulation, exactly one
(simulation, k) choice is picked, and the sum of assigned cores at any time cannot exceed the
capacity cap.

To solve these optimization problems, RATS needs good predictors for throughput, simulation
time, and utility. It cannot, however, afford to run all 2,560 configurations just for training.
Instead, employs Bayesian Optimization (BO) with Gaussian Process (GP) regressors. The RATS
Modeler component uses a small simulation budget N (5% or 10% of all 2,560 configurations)
and iteratively selects new configurations to benchmark by maximizing an acquisition
function over the {TNF, cores} space. Each new micro-benchmark yields observations of
throughput, simulation time, and utility; these are used to update three GPs, one per target.
Practically, RATS uses a Rational Quadratic kernel (which empirically captured the variability
of tumour simulations best), no explicit warm-up set, and only two acquisition functions: an
LCB-type function for throughput and an El-type function for simulation time, with utility
modelled passively. This design dramatically reduces the number of required sample
simulations without sacrificing GP accuracy, enabling useful models from as little as 5-10% of
the configuration space.

Once the regressors are trained, the RATS Solver uses them to make decisions. For each
simulation, it queries the throughput model over all allowed core counts and picks the k that
maximizes a throughput-ratio-based objective, effectively identifying the optimal core
allocation per simulation. This defines both the optimal core hours if all simulations are
launched at once and their expected individual completion times. If the total number of cores
required exceeds the available capacity, the RATS Solver turns to the second optimization
stage. It first queries the utility regressor to obtain an expected utility for each simulation and
sorts the simulation queue in descending utility. Then, in rounds, it solves a multiple-choice
knapsack: it chooses a subset of simulations and core counts that fit within the capacity cap,
favouring high utility and shorter simulated runtimes. The chosen simulations are submitted
and, later on, once they complete, capacity is freed, and the solver iterates until all
simulations are processed.

Using a ground-truth dataset of 2,560 simulations on MareNostrum 4 as reference, in [REF-
14] and Deliverable D5.1, we show that with N = 10% (256 sample simulations), RATS
approximates the optimal core hours within 3-9% error, while with N = 5% (128 samples), the
error is around 10-18%. Under strict capacity constraints (cap = 5%|SS|), RATS matches the
“Optimal” scheduling solution: it reduces total simulation time by up to four days in resource
constrained environments and core hours by up to 15% to less constrained setups, compared
to the best manual baseline (always using a fixed core count), while also achieving higher
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aggregate utility. These results justify the core design of RATS as a data-efficient, BO-driven
resource allocator and scheduler for a single tumour study.

6.2.2 RATS+ Exploiting Transfer Learning

In practice, life scientists rarely run a single, fixed study. As early results come in, they may
adjust TNF parameter ranges based on emerging hypotheses. For instance, after studying TNF
concentrations in a certain range with a given step, they may suspect that higher doses could
be more effective and extend the range to concentrations beyond this interval. The new
study’s domain therefore overlaps with, or fully contains, the old one. If RATS treated each
study independently, it would have to re-run Bayesian Optimization from scratch on the
expanded domain, wasting the simulations already executed in the previous study. RATS+ is
introduced specifically to avoid this waste. Its goal is to reduce the new-study simulation
budget N, reusing the BO models learned in the old study, without sacrificing the quality of
the regressors.

The enhanced EVENFLOW contribution involves RATS+ [REF-15], which recasts this scenario
using transfer-learning. It defines a source domain Ds: a subset SS' of the original simulation
set SS with its own ranges for TNF frequency, duration, and concentration and full core
configurations, and a target domain Dr: the new, expanded SS, which partially overlaps or
fully contains the source domain. The learning task T is the same in both domains: predict
throughput, simulation time, and utility for any {TNF, cores} configuration. RATS in the source
domain has already trained GP regressors for these targets using BO. The question is how to
transfer these regressors to the target domain to reduce the number of new micro-
benchmarks needed there. RATS+ follows a modular approach: it first trains regressors on DS
(asin RATS), then replays the BO calls made in Ds as the initial calls in Dr. This effectively seeds
the target-domain optimizer with the source domain’s GP, while leaving freedom for BO in Dt
to explore new parameter regions that did not exist in SS'.

RATS+ operates under the same total budget N as RATS but splits it between source and target
domains. Two main configurations are used experimentally: RATS+ (N = 3% + 2%), total N =
5%, where roughly 3% of the 2,560 configurations are sampled in the source domain and 2%
in the target, and RATS+ (N = 6% + 4%), total N = 10%, where about 6% are sampled on the
source domain and 4% on the target. In both cases, about 60% of the total budget is spent on
the source domain and 40% on the new target domain. For comparison, we also consider
RATS trained from scratch on the target domain with N = 10%, 5%, 4%, or 2%. A key practical
decision is the choice of acquisition functions. For the original RATS Modeler in the source
domain, Lower Confidence Bound (LCB) is used for throughput to ensure good mid-range
exploration. For the extended RATS+ model in the target domain, Expected Improvement (El)
is preferred. The intuition is that uncertainty is highest in the newly introduced parameter
regions; El naturally directs sampling there, while still exploiting high-mean predictions
inherited from the old domain.

6.2.2.1 RATS+ Experimental Highlights
The first RATS+ experiment [REF-15] assesses how well it can estimate the total optimal
number of core hours needed to run all simulations in the extended study, compared to the
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optimal baseline. Six configurations are evaluated: RATS trained from scratch on the target
domain with N = 10%, 5%, 4%, and 2%, and RATS+ with transfer using N = (6% + 4%) and N =
(3% + 2%). The crucial observation is that RATS+ (6% + 4%) and RATS (10%) converge to the
optimal solution with comparable accuracy, and RATS+ (3% + 2%) and RATS (5%) also behave
very similarly, both achieving near-optimal performance. However, from the perspective of
new simulations in the extended study, RATS (10%) uses 10% of 2,560 configurations (256
simulations) in the new domain, whereas RATS+ (6% + 4%) uses only about 4% (roughly 102
simulations) in the new domain. Similarly, RATS (5%) uses 128 new simulations, while RATS+
(3% + 2%) uses only about 51 new simulations. In both cases, RATS+ cuts the new-study
budget by roughly 60% while achieving essentially the same accuracy in total core-hour
estimation as its full-budget RATS counterpart.

The second RATS+ experiment embeds transfer learning into the full RATS pipeline, including
capacity constraints. Two capacity settings are considered: cap = 5%|SS| (strict) and cap =
25%|SS| (moderate). For each cap, we measure how many simulations have completed over
time, the aggregate utility of completed simulations over time, and how close the total
execution time is to the optimal schedule. Across both capacities, all RATS and RATS+
configurations closely track the optimal completion time curve. More importantly, the
aggregate utility curves show that RATS+ (6% + 4%) is almost indistinguishable from RATS
(10%), and RATS+ (3% + 2%) is almost indistinguishable from RATS (5%), in terms of how
quickly high-utility simulations are completed and how much utility is accumulated over time.
This confirms that transfer learning does not distort scheduling decisions: with fewer new
simulations, RATS+ still identifies and prioritizes the same promising treatment
methodologies as a freshly trained, full-budget RATS model on the new domain.

We also compare the RATS GP regressors to Tabular Q-Learning and DQN under identical
budgets (up to 256 episodes). As shown in [REF-15], Tabular Q-Learning fails to learn
meaningful predictions. DQN improves but does not converge. By contrast, the GP models
steadily reduce L1 error and drive correlation coefficient R? towards 1, supporting the choice
of BO/GPR as the model that RATS and RATS+ transfer across studies.

Second, we design a scheduler inspired by Flux [REF-16], which uses a utility-sorted queue
with dynamic core assighnment and backfilling. Even when this baseline is given oracle
knowledge of the true utilities, RATS’ knapsack-based solver completes all 512 simulations
tens to hundreds of hours earlier and with higher aggregate utility under both strict and
moderate capacity caps. These comparisons make clear that the performance gains observed
with RATS+ stand on top of an already strong modelling and scheduling foundation.

6.3 Synopses and Smart Sync for the Infrastructure Lifecycle
Assessment Use Case

6.3.1 The Reverse Random Hyperplane Projection Scheme

In Wireless Sensor Networks (WSNs), as those deployed in EVENFLOW’s Use Case Il for
Infrastructure Maintenance, the dominant energy cost is communication. Before reaching the
point of performing neural or neurosymbolic tasks at a central base station, communication
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burden is incurred while collecting data from sensors to the base station. Sensors
continuously produce streams by sampling quantities of interest from their realm, usually
organized over fixed-size windows. Continuously transmitting all raw time series to a base
station is expensive in terms of both bandwidth and battery life. Existing data compression
approaches either rely on non-reversible random hyperplane projection (RHP) [REF-21][REF-
22], which produces compressed bitmaps only suitable for similarity and outlier detection, or
on reversible transforms such as DFT, DWT, DCT, and PAA [REF-17][REF-18][REF-19][REF-20],
which can provide looser, deterministic error guarantees. In EVENFLOW, we introduce
Reverse Random Hyperplane Projection (RRHP) [REF-23], which is designed to inherit the
strengths of both lines of existing work on lightweight, reversible summaries. RRHPS uses
RHP-style bitmaps for in-network compression, but also provides a principled way to
reconstruct approximate real-valued vectors at a base station, together with explicit
probabilistic (instead of deterministic) guarantees on the approximation of the original time
series. In that, neural learning or broader data mining tasks can be performed on the
approximated sensor time series.

The starting point for RRHP is the traditional RHP. Each window of sensor readings is modelled
as a vector u € R® (w denotes the window size). RHP constructs d random unit vectors ry, ...,
ra € R®. Each ry defines a hash function that maps u to one bit according to the sign of the
dot product:

Lifrp,-u=0
0, otherwise

hr () = |
A bitmap X,, € 0,1% is formed by concatenating these d bits. For two vectors u and v with
angle B(u, v), the probability that they collide on a random hyperplane is:

Pl ) = ho ()] = 1 — 202

Equivalently, the normalized Hamming distance between X, and X,, approximates 6(u, v)/m.
As such, RHP offers a one-way mapping R® — 0,1¢ useful for similarity estimation, but it does
not provide a way to reconstruct u from X,,.

RRHP [REF-23] augments RHP with a reverse mapping. All motes and the base station share a
common random matrix R € R®*% produced using a different, but equal seed for each time
window. The columns of R are the random unit vectors r, ..., rq4. For each window/vector u,
RRHP can conceptually compute the projected vector € = u - R € R? and then quantize it to
a bitmap X,, via the above sign test. Only X,, (d bits) is transmitted by each sensor.

For reasonably large w, R has full row rank almost surely, so a right inverse RT € R%*® exists.
At the base station, RRHP reconstructs an approximate vector:

=X, RT

The key property is that angular similarities are preserved (in expectation) through
compression and reconstruction. If 8(u, v) is the angle between original vectors and 6(0, V)
the angle between their reconstructions, then RRHP shows that [REF-23]:
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T

Thus, the cosine similarity cos(@(u, v)) is approximately preserved. Since many measures
such as Pearson correlation and Euclidean distance on normalized vectors can be expressed
via cosine similarity, RRHP can support generic mining tasks on the reconstructed vectors {i.
RRHP provides a Chernoff-style bound that relates the bitmap length d with the quality of
angle estimation. To approximate the normalized angle between two vectors within an
additive error € with probability at least 1 - §, it suffices to choose d proportional to
log(1/6)/€%. Thus, RRHP exposes a direct and tuneable trade-off between compression ratio
and relative distance /reconstruction accuracy.

6.3.1.1 RRHP Experimental Evaluation

We tested RRHP on two settings. Initially we conduct experiments, examining the
reconstruction quality of RRHP on several Machine Learning tasks (including neural learning),
with compression ratios of 4 and 8. For stress testing RRHP on a high number of sensors, we
use the Intel Lab Dataset’ for clustering tasks and the Pump Sensor Dataset® for regression
and classification.

Table 2: RRHP performance on various Machine Learning tasks, under a compression ratio of
8, over the reconstructed sensor time series, varying window sizes.

Window w 16 32 64 128 Average per
Metric
Feed Forward 0.92 0.97 0.98 0.99 Classification
Neural Net Accuracy
DBSCAN 0.95 0.96 0.97 1.00 Clustering
Clustering Similarity on
Adjusted
Rand Index
(ARI)
Linear 0.12 0.12 0.12 0.07 Root Mean
Regression Square Error
Support Vector 0.92 0.97 0.98 0.99 Classification
Machine Accuracy
K-NN 0.83 0.96 0.98 0.99 Classification
Accuracy

In our first experiment we showcase the accuracy of RRHP across different window sizes, on
various mining tasks, by compressing sensor windows by a factor of 8, i.e., compression ratio
is 8. In Table 2, we can see that the performance of RRHP significantly increases when we

7 https://db.csail.mit.edu/labdata/labdata.html
8 https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
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increase the window from 16 to 32 observations but, in all cited cases, RRHP yields high
accuracy with respect to the metrics cited in the rightmost column of the table.

We also provide a comparison of RRHP vs DFT, DCT, DWT and PAA reversible data summaries,
indicatively, for clustering sensor time series. This experiment tests RRHP on a clustering task,
across sliding windows using the Intel Lab Dataset and reports the Adjusted Rand Index (ARI)
score with 95% confidence interval. In Figure 47, we tested compression ratios of 4 and 8
across two rows of plots. As we can see in the figure, RRHP outperforms competition by, on
average, 20% on both compression ratios, regarding the ARl score of the clustering task. Note
that RRHP achieves also the tightest 95% confidence interval.

ARI scores with 95% confidence interval // W= 16, C= 4

10 DFT : [0.67579, 0.84749] 10 DCT : [0.73660, 0.90425] 10 DWT : [0.82679, 0.92671] 10 PAA : [0.76763, 0.90238] 10 RRHP : [0.95469, 0.99988]
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Figure 47: RRHP Performance on Clustering vs other Competitors.

We then conduct a WSN simulation, examining RRHPs ability to prolong the lifetime of
sensors in a real scenario, using the TOSSIM simulator [REF-24]. The hierarchical network
tested consists of 4 cluster heads with 12 sensors per cluster. The communication and lifetime
gains plotted below hold irrespectively of the chosen Machine Learning task, since the task
itself takes place at the base station after having collected the compressed sensor data
streams and having recovered the RRHP-approximated ones.

In Figure 48, we see the total number of bytes that are transmitted during the simulation,
including the ones of retransmissions. In Figure 49, we plot the total energy drain of the
setups of Figure 48, essentially interpreting the communication costs to network lifetime.
Retransmissions occur when multiple motes transmit their messages simultaneously,
therefore resulting in corrupted messages due to collisions. Large message size and frequent
communication are the main culprits of signal retransmissions. We observe that the
compression ratios of 4 and 8, reduce the total number of bytes transmitted and the energy
drain by 5 and 10 times, respectively. This increased reduction, compared to the theoretically
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expected reduction of 4 and 8 on both cases, is the combined result of the reduced message
size of RRHP due to compression, and the reduced number of message collisions and
retransmissions.

Total Bytes for Differenst Compression Ratios Total Energy Drain vs. Compression Ratio
x10
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Figure 48: RRHP Comm. Reduction vs Figure 49: RRHP Network Lifetime vs

Compression Ratio using w = 16. Compression Ratio using w = 16.

6.3.2 Uncertainty-aware Synchronization Protocols

In Section 3.5 we presented data-driven synchronization protocols that postpone a global
model update until a considerable drift in the neural network weights, defined based on any
given thresholded function, may exist. However, in EVENFLOW’s Use Case lll, the
Infrastructure Maintenance Monitoring utilizes sensors which produce uncertain
measurements, for instance, due to noise or calibration errors.

This uncertainty passes on to the weights of the neural network of the various distributed
learner during the training process. Therefore, instead of monitoring whether a function f
parameterized by the global weight vector has crossed the threshold, we instead want to
know if f has crossed the threshold with sufficiently high confidence, provided we know the
uncertainty distribution of learners’ weights.

The Uncertainty-aware Global Monitoring (UGM) method addresses the problem of
continuously monitoring a non-linear function over many distributed data streams whose
values are uncertain. Each learner N; produces a local data stream S;, modelled as a time-
varying random variable x;(t) with its own distribution p;(t). The Parameter Server (PS)
wants to monitor a global function f(y(t)) of all streams and automatically raise an alert when
f(y(t)) crosses a threshold T with high statistical confidence, while minimising communication.

To this end, each learner maintains a sliding window of recent observations, from which it
estimates the parameters of its local distribution p;(t) (e.g., empirical mean and covariance).
Learners are assigned weights w; > 0 with }}; w; = 1, and the global random vector at time t
is y(t) = X; w;x;(t). The monitoring task is to decide, at any time t, whether f(y(t)) S T holds
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with confidence at least §, without continuously transmitting raw data or full local models to
the Parameter Server. Since the techniques we describe henceforth are currently under
submission, we provide only algorithmic sketches of their functionality.

In a centralized setting, the monitoring condition can be expressed as the global filter
Prif(y(t)) s T] £ 6, which guarantees that an alert is raised only when the probability of
violating the threshold exceeds 6. However, evaluating this global filter centrally would
require frequent updates from all learners. UGM decomposes the global filter into local filters
that can be evaluated independently at each learner. The PS periodically synchronises with
the learners at times t; and computes the global average vector
e(ts) = X w;0;(ts), where 0;(t,) is the last local average vector sent by learner i. Around this
point, the coordinator constructs a convex “DONT-region” in the global feature space: a
region that contains only “good” points, i.e., points where f(y(t)) is guaranteed to satisfy the
monitored inequality with high confidence. As long as y(t) remains inside this DONT-region
with sufficient probability, the global filter is satisfied and no alert is needed. The key design
is to choose the DONT-region so that (i) it is convex, enabling rigorous decomposition into
local conditions, and (ii) it is as large as possible, so that communication is reduced.

We instantiate the DONT-region as a d-dimensional ball B(M,r) = x € R%: ||x — M||2 <rin

the global feature space. The ball is constructed via a greedy sphere augmentation process:
starting from a conservative initial ball around the current global mean, we iteratively
increase its radius and slightly shift its center, as long as we can still guarantee that all points
inside remain “good” (i.e., they satisfy the monitored inequality f(x) = T). The procedure stops
when any further inflation or shift would introduce points that might violate the constraint.
The resulting ball is a maximal convex DONT-region that can be safely decomposed into local
filters at the individual nodes.

If no non-trivial sphere that contains only good points exists (e.g., when the global mean
already lies near or beyond the threshold), the method enters a NO-SPHERE period; in this
case, learners temporarily send updates eagerly, without local filtering.

Given the DONT-region, each learner N; evaluates a local filter that decides whether to raise
an alert. The learner maintains a set of drift vectors D;(t) that describe how its local
distribution, translated near the last global mean, might move in the global space. Concretely,
each drift vector has the form d}(t) = e(ts) — 0;(t) + z;, where z; is a sample drawn from
the current local distribution p;(t). Each learner holds m such drift vectors per time t.

At time t, learner i estimates the probability that its local contribution keeps the global vector
inside the DONT-region by counting the fraction of drift vectors that fall inside the sphere:
p; (t) = # {drift vectors in don’t-region} / m.

Each learner is associated with a confidence threshold «a; € [0,1]. If p;(t) falls below «;,
learner i has strong evidence that the global function may have crossed the threshold and
sends an alert to the coordinator; otherwise, it remains silent. Initially, all learners share the
same «;, derived from & and |N|, ensuring that if all local filters hold, then the global filter
also holds. When the PS receives an alert from one or more learners, it distinguishes between
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true positives (TP), where f(y(t)) has indeed crossed the threshold, and false positives (FP),
where local filters were overly conservative. Only TP alerts trigger an application-level
reaction (e.g., reconfiguration, mitigation).

As the number of learners grows, having a uniform confidence threshold a; can become
overly strict, causing excessive alerts and communication. A Slack Allocation mechanism
dynamically redistributes “slack” among learners by adapting their local thresholds «; after
each synchronisation, based on their recent behaviour.

Learners are partitioned into GOOD and BAD sets depending on the last alert:

e Inthe FP case, learners that raised unnecessary alerts are marked as BAD, and learners
that remained silent are GOOD. The coordinator computes a slack measure for each
GOOD learner, reflecting how comfortably its local probability p;(t) was above its
threshold «;. It then gradually lowers the thresholds of BAD learners (making them
less sensitive) and compensates by slightly raising the thresholds of selected GOOD
learners, preserving a global probabilistic guarantee.

e Inthe TP case, learners that failed to alert in time are BAD, while learners that correctly
alerted are GOOD. A symmetric slack definition is used, and thresholds are adjusted
in the opposite direction, making BAD learners more sensitive.

This iterative procedure continues until all learners satisfy the global constraint on the joint
probability of violation. In practice, Slack Allocation significantly reduces communication by
allowing learners whose behaviour is well contained within the DONT-region to take on
stricter thresholds, freeing other learners to relax theirs.

6.3.2.1 UGM Experimental Evaluation

For our experiments we utilize a 10-sensor dataset provided by EKSO using 5 computing
nodes. We monitor L1, L2 and Variance functions posing the threshold as shown in Figure 50
and Figure 51. In each experiment we present 5 bars with the vertical axis showing the
number of transmitted messages, while the horizontal axis varies 6:

e Naive: representing continuous model updates

e Sphere Max Off, Slack Allocation Off: which is the basic UGM protocol without any
optimization

e Sphere Max On, Slack Allocation Off: the protocol that uses the maximal, augmented
sphere according to our discussion in Section 6.3.2, but does not perform wise Slack
Allocation

e Sphere Max On, Slack Allocation On: the protocol that uses both the maximal
augmented sphere and performs wise Slack Allocation
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Figure 50: L1 function (left) and L2 function (right) Threshold (red line) vs actual function
values as time passes.
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Figure 51: Variance Threshold Selection based on Sensor violations.
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Figure 52: Number of transmitted messages for L1-based monitoring across & values.
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Figure 53: Number of transmitted messages for L2-based monitoring across & values.
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Figure 54: Number of transmitted messages for Variance-based monitoring across & values.

Across Figure 52, Figure 53 and Figure 54 we observe that UGM “Sphere Max Off, Slack
Allocation Off” improves the Naive approach yielding 17% (Var) to 3x fewer messages for
loose 6 =0.25. The communication gains progressively increase for 6=0.5 to 6=0.95, reaching
values of reaching 10x communication gains for 6=0.95.

“Sphere Max Off, Slack Allocation On”, “Sphere Max On, Slack Allocation Off” as well as
“Sphere Max On, Slack Allocation On” further reduce the amount of communicated messages
up to 50% compared to “Sphere Max Off, Slack Allocation Off”. As we can observe in the
figures, setting On or Off some optimization may occasionally increase communication
although more optimizations are applied. For instance, in Figure 52 for 6=0.5, setting “Sphere
Max Off, Slack Allocation On” gives a few more messages compared to “Sphere Max Off, Slack
Allocation Off” or “Sphere Max On, Slack Allocation On” gives few more messages compared
to “Sphere Max On, Slack Allocation Off”. This is because, when we apply each optimization,
the synchronization timepoints differ between experiments. Therefore, a false positive
synchronization that happens at a specific time, changes oi and cascades the timepoints at
which future synchronization will take place. As such, a difference series of synchronization
timepoints may yield a slightly different behaviour in the monitoring process.
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7 EVENFLOW Verification Approach

7.1 Formal Verification of Neural Networks

Deep neural networks have become the dominant paradigm for modelling complex functions
across vision, language, control, and decision-making tasks. Their power stems from the
universal approximation property [REF-27]: with sufficient capacity, a neural network can
approximate virtually any continuous function to arbitrary precision. Yet, this expressive
capability comes with a fundamental drawback—the internal workings of neural networks are
opaque and highly nonlinear, making it difficult to reason about how they will behave under
perturbations, distribution shifts, or intentionally manipulated inputs. Even small amounts of
noise, such as adversarial perturbations or sensor uncertainty, can cause unexpected
deviations in the network’s output.

A neural network represents a mapping f: R™ — R™, taking real-valued inputs and producing
real-valued outputs. While this functional view is mathematically elegant, it does not provide
direct insight into the internal decision logic learned during training. Formal specifications
describe what the network should do for all possible inputs within a given domain. These
properties capture the intended safe or acceptable behaviour of the system without requiring
explicit interpretability of its internal parameters. A property is considered satisfied when the
network is guaranteed to behave safely for every input in a defined set, not just for those
seen during testing.

Formal verification aims to provide provable guarantees about network behaviour over all
possible perturbations within a defined region (e.g., an €o<-ball around an input). Ensuring
the robustness of neural network classifiers involves demonstrating that the model’s
predicted label does not change when its input is perturbed within a small region of radius €
[REF-52]. Formal verification methods address this by reasoning over all possible inputs within
this perturbation region, effectively providing mathematical certificates that guarantee
robustness. For a neural network f, the robustness requirement can be stated as follows: for
any input x that the network classifies correctly, and for every perturbed input x'satisfying
Il x — x" II< €, the prediction must remain unchanged, i.e., f(x) = f(x").

This verification problem can be reduced to analysing the relationships between the
unnormalized outputs (logits) of the network’s final layer. Specifically, robustness around xis
guaranteed if, for every x'in the €e-ball, the logit for the true class y,,,.exceeds the logits for
all other classes y;by a positive margin:

Virve — ¥i > 0 for all i # true class.

Checking this requires computing the minimum of these logit differences over all possible
x'within the perturbation set. If this minimum remains positive, the classifier is provably
robust for that radius € [REF-29]. However, computing this minimum exactly is an NP-hard
optimisation problem [REF-30], which makes robustness verification computationally
challenging in practice.
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7.2 Scalable approach towards Probabilistic Neuro-Symbolic
Verification

Neuro-symbolic (NeSy) systems bridge deep neural networks with symbolic reasoning to
achieve generalization, interpretability, and structured inference. In probabilistic variants of
these systems, neural networks extract latent concepts from raw inputs, and a symbolic
reasoning layer performs probabilistic inference using logical constraints. For probabilistic
NeSy Al architectures [REF-28], formal verification is even more difficult, as the symbolic
component requires evaluating weighted model counts (WMC) over latent concept
probabilities.

7.2.1 Probabilistic Neuro-Symbolic Verification

We now formalize the goal of relaxation-based methods within neuro-symbolic (NeSy)
reasoning systems. For a given NeSy model, as introduced in Section 7.1, the objective is to
determine the following quantities:

rrgci,n p(y; | x"), max p(y; | x") forallx'suchthat | x' —x <€

for every output label y;in y. In other words, we seek to compute tight lower and upper
bounds on each probabilistic output of the NeSy system when its input is subject to
perturbations of radius €. As outlined in Section 7.1, these bounds can then be used to
formally evaluate the robustness of a particular input instance.
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Figure 55: Probabilistic NeSy Verification illustrating the Verification of NeSy system trained
on the ROAD-R dataset. The symbolic constraints are encoded as an Arithmetic circuit.

To illustrate, consider the NeSy architecture shown in Figure 55. Its neural components
consist of two networks: (1) an object detector that identifies whether a red traffic light or a
car is present in front of an autonomous vehicle (AV), and (2) an action-selection network that
decides whether the AV should accelerate or brake. The symbolic component encodes a
conjunction of two logical constraints, detailed in Appendix A. For an input image x, the
system outputs y, representing the probability that these symbolic constraints are satisfied.

An input instance is deemed robust if
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min p(y | x") > T,
X
for some threshold T € [0,1]. This condition states that, across the entire e-ball surrounding

x, the probability of satisfying the symbolic constraints never drops below T'. For the purposes
of the remainder of this work, we focus on the case T = 0.5.

7.2.1.1 Relaxation-Based Approach

Because computing exact bounds through the compiled symbolic component is
computationally intractable, we turn to relaxation-based methods. These techniques can be
naturally extended to neuro-symbolic (NeSy) systems and offer a scalable pathway for solving
the equation in Section 7.2.1.

In the NeSy architectures, the neural network outputs serve as inputs to an arithmetic circuit.
Owing to this compositional structure and the algebraic nature of the circuit, the entire NeSy
model can be treated as a fully differentiable computational graph. This enables us to
implement the whole system as a single module within common machine learning
frameworks such as PyTorch. The resulting model can then be exported into the Open Neural
Network Exchange (ONNX) format [REF-31].

The ONNX format is widely supported by state-of-the-art neural network verification tools,
including solver-based systems such as Marabou [REF-32] and relaxation-based verifiers like
auto-LiRPA [REF-33] and VeriNet [REF-34]. By exporting a NeSy model to ONNX, we can
leverage these tools with minimal additional engineering effort, effectively enabling “plug-
and-play” verification of complex neuro-symbolic pipelines.

Although the framework is compatible with a broad range of verifiers, the focus is on
relaxation-based methods to demonstrate scalable probabilistic verification for NeSy
systems. These methods allow us to apply input perturbations and compute bounds directly
on the system’s final outputs—bypassing the need to derive intermediate bounds on
individual neural network components.

7.3 Experimental Evaluation

In this section, an empirical evaluation of the proposed verification framework is presented,
focusing on both its effectiveness and practical applicability. The scalability of the method is
first examined using a synthetic task derived from MNIST addition, a widely adopted
benchmark in the neuro-symbolic reasoning literature [REF-35]. To further demonstrate real-
world relevance, the approach is applied to an autonomous driving dataset, where a safety-
critical driving property is verified over two six-layer convolutional neural networks. This
experiment highlights the capability of the proposed technique to manage high-dimensional
inputs and larger neural architectures—conditions commonly encountered in operational
autonomous systems. All experiments were conducted on a high-performance computing
machine equipped with 128 AMD EPYC 7543 32-core processors (3.7 GHz) and 400 GB of RAM.

7.3.1 Multi-Digit MNIST Addition

In this experiment, the primary objective is to examine how well the proposed method scales
as the complexity of the symbolic reasoning component increases. As symbolic structures
grow larger and more intricate, they naturally introduce greater computational demands;
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therefore, understanding how our approximate verification strategy behaves under these
conditions is crucial. The experiment is designed to shed light on two key aspects: (1) how the
inherent approximations used in our method enable significantly improved scalability, and (2)
what trade-offs emerge in the accuracy and tightness of the resulting verification guarantees.

To systematically study these effects, we compare our approach against two distinct
verification paradigms:

1. End-to-End Relaxation-Based Verification (E2E-R): This approach corresponds to a
direct implementation of our proposed method using auto-LiRPA, a leading relaxation-
based neural network verification toolkit. In this setting, the entire neuro-symbolic
system—including both the neural and symbolic components—is provided as input to
auto-LiRPA. The system is internally converted into an ONNX computational graph,
enabling uniform processing and bound propagation across the full pipeline. We
employ Interval Bound Propagation (IBP), as implemented within auto-LiRPA, to
compute end-to-end bounds on the perturbed outputs. This baseline allows us to
evaluate how a fully relaxed, approximate strategy behaves when applied to complete
NeSy models.

2. Hybrid Verification (R+SLV): The second baseline adopts a hybrid strategy that
combines relaxation-based analysis for the neural modules with solver-based exact
bound computation for the symbolic reasoning layer. More concretely, IBP in auto-
LiIRPA is used to derive bounds on the outputs of the neural networks, while the
symbolic component is processed using exact optimization. Following the
transformation of the symbolic circuit into an equivalent polynomial representation,
we perform constrained optimization using the Gurobi solver to compute tight
bounds. This hybrid method serves as a point of comparison to assess the trade-off
between computational scalability and verification precision. Contrasting this
approach with E2E-R highlights the relative benefits of exact symbolic reasoning
versus the efficiency of fully relaxed, approximate propagation.

7.3.1.1 Dataset and Experimental Setup

To examine scalability, a synthetic dataset is curated that allows precise control over the
complexity of the symbolic reasoning component while keeping the neural architecture fixed.
Specifically, we construct a modified version of the multi-digit MNIST addition benchmark
[REF-35]. In this setting, each data instance is composed of several MNIST digit images and is
annotated with the arithmetic sum of the depicted digits. By varying the number of digits
included in each sample, we can directly manipulate the size and depth of the symbolic
computation required; for example, in a 3-digit addition scenario, a single instance may

consist of images such as ?' o, and 3, with a corresponding label of 18. The verification
dataset is derived from the 10,000 samples of the MNIST test set, ensuring that each image
is used exactly once. Consequently, the number of verification instances for a given choice of
#digits is 10,000 divided by the number of digits per sample, enabling controlled
experimentation across symbolic complexities of increasing scale.

The experimental setup employs a convolutional neural network (CNN) trained to classify
individual MNIST digits. Using the full MNIST training set of 60,000 images in a supervised
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learning setup, the model achieves a test-set accuracy of 98%. The symbolic reasoning
component encodes the arithmetic rules governing multi-digit addition. It takes as input the
probabilistic digit predictions produced by the CNN and infers a probability distribution over
all possible sums. As the number of summands increases, the size and complexity of the
reasoning circuit grow accordingly, since more combinatorial pathways exist for generating a
given total (for example, there are multiple ways in which 2-digit, and 5-digit combinations
can yield the sum of 17).

To evaluate scalability under increasing symbolic complexity and varying levels of input
uncertainty, we systematically vary both the number of digits per instance and the magnitude
of input perturbation. Specifically, we consider five configurations for the number of digits:
{2, 3, 4,5, 6}, and three perturbation budgets € € {1072, 1073, 107}, resulting in fifteen distinct
experimental settings. Each experiment—defined by a particular (#digits, €) pair—is executed
with a timeout threshold of 72 hours. The end-to-end relaxation-based method (E2E-R) is
executed on a single computational thread, whereas the hybrid solver-based approach
(R+SLV) leverages the Gurobi optimizer, which dynamically allocates up to 1024 threads to
accelerate the constrained optimization phase.

103 e E2ER (=0.01) %
E2E-R (£=0.001) :

—e— E2E-R (£=0.0001)

A+ R+SLV (£=0.01)

s+ R+SLV (£=0.001) .

A+ R+SLV (£=0.0001) A

103 4

102 4

101 -

Time (log(s)}

10° 4

107! 4

Number of MNIST digits

Figure 56: Comparison of verification runtimes for E2E-R and R+SLV. The experiments are
evaluated for 3 different € perturbations.

7.3.1.2 Scalability of the approaches and verification results

Figure 56 provides a comparative analysis of the scalability of the two verification methods.
The plot reports the average time required to verify the robustness of a single NeSy instance
across the test dataset. All experimental configurations complete within the 72-hour timeout,
with two notable exceptions for the R+SLV approach. Specifically, for the configurations (e =
1072, #digits = 5) and (e = 1072, #digits = 6), R+SLV fails to verify any sample before the timeout,
which explains why the corresponding curves for € = 1072 terminate at four digits. Additionally,
for (e = 1073, #digits = 6), R+SLV can verify fewer than 5% of the inputs; the values shown in
Figure 56 therefore reflect the average runtime computed over this small subset.
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As clearly illustrated by the log-scale plot, E2E-R exhibits dramatically superior scalability
compared to R+SLV. This advantage stems from the inherent computational burden of
performing exact bound propagation through the symbolic probabilistic reasoning
component. For context, verifying the robustness of the CNN alone using Marabou requires
an average of 314 seconds per sample across 100 MNIST test images—demonstrating that
solver-based verification of even a single neural module is several orders of magnitude slower
than our full end-to-end relaxation-based approach.

These findings are consistent with both theoretical results [REF-36] and recent empirical
analyses [REF-37] which highlight the limited scalability of SMT-based verification techniques.
The experimental outcomes strongly indicate that, in the NeSy setting—where verification
routinely involves multiple neural networks coupled with complex symbolic reasoning—the
trade-off favouring approximate but scalable methods is not only acceptable but essential.

We next analyse how increasing the complexity of the symbolic reasoning component
influences the quality of the verification outcomes. Table 3 summarises two key metrics
across different experimental configurations. First, we report the tightness of the computed
output bounds, expressed as the lower—upper interval for the probability assigned to the
correct sum, averaged over all samples in the test set. This metric provides insight into how
precisely each method can characterise the behaviour of the NeSy system under
perturbations. Second, we evaluate robustness, defined as the proportion of test instances
for which the system remains provably robust, i.e., the number of verified robust samples
divided by the total number of samples. Together, these metrics enable us to assess how
symbolic complexity impacts both the accuracy and reliability of the verification process.

Table 3: Verification method performance for MNIST digit addition at e= 0.001.

Verification Metric #MNIST digits

Method 2 3 4 5
Lower/Upper Bound 0.871-0.981 0.815-0.972 0.764-0.962 0.731-0.928

R+SLV Robustness (%) 90.60 86.17 81.33 78.31
Lower/Upper Bound 0.871-0.982 0.815-0.974 0.763-0.965  0.716-0.958

E2E-R Robustness (%) 90.60 86.11 81.21 76.67

7.3.2 Autonomous driving - ROAD-R

In this experiment, we evaluate our proposed verification framework on a real-world dataset
drawn from the autonomous driving domain. The objective is to assess the robustness of a
neural autonomous driving system with respect to the safety and commonsense constraints
illustrated in Figure 55. Specifically, we aim to determine whether small perturbations to the
input can cause the underlying neural components to violate logical constraints that were
originally satisfied. This setting enables us to examine how well the system maintains correct
and safe behaviour under realistic variations in sensory input, thereby providing a practical
test of robustness in a domain where reliability is critical.
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7.3.2.1 Dataset and experimental setup

To conduct this evaluation, we make use of the ROad event Awareness Dataset with logical
Requirements (ROAD-R) [REF-38]. This dataset contains 22 dashcam videos recorded from the
perspective of an autonomous vehicle (AV), with each frame annotated using bounding boxes
that identify agents (e.g., pedestrians), the actions they are performing (e.g., approaching the
vehicle), and their spatial locations (e.g., on the right pavement).

For the experiments, we restrict attention to the subset of frames that are relevant to the
symbolic constraints. Specifically, we select only those frames that satisfy either of the
following conditions:

1. the AV is moving forward, and the scene contains neither a red traffic light nor a
stopped car in front; or
2. the AV is stationary, and either a red traffic light or a stopped car is present.

Sampling every two seconds across the videos yields a curated dataset of 3,143 instances.
Each sample consists of a 3 x 240 x 320 RGB image and four associated binary labels: red light,
car in front, stop, and move forward.

The neural component of the NeSy system includes two six-layer convolutional neural
networks, one performing object detection and the other determining the appropriate driving
action. Both models are trained using an 80/20 train—test split over the selected frames. The
object detection network attains 97.2% accuracy, while the action selection network reaches
96.3% accuracy on their respective test sets. To evaluate robustness, we perturb the test
images using five perturbation magnitudes, € € {107°, 5x107%, 1074, 5x107%, 1073}.

Table 4: ROAD-R network verification results, indicating robustness for various epsilon noise.

Metric Epsilon
le-5 5e-5 le-4 5e-4 le-3
Robustness (%) 96.82% 92.68% 82.64% 6.21% 0.00%

Runtime per Sample (s) 0.091  0.092 0.091 0.092 0.092

Table 4 summarizes the experimental results. We report two key metrics: robustness, defined
as the proportion of test instances that are provably robust, and the verification runtime for
the E2E-R method. Because this task involves a relatively small symbolic arithmetic circuit
paired with a substantially larger neural component, the computational cost and bound-
propagation error are dominated by the neural network rather than the symbolic reasoning
module. Consequently, E2E-R and R+SLV—which differ only in how the symbolic component
is handled—yield nearly identical outcomes, and we therefore omit the redundant R+SLV
results from the table. As anticipated, the verified robust accuracy decreases as the
perturbation magnitude increases. With respect to runtime, the findings further support the
trends observed in Section 7.3.1.2: the overall verification time for our approach is largely
insensitive to changes in the perturbation bound €, underscoring its practical scalability even
under varying adversarial budgets.
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7.4 Complex Event Verification for Temporal Neuro-Symbolic Models

While Sections 7.2 and 7.3 address the verification of static neuro-symbolic models,
EVENFLOW use cases often rely on streaming data, necessitating the verification of temporal
neuro-symbolic systems. This introduces an additional axis of complexity: time. In such
systems, a neural network processes perception data at each time step t, extracting high-level
attributes (symbols) that feed into a symbolic component—specifically a finite state
automaton—which maintains state over a sequence.

Verifying properties in this context requires unrolling the system over a time horizon T. This
effectively creates a deep computational graph where errors and uncertainties can compound
rapidly. A primary challenge identified in temporal verification is that standard Interval Bound
Propagation (IBP) becomes insufficiently precise. As the system is unrolled, the coarse over-
approximations of IBP accumulate, leading to "exploded" bounds that fail to verify valid
properties.

7.4.1 Verification Methodologies

To address these challenges, we move beyond simple IBP end-end verification and evaluate
three distinct methodologies for verifying temporal neuro-symbolic systems. These
techniques range from purely neural approaches to hybrid optimization techniques:

1. End-to-End Verification: The entire temporal neuro-symbolic system (neural network
+ unrolled automaton) is compiled into a single, end-to-end differentiable
computational graph. Standard neural verification tools (e.g., auto_LiRPA) are then
applied using IBP or CROWN (a linear bound propagation method).

2. IBP/CROWN + Step Gurobi: This is a decomposed approach. The neural network is
verified first using IBP or CROWN to obtain bounds on the symbolic inputs. The
automaton verification is then handled by solving a local optimization problem at each
time step using the Gurobi solver. Because the symbolic interaction is multilinear, the
resulting optimization problem is quadratic. We evaluate using both Exact and Relaxed
solving, where the latter employs McCormick relaxations to handle bilinear
constraints.

3. IBP/CROWN + Unrolled Gurobi: Similar to the stepwise approach, but the verification
of the automata is constructed as one large, monolithic optimization problem covering
the entire trace. Due to the scale of unrolled traces, this is solved only using relaxed
McCormick constraints (Linear Programming).

7.4.2 Evaluation Scenario: Temporal Complex Event Recognition

To validate the proposed verification techniques, we utilize a Temporal Complex Event
Recognition task on video sequences. This scenario is designed to stress-test temporal neuro-
symbolic reasoning by requiring the system to identify complex patterns over a stream of
inputs. As illustrated in Figure 57, the example system is composed of the following stages:

1. Input Stream: A sequence of standard MNIST digit images (e.g., 7, 8, 2, 1, 4).
2. Multi-Attribute Perception: Unlike simple digit classification, the CNN here acts as a
multi-head classifier that predicts specific semantic attributes for each frame:
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a. Parity: Classifies the digit as Odd or Even.
b. Magnitude: Classifies the digit intoranges: x < 3,3 < x < 6,orx > 6.
3. Temporal Reasoning: The sequence of attribute probabilities is processed by a finite
state automaton that monitors for a specific complex event pattern: "An even digit
larger than 6, followed eventually by an odd digit smaller than 6, followed eventually
by a digit smaller than 3".
a. State SO (Start): Loops until it detects an input satisfying even A
largerihang(e.g., digit 8), transitioning to S1.
b. State S1: Loops until it detects odd A smaller,han, (e.g., digit 1, 3, 5),
transitioning to S2.
c. State S2: Loops until it detects smaller,han; (e.g., digit 0, 1, 2), transitioning
to the accepting state S3.

Robustness in this scenario requires proving that no combination of adversarial perturbations
across the input image sequence can alter the final acceptance/rejection decision of the
automaton, where S3 is the acceptance state.

E

[ CNN

=(even A larger_than_6) —(odd A (-larger_than_6)) ~(smaller_than_3)

start /i?\even/\larger_rhanj /Q\odd/\(ﬂlarger_thanj)/a\ smaller_than_3 @
N\

A 4 @ @

Figure 57: The Temporal Complex Event Recognition evaluation scenario. A sequence of
MNIST digits is processed by a multi-head CNN to extract semantic attributes (Parity and
Magnitude), which trigger transitions in a finite state automaton.

7.4.3 Experimental Evaluation of Temporal Verification

We evaluated the robustness of these methodologies against adversarial perturbations (€)
ranging from 107 to 102. The comprehensive results are detailed in Table 5.
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Table 5: Verification Accuracy and Execution Time for Temporal Neuro-Symbolic Systems.

Method Specific Variation €=10-5 €=10-4 €=10-3 €=10-2
Type Method
End-to-End  IBP - 50.20% 44.22% 20.35% -
(09s) (09s) (09s)
CROWN - 99.80% 99.95% 81.96% -
(26m) (26m) (25m)
CROWN-IBP - 59.05% 44.22% 20.45% -
(12s) (12s) (10s)
Step Gurobi IBP Exact 99.69% 98.21% 51.74% 0.00% (2m)
(2m) (2m) (5m)
IBP Relaxed 99.69% 98.01% 51.23% 0.00% (1m)
(1m) (1m) (1m)
CROWN Exact 100.0% 100.0% 99.28% 86.96%
(3m) (4m) (4m) (5m)
CROWN Relaxed  99.95% 99.95% 99.34% 86.81%
(2m) (3m) (3m) (3m)
Unrolled IBP Relaxed  99.69% 98.06% 51.28% 0.00% (1m)
Gurobi (1m) (1m) (1m)
CROWN Relaxed  99.95% 99.95% 99.34% 86.86%
(2m) (3m) (3m) (3m)
alpha- Relaxed - - - 88.55% (3h
CROWN 41m)
7.4.4 Analysis of Results

The experimental data reveals distinct performance tiers among the verification strategies:

Inefficacy of IBP: Pure IBP-based methods struggle significantly with temporal depth.
The End-to-End IBP verification accuracy collapses from ~50% at € = 107> to ~18% at
e = 1073, Even when combined with symbolic optimization (IBP + Step/Unrolled
Gurobi), IBP bounds are too loose to support verification at higher perturbations (€ =
1072 results in 0.00% accuracy).

Robustness of CROWN-based Hybrids: Using CROWN bounds results in far greater
resilience. The CROWN + Step Gurobi (Relaxed) and CROWN + Unrolled Gurobi
(Relaxed) approaches maintain near-perfect accuracy (>99%) up to e = 1073. At e =
1072, where IBP methods fail completely, CROWN-based unrolling retains
approximately 86.6% verification accuracy.

High-Precision Trade-off: For the most demanding scenarios (e = 1072), the
specialized alpha-CROWN + Unrolled Gurobi method achieved the highest robustness
of 88.55%. However, this precision incurs a massive computational cost, requiring
over 3 hours and 41 minutes compared to just a few minutes for the relaxed CROWN
approaches. We note that we utilize the computationally intensive alpha-CROWN
method exclusively for the largest perturbation level (e = 1072). For smaller
perturbations (€ < 1073), the standard CROWN-based relaxed methods already
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achieve near-perfect verification accuracy (> 99%), rendering the significant
computational overhead of alpha-CROWN unnecessary.

These results suggest that for EVENFLOW's real-time constraints, CROWN + Unrolled Gurobi
(Relaxed) offers the most balanced trade-off, providing high robustness with execution times
(approx. 3 minutes) that promises feasibility for scalable deployment.
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8 The SCANNV Approach for Parallel Verification

This chapter summarises a Scalable Neural Network Verification (SCANNV) approach, a set of
techniques that can reduce the execution time of parallel neural network (NN) verification by
optimising (i) how an input property is split into subproblems that can be verified in parallel
and (ii) how these subproblems are scheduled for execution.

Most state-of-the-art verifiers expose only a coarse interface. They accept a verification
property and internally manage subproblem generation, branching and scheduling. SCANNV
treats such a verifier as a black box and adds a thin optimisation layer on top of it. This adds
on layer:

e Controls the initial input splitting: it decides how to partition the precondition of the
property into a set of subproblems (input polytopes).

e Uses Bayesian Optimisation (BO) to search over possible splitting strategies, using
either verification time or internal structural metrics (ReLU stability information) as an
optimization objective.

e Optionally performs transfer learning of BO models across related properties on the
same neural network, and

As a result, the verifier receives an, expectedly, more “verification-friendly” set of initial
subproblems and an execution order that tends to reduce overall wall-clock time.

In our discussion, we henceforth use Venus [REF-25] as the verifier, but the SCANVV
framework remains independent of the underlying verification tool.
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Figure 58: Bayesian Optimization-based Input Splitting Architecture.

The precondition of each property is defined as an axis-aligned box over the input dimensions
(e.g., sensor ranges, distances, angles). SCANNV introduces a splitting vector V, where each
component V; specifies into how many equal sub-intervals the i-th input dimension is split.

Given a splitting vector, the Input Splitting Module:

e Splits each input dimension into the required number of equally sized sub-intervals.
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e Forms the Cartesian product of these sub-intervals across all dimensions.
e Treats each resulting box (polytope) as an initial subproblem and passes the set of
subproblems to the verifier.

This procedure preserves the semantics of the original property (the union of all subproblems
equals the initial input domain), but exposes a large design space of possible initial splits.
Different splitting vectors can lead to very different verification times, even though they are
all logically equivalent.

8.1 Input Splitting Black-box Optimization and Transfer Learning

SCANNV models the total verification time corresponding to a given splitting vector as a black-
box function. The objective is to find a splitting vector V that minimises this time. To do so,
SCANNYV applies Bayesian Optimisation with a Gaussian Process (GP) surrogate model, using
an RBF kernel and a suitable acquisition function.

For time-based optimisation, it uses a Lower Confidence Bound (LCB) acquisition with a high
exploration parameter. This is motivated by the fact that the search space of splitting vectors
is discrete and relatively small, but only a limited fraction (e.g., 10%—20%) of candidate splits
can be evaluated via micro-benchmarks. Each BO iteration proposes a candidate splitting
vector V. SCANNV generates the corresponding set of subproblems, runs a full verification on
that set, and measures the overall wall-clock time. The GP is then updated with this pair (split,
time), and the acquisition function is maximised again to propose the next split. After a
predefined budget of micro-benchmarks is exhausted, the best-performing split observed so
far is selected as the optimised initial split. This process is illustrated in Figure 58.
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Figure 59: BO Model Transfer Architecture.

But this approach by itself, does not reduce verification time. This is because we do perform
a number of parallel splits and corresponding verification tasks to acquire knowledge about
the best-performing split. But, under the same philosophy of RATS+, having acquired
knowledge about a property, we can then transfer the GP model to another property and
with a minimal number of additional benchmarks we can acquire knowledge about the best-
performing input splitting for that new property. If the process continuous for a sufficiently
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large number of queries/properties, every new property will be served by the developed BO
Model, virtually without additional micro-benchmarks.
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Figure 60: Fine-Tuning of Transferred BO model.

SCANNYV therefore extends the above BO process with transfer learning across properties. A
BO model trained on a source property is reused as an initial surrogate for a target property,
instead of training a new model from scratch (Figure 59). Because the input domains of the
two properties may differ, SCANNV performs a fine-tuning phase on the target property with
a small number of micro-benchmarks (Figure 60). In this phase, the acquisition function is
switched to Expected Improvement (El) with a large exploration parameter to quickly adapt
the surrogate to the new domain. This transfer can substantially reduce the optimisation cost

for new properties, especially when the input domains overlap or are subset/superset
relations.
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8.2 RelU-Based “Grey-Box” Optimisation
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Figure 61: Bayesian Optimization-based RelLU Monitoring Architecture.

Beyond purely black-box optimisation, SCANNV also exploits internal information exposed by
the verifier, in particular the stability of ReLU neurons. A neuron is considered stable on a
subproblem if its input interval is entirely non-negative or non-positive, i.e., its activation
pattern does not depend on the exact input within that subproblem. For each candidate
splitting vector, SCANNV computes an average stability ratio across all resulting subproblems,
without running full verification, but only inference on Vis. Instead of minimising verification
time directly, SCANNV minimises this average stability ratio via BO (using El as acquisition
function). The RelU-based Grey-Box operation of SCANVV is illustrated in Figure 61.
Experimentally, we show that for UNSAT properties, this counter-intuitively leads to lower
verification times than the heuristic currently implemented by Venus, which aims to increase
stability. The explanation is that less stable initial regions trigger more pruning and faster
proof of unsatisfiability in the specific parallel setup.

8.3 SCANVV Experimental Evaluation

SCANVV experiments are conducted on the ACAS Xu benchmark [REF-26], a widely used suite
of 45 feed-forward ReLU networks for airborne collision avoidance. Each network has 6
hidden layers and 300 ReLU neurons and replaces a large look-up table-based legacy system.
Inputs include relative distances and headings of aircraft, as well as own and intruder speeds.
Outputs are discrete advices (e.g., “clear-of-conflict”, “weak left”, “hard right”).

The evaluations focus on a subset of the standard ACAS Xu safety properties, including
Properties 2 and 3, resulting in 172 verification queries in total. All experiments use the Venus
verifier in a fixed parallel configuration (two splitter processes and four worker processes),
with internal heuristics such as the dependency analyser disabled to avoid confounding
effects. A maximum of 243 initial subproblems is allowed (e.g., splitting each of 5 input
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dimensions into up to 3 equal parts), as higher levels of splitting are not consistently
manageable within memory and time constraints.

8.3.1 Performance of BO-Based Input Splitting Optimisation

The BO-based input splitting experiments consider two micro-benchmark budgets: (a)10%
coverage of the splitting space (e.g., 24 BO evaluations out of 243 possible splits), and (b) 20%
coverage (e.g., 48 evaluations). Each BO evaluation runs a full verification of all subproblems
generated by the candidate split. Over all properties and networks, the theoretical upper
bound of pure verification time is estimated at around three to four months of continuous
execution, assuming no timeouts. In practice, due to time limits and early terminations, the
effective duration is lower but remains substantial, illustrating the need for sample-efficient
BO strategies.

When targeting verification time as objective on property 2 across all associated networks,
we compare the BO-selected split against a full grid search over all 243 candidate splits. The
quality metric is the rank of the selected by BO split (1 = globally fastest).

With 10% coverage, BO finds a valid split for 22 out of 36 queries. For these:

e All selected splits rank within the top 50;
e 21/22 are within the top 20;

e 18/22 within the top 10; and

e 12/22 within the top 5.

With 20% coverage, BO finds a valid split for 26 out of 36 queries. For these:

e 25/26 are within the top 20;
e 21/26 within the top 10;
e 12/26 within the top 5.

These results show that even with a small fraction of the search space explored, BO identifies
near-optimal splits in the majority of cases.

Having acquired good knowledge on a source domain, we proceed to evaluate SCANNV on
three transfer scenarios for the BO model:

Subset property (Custom Property 1): whose domain is a subset of Property 2. The
transferred model, fine-tuned with a small (e.g., 5%) budget, achieves ranks comparable to
or better than those of a newly trained 10% model, and in several networks it even provides
strictly better splits.

Table 6: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom Property 1).

ACAS Neural Transferred 10% From scratch
Network ID Solution Rank 10%

36 3 3

4 6 2 3
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ACAS Neural Transferred 10% From scratch
Network ID Solution Rank 10%
56 1 1

Superset property (Custom Property 2): whose domain is a superset of Property 2. Again, the
transferred + fine-tuning configuration consistently yields splits in the top ranks, often
matching or surpassing the from-scratch BO runs.

Table 7: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom property 2).

ACAS Neural Transferred 10% From scratch
Network ID Solution Rank 10%

36 2 6
4 6 1 1
5 6 2 2

Completely Different Property (Property 3): with only partial overlap in input dimensions.
Here the domain shift is larger. While the transferred model can perform worse than the
newly trained one in some networks, in others it still identifies top-ranked splits.

Table 8: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom property 2)

ACAS Neural Transferred 10% From scratch
Network ID Solution Rank 10%

36 216 5
4 6 2 6
56 234 3

Overall, transfer remains beneficial when properties are sufficiently related (subset/superset
or substantial overlap). In more distant cases where every dimension of a property is varied,
a BO model developed from scratch is preferable.

8.3.2 Impact of ReLU-Based Optimisation and Scheduling
The ReLU-monitoring variant of SCANNV is evaluated by comparing plain Venus against Venus

augmented with SCANNV’s ReLU-based initial split and schedule.

For UNSAT queries of Property 2, the SCANNV-augmented configuration achieves
approximately a 2x reduction in both total and average verification time across the relevant
networks. Reducing the total verification time from 619 seconds to 293 seconds

For SAT queries of Property 3, SCANNV achieves equivalent to Venus verification time,
although the magnitude of improvement is property dependent.
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Overall, ReLU-Based Optimisation and Scheduling seems to favour UNSAT queries, without
harming the input splitting performance of SAT ones. Additional validation runs confirm that
these improvements are robust and not artifacts of specific random seeds or machine
conditions.

Table 9: Comparison between total verification times for standalone Venus, Random Splits +
Venus and SCANVV Rel U Monitoring

Venus Random Split + SCANVV
Venus
705.86 secs 731.12 secs 319.71 secs

To further validate our claim, we design an experiment where we compare Venus, Random
Splits + Venus and SCANVV RelLU-based Optimization, on Property 2. As Table 9 shows, the
verification time of standalone Venus is comparable to Venus upon being provided initial
random splits. On the contrary, SCANVV reduces the total verification time by more than 2
times.
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9 Verification of Spatio-Temporal Systems

Formal robustness guarantees for neural networks have yet to achieve broad practical
adoption, primarily due to fundamental scalability limitations. Contemporary verification
techniques often fail when applied to high-dimensional input spaces, either because they rely
on overly coarse relaxations that weaken the resulting guarantees or because the exact
verification procedures become computationally intractable. However, in domains where
inputs exhibit inherent spatial or temporal structure—such as consecutive frames in video
data or sequential slices in medical imaging—the effective adversarial search space can be
substantially reduced. By constraining perturbations to respect realistic spatio-temporal
correlations, it becomes possible to narrow the adversary’s strength and obtain more
meaningful verification outcomes.

In this work, we address the challenge of formally certifying adversarial robustness under such
structured perturbation regimes. We introduce spatio-temporal bound propagation (STBP),
a new computational technique that begins by solving a mixed-integer linear program (MILP)
over the network’s initial layer and then propagates the resulting tight bounds through the
subsequent layers using a combination of exact and relaxed reasoning. This hybrid design
enables the method to capture fine-grained constraints in the early stages of computation
while maintaining tractability throughout the network.

Our experiments demonstrate that STBP delivers stronger certified guarantees than standard
adversarial training and offers practical advantages over certified training approaches.
Notably, STBP achieves more than a 1.7x improvement in robust accuracy for equivalent
perturbation budgets, highlighting its potential to make formally verified robustness more
achievable in realistic, temporally structured settings.

Despite the clear value of formal certification in safety-critical machine learning, certified
robustness techniques have seen limited practical adoption. This gap arises primarily because
existing verification methods either (a) rely on coarse approximations that produce
guarantees too loose to be actionable, or (b) require computational resources far beyond
what is feasible for large-scale models. These issues become even more pronounced as input
dimensionality increases. Approximate abstract-interpretation methods, such as interval
bound propagation, tend to be overly conservative in high-dimensional spaces and thus fail
to produce meaningful robustness guarantees [REF-39]. Conversely, exact verification
approaches, such as mixed-integer linear programming (MILP), scale poorly and become
prohibitively expensive for modern architectures [[REF-40], [REF-41], [REF-42]]. As a result,
current verification efforts are largely restricted to low-dimensional datasets and relatively
small neural models [[REF-43], [REF-32]].

To address these limitations, we propose a computational framework that leverages domain
knowledge to impose realistic spatio-temporal constraints on input perturbations. Such
constraints are highly relevant in domains involving video data [[REF-44], [REF-45]] or
volumetric medical imaging [REF-46], where common verification approaches implicitly
assume that an adversary is capable of independently perturbing video frames occurring
milliseconds apart. In practice, adversarial manipulations—such as placing misleading traffic
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signs or altering visual artifacts—tend to be externally induced and therefore temporally
correlated. Likewise, sensor-induced noise exhibits well-documented spatial correlation
patterns [[REF-46], [REF-47], [REF-48]]. Motivated by these observations, we introduce
spatio-temporal shared interval bound propagation (S-IBP), a hybrid verification technique
that combines the precision of MILP with the scalability of abstract interpretation. Our
method first uses MILP to compute exact, tightly bounded perturbations at the network’s first
layer under the given spatio-temporal constraints and then propagates these bounds through
the remaining layers using abstract interpretation. Furthermore, by exploiting the
differentiable components of the bound-propagation process, we formulate new training
objectives that enable learning neural networks that are provably robust to structured spatio-
temporal perturbations.

We conduct extensive experiments validating the effectiveness of our approach across
diverse datasets, including UCF-101 for action recognition [REF-49], the Udacity self-driving
car dataset [REF-51], and several medical imaging benchmarks [REF-50]. To evaluate
robustness in a manner grounded in real-world behaviour, we construct novel spatio-
temporal verification benchmarks. For autonomous driving, we design perturbation scenarios
that identify plausible regions in each frame where adversarial elements—such as spoofed
road signs or artificial bumper stickers—could be introduced. For medical imaging, guided by
known sensitivity patterns in MRI acquisition, we develop procedures that generate spatio-
temporal perturbation constraints aligned with realistic acquisition errors.

Our results demonstrate that, under these structured robustness specifications, S-IBP enables
the training of neural networks with certified robustness an order of magnitude higher than
that provided by standard adversarial training. Moreover, when compared with existing
certification-based training approaches calibrated to the same robustness thresholds, our
method achieves over 30% higher accuracy on clean data, indicating substantial practical
utility. Beyond these performance gains, we also conduct a systematic analysis of widely used
spatio-temporal neural architectures, characterizing the extent to which they can be made
provably robust to realistic perturbation patterns.
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Figure 62: Overview of Spatio-Temporal Bound propagation.

Figure 62 illustrates the overall architecture of the Spatio-Temporal Bound Propagation
(STBP) framework. In this setup, adversarial patches are generated using a YOLO-based
pipeline, which provides realistic, structured perturbations aligned with the spatial and
temporal characteristics of the input domain. STBP achieves tight robustness guarantees by
applying linear programming to the network’s first layer, enabling the computation of highly
precise bounds at the point where perturbations first enter the model. For the subsequent
layers, where exact methods would be computationally prohibitive, the framework
transitions to more efficient relaxation techniques—specifically Interval Bound Propagation
(IBP)—to propagate the bounds forward through the network. This hybrid strategy balances
tightness and scalability, ensuring that STBP captures fine-grained adversarial constraints
without incurring the full cost of exact verification across the entire architecture.

9.1 Spatio-Temporal Bound Propagation Method

We consider a supervised learning setting in which a model
f: REXHXL _ y

maps an input tensor x € R€*#*Lto an output in a label space Y. Here, Cdenotes the number
of channels, Hthe spatial resolution, and Lthe temporal or sequential dimension, such as
video frames or stacked imaging slices. The model fis typically instantiated as a deep neural
network composed of alternating affine transformations and nonlinear activations. We
assume a data distribution Dover input—label pairs (x,y) € RE**L x Y, and our goal is to
verify not only the model’s behaviour at individual data points, but its behaviour over entire
neighbourhoods defined by allowable perturbations.

To formalize this, we define an input specification T(x) € R¢*#*Lcapturing the set of
perturbed inputs considered semantically equivalent to a given X. Robustness verification
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aims to show that the model’s predicted label remains invariant across this set. Specifically,
we seek to prove that f(x') = f(x)for all X" € T(x).

A certificate of this form constitutes a formal guarantee that the network is robust to all
perturbations permitted by the specification. However, verifying such guarantees becomes
increasingly challenging in high-dimensional spatio-temporal domains, where existing
methods struggle to propagate tight bounds through deep architectures. This motivates the
development of new verification techniques that can exploit structured spatial and temporal
dependencies in the input.

9.1.1 Modelling Spatio-Temporal Constraints

We next introduce a mixed-integer linear programming (MILP) formulation to compute tight,

certified bounds on the activations of the first layer under structured perturbations. Let
X € REXDXHXW

be a four-dimensional input tensor and let

T(X) C RCXDXHXW
denote the set of admissible perturbed inputs constrained to satisfy realistic spatio-temporal
coherence. Let 8§ € R"be the flattened perturbation tensor, withn = C * D x H « W.

The perturbed input is X + . We impose structured constraints on dvia the following sets:
e Bounded perturbations: fori € B € {1, ...,n},
—€; < 6i < €;.

e Shared perturbations: for all index pairs (i,j) € S,

o Fixed (non-perturbed) entries: fori € F C {1, ..., n},

These constraints encode known structural priors such as temporal smoothness or anatomical
consistency across slices, thereby reducing adversarial degrees of freedom.

9.1.1.1 Affine layer
Let the network’s first layer be affine, with weight matrix W € R™*"and bias b € R™. The
pre-activation response is

z=W(x+8)+beRm

To obtain tight bounds on z;over all valid perturbations, we solve two MILPs per output
coordinate j € {1, ..., m}:
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9.1.1.2 MILP Formulation
max /min  z; = w/ (x + 8) + b
subjectto  §; € [—€;,€;]Vi € B,
61' = 6kV(l, k) € 5,
6i = 0Vi € F.

Although each problem is a linear program with bound and equality constraints, the shared
perturbation sets introduce nontrivial coupling among variables. Nonetheless, the resulting
optimal values give certified, input-dependent intervals for the activations of the first layer,
which form the foundation of the hybrid verification pipeline.

9.1.2 Spatio-Temporal Bound Propagation (STBP)

Given the structured input specification T'(x) S R", our goal is to compute sound output
bounds for the neural network

F=fW®o.of®

under all admissible perturbations. To accomplish this, we propose Spatio-Temporal Bound
Propagation (STBP), a hybrid verification algorithm combining exact MILP-based bounds at
the input layer with efficient relaxation-based propagation for deeper layers.

For each neuron jin the first layer, we compute exact bounds

. _ . @, o o, D, _ W o r
G TR B OO Ry B )

where zj(l)(x’) = ijX' + bj. These MILP-certified bounds provide a tight enclosure of the

first-layer activations.

For subsequent layers (i > 1), we propagate bounds using interval bound propagation (IBP)

or similar linear relaxations. Given bounds {’(i_l)and u(i_l), define the center and radius:

1) = 2 (¢ 1 (D) (1) = 2 ui-1) — pli-1)
2 2
For an affine transformation with weights W and bias b:
2O = W=D w | r@D 4 p, 4® = welE-Dyw | r(-D 4 p,
where the absolute value is elementwise.

The key innovation of STBP lies in combining exact layer-1 MILP bounds, which encode
detailed spatio-temporal structure, with fast, conservative relaxation methods for deeper
layers. This results in a verification approach that is both scalable and significantly tighter than
standard IBP, particularly in domains where spatio-temporal correlations substantially reduce
the effective perturbation dimension.
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9.2 Datasets and Models

We evaluate the proposed verification methods across four heterogeneous datasets
encompassing synthetic, real-world, and medical imaging domains. For MNIST, we construct
a video-style variant by temporally concatenating individual digit frames, enabling the
evaluation of two 3D CNN architectures operating at different spatial resolutions; these
models achieve classification accuracies of up to 94.67%. For UCF-101, a standard video
action-recognition benchmark, we reduce both the spatial resolution and the number of
action classes to improve the tractability of verification. Under this simplified setting—
restricted to five broad action categories—the resulting model attains a clean accuracy of
74.41%.

For the Udacity self-driving dataset, we convert the original steering-angle regression task
into a three-way classification problem. To facilitate verification, we downsample the input
images and employ a compact CNN, which achieves 84.24% accuracy. Finally, for MEDMNIST,
we focus on the Synapse-3D subset, where the task is to classify neuron types from 3D voxel
representations. Using a model architecturally aligned with the MNIST baseline, we obtain an
accuracy of 73.01%.

Across all experiments, the neural networks are deliberately designed to be compact—each
containing no more than ten layers—to ensure that spatio-temporal verification remains
computationally feasible. These models nonetheless capture the essential complexity of their
respective domains, enabling a meaningful evaluation of the scalability and effectiveness of
our verification techniques.

9.3 Experiments

We empirically assess the effectiveness of the proposed approach in certifying the adversarial
robustness of neural networks across a diverse set of spatio-temporal tasks. Our evaluation
demonstrates consistent and significant improvements in certified robustness over standard
verification techniques for every dataset and model considered. In particular, we study
robustness under perturbation magnitudes € € {107°,107%,1073,1072,10 " }and
adversarial patch sizes k € {1, ...,10}, comparing standard Interval Bound Propagation (IBP)
against our hybrid Spatio-Temporal Bound Propagation (STBP) method.

Figure 63 presents the certified robust accuracy of the MNIST video model—constructed
using 10 frames at 28 X 28resolution—under increasing perturbation magnitudes (left) and
patch sizes (right). Across all settings, STBP consistently outperforms IBP, with particularly
pronounced gains under structured perturbations. The patch-based version of STBP achieves
near-perfect robustness for perturbations up to € = 10 *and for small patch sizes,
underscoring the advantage of integrating domain-specific spatial and temporal structure
into the verification pipeline.
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Robust Accuracy vs. Perturbation Magnitude

Robust Accuracy vs. Patch Size
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Figure 63: Adversarial Robustness of IBP, STBP, STBP using adversarial patches for MNIST 10
frame 28 x 28 video model; left: against perturbations (€); right: against patch size (k).

A consolidated summary of results is provided in Table 10, reporting both clean and certified
robust accuracies across the four benchmark domains: MNIST, UCF-101, Udacity self-driving,
and MEDMNIST Synapse3D. STBP yields substantial improvements compared to IBP—for
example, on the MNIST video model, STBP with patch constraints increases certified robust
accuracy from 49.32% to 77.05% at € = 10™%. For the autonomous driving and medical
imaging tasks, STBP achieves over 85% certified robustness under patch perturbations,
demonstrating that the method scales effectively to more complex real-world systems.

Although STBP scales well for moderate-sized 3D CNNs, verifying larger architectures—such
as ResNet-style backbones—remains challenging even when using shared perturbation
models. As expected, the inclusion of a MILP optimization step on the first layer introduces
additional computational overhead, but this cost is offset by the substantial improvements in
certification quality.

Table 10: Summary of results for MNIST, UCF-101, Udacity self-driving, and MEDMNIST
Synapse3D.

Experiment Clean Acc. Input Dim Output Dim  # Samples
MNIST Toy Model 93.1% 1x5x8x8 10 10000
MNIST Toy Model 94.67% 1x10x28%x28 10 1000
UCF-101 74.41% 3x30x32x32 5 7

Udacity Steering o,23%  3x30x32x32 3 15

Angle

MEDMNIST 73.01% 32x32x32 2 100
Synapse3D
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IBP Acc.

1.2 53.2 89.1 0.0 1.15

0.0 49.32 93.75 0.0 0.0

0.0 23.03 26.36 0.0 7.3

0.0 85.71 85.71 85.71 85.71

19.0 72.0 72.0 0.0 72

STBP Acc.

42.0

58.20

19.36

85.71

72

€=10* €=107
912 93-10
77.05 78.71
519 5381
8571 85.71
72 72
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10 Probabilistic Verification of Neural Networks via PAC-

Interval Estimation
10.1 The Verification Criterion

PAC Interval Estimation defines verification in the context of the local Lipschitz constant. Let
Be(x9) = {x: 1l x — xo II< €} be the input region of interest (an e-ball).

Let M (xy) be the margin (distance) from the output f(x,) to the nearest decision boundary.
A sufficient condition for robustness is given by:

L e < M(x)
where L = maxyep,_(x,) Il Jr(x) Il is the maximum operator norm of the Jacobian (the local

Lipschitz constant) within the ball. If this inequality holds, it is geometrically impossible for
the network to misclassify an input within the region.

10.1.1 The Estimation Challenge

Calculating L* exactly is an NP-hard problem for general neural networks. The optimization
landscape of || J(x) Il is highly non-convex, filled with local maxima and sharp peaks.

e Analytical Bound Propagation (e.g., AutoLIRPA): These methods propagate error
intervals layer-by-layer through the network. While computationally fast, they often
suffer from the dependency problem (the "wrapping effect"), resulting in loose upper
bounds that are orders of magnitude larger than the true constant. This often leads to
a failure to satisfy Eq. (1) even for robust networks.

e Exact Methods (e.g., LipMIP): Mixed Integer Programming (MIP) can theoretically find
the true global maximum. However, these solvers scale poorly with network depth
and width, often timing out before finding a solution.

To overcome these limitations, we relax the requirement for a deterministic maximum in
favour of a probabilistic bound that is tight enough to be useful but rigorous enough to
provide safety guarantees.

10.2 Theoretical Framework: The PAC Interval

We frame the verification task as a statistical estimation problem. Instead of a single point
estimate, we seek a Probably Approximately Correct (PAC) Interval [L;,,, Lp;gr] for the true
maximum L*.

10.2.1 Understanding the PAC Framework

The concept of Probably Approximately Correct (PAC) learning originates from computational
learning theory. In its standard form, it addresses the question: "How many samples do we
need to learn a hypothesis that is accurate with high probability?"

In the context of Lipschitz estimation, we adapt this framework to quantify uncertainty. Since
we cannot evaluate the gradient at every single point in the continuous domain B.(x,) (which
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would require infinite time), we must rely on a finite set of samples. Consequently, there is
always a non-zero probability that the true maximum lies in an unobserved region.

The PAC framework allows us to formalize this risk. We seek an upper bound Ly; 5, such that
the probability of the true maximum exceeding this bound is bounded by a small parameter
y. In simple terms, we are making a statistical contract:

"We cannot guarantee with 100% certainty that L" is below Lp;qy. However, we
have constructed Ly; 4, such that the chance of us being wrong is less than y (e.g.,
0.1% or 0.001%)."

Mathematically, our verification guarantee is probabilistic:
Pr(LlOW < L < Lhigh) >1- Y

If Lpign - € < M(x), the network is verified with confidence 1 — y. This approach trades the
intractable certainty of deterministic methods for the tractable, high-confidence guarantees
of statistical methods.

10.2.2 The Cumulative Distribution Function (CDF)

To implement the PAC framework, we analyse the statistical behaviour of the gradient norms.
Let X be a random variable representing the input chosen by our sampling strategy and let
Y = g(X) =l Jr(X) Il be the gradient norm at that input.

The central object of our study is the Cumulative Distribution Function (CDF), denoted as
F(y). The CDF describes the probability that a random sample will have a gradient norm less
than or equal to a value y:

F(y)=pPr(Y =y)
For example, if F(50) = 0.95, it means that 95% of the sampled gradients are less than or
equal to 50. The value of y where F(y) = 1 is the theoretical maximum L*. Our goal is to
estimate the behavior of F(y) as it approaches 1.

Since we do not know the true CDF F(y), we approximate it using the Empirical CDF, Fy (y),
constructed from N observed samples. The empirical CDF is a step function that jumps by
1/N at each observed data point. As N = oo, the Law of Large Numbers guarantees that
Fy(y) converges to F(y).

10.2.3 The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality

While Fyy (y) converges to the truth, for finite N there is an error. We need to bound this error
to maintain our safety guarantee. We utilize the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality, a powerful theorem in non-parametric statistics.

10.2.3.1 Concept: The Confidence Tube

The DKW inequality allows us to build a "confidence tube" (or confidence band) around our
empirical data. Imagine plotting the empirical CDF step function on a graph. The DKW
inequality draws two boundary curves—one above and one below—creating a corridor.
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The theorem guarantees that the invisible, true CDF F (y) lies entirely within this corridor with
probability at least 1 — y. It provides a strict, global bound on the distance between the
observed data and the ground truth.

10.2.3.2 Mathematical Formulation
Given N independent and identically distributed (i.i.d.) samples, the DKW inequality states:

Pr (sup|ﬁN(y) —F(y)| > a) < 2¢72Na’
y

By setting the right side to our desired confidence level y and solving for the bandwidth «,
we get:

In(2/y)

2N

We then define the lower and upper bounds of the confidence tube as:

F,(y) = max(0, Fy (y) — @)

Fy(y) = min(1, Fy(y) + @)
This tube serves as the primary constraint for our verification. Any statistical model we
propose for the tail of the distribution must effectively "live" within this tube to be considered
a plausible explanation of the data.

10.2.4 Parameter Space Search for the Worst-Case Model

A simple statistical approach would be to fit a single "best-fit" curve to the tail data and report
its endpoint. However, there might be many slightly different curves that fit the data almost
equally well but imply very different maximum values.

To adhere to the safety-critical nature of verification, we employ a robust optimization
procedure:

1. We define a family of curves (Generalized Pareto Distributions) that are theoretically
justified to model the tail.

2. We identify the subset of these curves that are "statistically plausible." A curve is
plausible if and only if it lies entirely within the DKW confidence tube (F;, < G < Fy).

3. From this plausible set, we find the single curve that is the most pessimistic—i.e., the
one with the largest upper endpoint.
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This vyields Lp;gn, the worst-case Lipschitz constant consistent with our data and our
confidence level y. A practical illustration is shown in Figure 64.

POT Analysis for Endpoint Estimation
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Figure 64: The observed exceedances (blue line), fitted GPD (green line) and maximum plausible
fit (purple line). The goal of the algorithm is to find the GPD fit with the largest endpoint that
fits entirely in the confidence tube.

10.3 Targeted Sampling: The Adam-Sobol Method

The mathematical guarantees of the PAC framework (specifically the DKW inequality) rely on
the assumption that the samples are representative of the underlying distribution. In the
context of neural network verification, this is a significant hurdle.

The input space B.(xg) is a high-dimensional hyperball. As the dimension d increases, the
volume of the space explodes exponentially (the Curse of Dimensionality). The regions where
the gradient norm is maximized—the "peaks" of the landscape—are typically extremely small
and sparse relative to the total volume.

If we were to use simple uniform random sampling, the probability of landing near a peak
would be vanishingly small. We would mostly observe gradients from the "flat" low-value
regions. Consequently, our DKW tube would accurately model the body of the distribution
but would contain no information about the tail, leading to a gross underestimation of L*.

To solve this, we require a sampling strategy that is biased towards high values. We developed
a specialized, multi-stage strategy named Adam-Sobol.

10.3.1 Modularity of the Sampling Engine

It is crucial to note that this specific sampling method is not a fixed constraint of the
proposed framework. The core contribution is the PAC-Interval analysis (Chapter 2), which
acts as a statistical backend agnostic to the data source. We employ Adam-Sobol here because
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it performs well empirically. However, the framework is modular: if a superior sampling
strategy—such as one based on generative models, flow-matching, or more advanced
adversarial attacks—can populate the distribution tail more densely, it can replace Adam-
Sobol without altering the statistical core of the verification.

10.3.2 Stage 1: Global Peak Discovery (Adam Attack)

The first challenge is to locate the general "basins of attraction" where the gradient norms
are high. To do this, we treat the sampling problem as an optimization problem. We want to
find input vectors x that maximize the scalar function g(x) =l J¢(x) II.

We employ an adversarial attack strategy based on the Adam optimizer. Adam is a gradient-
based optimization algorithm widely used in training neural networks. Here, instead of
updating network weights to minimize loss, we update the input vector x to maximize the
gradient norm.

¢ Initialization: We define W parallel particles, each initialized randomly within the
input ball B.(xy).

e Ascent: For each particle, we calculate the gradient of our objective function with
respect to the input, V,g(x). We then move the particle in the direction of this
gradient.

e Restarts: Optimizers can get stuck in local optima (smaller peaks). By running many
restarts in parallel, we increase the coverage of the search space.

This stage results in a set of samples Sy 44m clustered around the local maxima of the function.

10.3.3 Stage 2: Local Distributional Refinement (K-Box Sobol)

While the Adam attack is excellent at finding single high points, it is not a sampler in the
statistical sense; it creates a biased cluster of points at the very tips of the peaks. To perform
Extreme Value Theory analysis, we need to understand the shape of the peak—how the
values fall off as we move away from the maximum. We need to sample the "exceedances"
(values above a threshold).

To achieve this, we refine the output of the Adam stage:

1. Selection: We take the top K distinct candidates from S,44m- These represent the K
most promising regions found.

2. Bounding (The K-Box): Around each candidate peak x;, we define a small hypercube
(a "box") By, constrained within the original e-ball.

3. Sobol Sampling: Within each of these small boxes, we generate a high-density set of
samples. Crucially, we do not use pseudo-random numbers. Instead, we use Sobol
sequences.

10.3.3.1 Why Sobol Sequences?
Sobol sequences are a type of Quasi-Monte Carlo (QMC) method. Unlike pseudo-random
numbers, which are independent and can randomly clump together leaving gaps in the space,
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Sobol sequences are deterministic and designed to be "low discrepancy." They are self-
avoiding, meaning they spread out as evenly as possible to fill the available space.

By using Sobol sequences within the K-Boxes, we obtain a high-fidelity, uniform scan of the
geometry around the peaks. This provides the rich distributional data—the shape of the tail—
necessary for rigorous GPD fitting. The final dataset S¢;,4, is the union of these local scans.

It is important to note that algorithms for generating Sobol sequences are well defined only
up to a certain (albeit very large) dimension. In problems where the size of the input
dimension is larger than 21201, we have to employ Latin Hypercube Sampling, which is a
different method to generate samples that are "not too clustered".

10.4 Estimation Engine: Peaks-over-Threshold (POT)

The theoretical foundation of the POT method is the Pickands-Balkema-de Haan theorem.
This theorem is to extreme values what the Central Limit Theorem is to averages.

The Central Limit Theorem states that if you sum up many random variables, the result
converges to a Gaussian (Normal) distribution, regardless of the original distribution.
Similarly, the Pickands-Balkema-de Haan theorem states that if you look at the distribution of
values that exceed a sufficiently high threshold u, that conditional distribution converges to
the Generalized Pareto Distribution (GPD).

The CDF of the GPD is given by:

G =1-(1+2)"

where o is a scale parameter and ¢ is the shape parameter.

10.4.1.1 The Shape Parameter and the Reverse Weibull
The shape parameter ¢ determines the behavior of the tail. There are three regimes:

1. Fréchet (¢ > 0): Heavy-tailed distributions (e.g., wealth distribution). These have no
upper limit and decay polynomially.

2. Gumbel (¢ = 0): Light-tailed distributions (e.g., normal distribution). These have no
upper limit but decay exponentially.

3. Reverse Weibull (¢ < 0): Short-tailed distributions. These have a mathematically
finite upper endpoint.

For neural network verification, we strictly restrict our search to the Reverse Weibull domain
(€ < 0). This is not an arbitrary choice but a physical constraint. A neural network with finite
weights, operating on a compact input domain B.(x;), defines a continuous function. By the
Extreme Value Theorem of calculus, a continuous function on a compact set is bounded.
Therefore, the distribution of gradients must have a finite endpoint.

Our goal is to estimate this finite endpoint, given by:
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o
Ymax = U+

<1

This Yy is our estimator for Ly;gp.

10.4.2 Automated Threshold Selection: Balancing Bias and Variance

The application of POT requires selecting a threshold u. This choice is subtle and represents
a fundamental Bias-Variance Trade-off.

e Threshold Too Low (High Bias): If we set u too low, we include data points from the
"body" of the distribution. These points do not follow the GPD (which is an asymptotic
limit for extremes). Including them violates the assumptions of the theorem, biasing
our estimates of £ and o.

e Threshold Too High (High Variance): If we set u extremely high, we satisfy the
theorem’s assumptions perfectly, but we are left with very few data points (only the
very tip of the tail). With small sample sizes, statistical estimation becomes unstable,
leading to massive variance and wide confidence intervals.

We automate this selection using the Mean Residual Life Plot (MRLP). The "Mean Residual
Life" is the expected amount by which a value will exceed the threshold, given that it exceeds
it.

e(u) = E[Y —u|Y > u]

A unique property of the GPD is that the mean residual life is a linear function of the threshold
u.

Our Algorithm:

1. We compute the empirical mean residual life for a range of candidate thresholds.
2. We fit a Weighted Least Squares (WLS) line to this plot.

3. We perform a sequential hypothesis test (using y? statistics) to find the lowest
threshold u,,; where the linearity hypothesis cannot be rejected.

This identifies the "sweet spot": the lowest threshold (maximizing sample size) where the
distribution is sufficiently "extreme" (minimizing bias). An illustrative example using
synthetically generated data is shown in Figure 65, where the algorithmically selected
threshold is very close to the true threshold of the synthetic data.
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Time Series Data with Thresholds

Mean Residual Life Plot (MRLP)

Figure 65: Top: lllustration of synthetic data lying above the detected and true threshold.
Bottom: Mean Residual Life (MRL) plot for synthetic data; the algorithm seeks to find the
smallest value at which the MRL begins to showcase a linear behaviour. This synthetic data is
composed of random uniform sampling and a GPD distribution imposed on the top range of
data, hence there is a true threshold which we use as comparison.

10.4.3 Constraint-Based Verification Bound

Once u,,, is determined, we construct the final verification bound. As discussed in the PAC
section, we do not simply take the maximum likelihood parameters. We search the (¢, o)
space for the GPD that maximizes y,,,, While remaining inside the DKW confidence tube.

o
Lnign = max (uope + ) 58 FL0) £ 60 ) S Fy )

10.5 Experimental Results

We validated the Adam-Sobol + LipPOT pipeline on the SMALLMNIST5 network. This network,
while small enough to be analysed by exact solvers, presents a sufficiently complex landscape
to test the efficacy of our statistical approach.

10.5.1 Performance on Small Domain

In this regime, the domain is small enough that the Mixed Integer Programming solver
(LipMIP) can converge to the exact global maximum within a reasonable timeframe. This
provides a "Ground Truth" against which we can evaluate our method.
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Table 11: Comparison on SMALLMNIST5 (Local 0.01 Domain, L_e= Norm)

Algorithm Upper Bound Lower Bound Time(s) Outcome

LipPOT (Ours) 80.92 80.06 94.18 Tight Interval
auto_LIRPA 1308.26 NaN 0.67 Loose

LipMIP 84.30 NaN 704.18 Exact Global Max

10.5.1.1 Analysis of Underestimation
Table 11 reveals a critical insight into the nature of our method. LipMIP finds the exact
maximum to be 84.30. Our method, LipPOT, reports a high-confidence upper bound of 80.92.

Crucially, LipPOT underestimates the true constant. The upper bound (80.92) is slightly lower
than the true maximum (84.30). This discrepancy (approx. 4%) is the "smoking gun" of
statistical verification. It indicates that despite our specialized Adam-Sobol sampling, the very
highest peak in the landscape was extremely narrow and was missed by the sampler. The EVT
model correctly fitted the tail of the observed peaks, but it cannot infer the existence of a
singular, unobserved spike that behaves differently from the rest of the tail. This confirms
that our method provides a probabilistic certificate, not a deterministic guarantee.

In this particular instance, the reason for the underestimation was because the network had
a discontinuity contained within the input region. However, compared to the analytical
method (auto_LIRPA), which overestimated the bound by over 1500% (1308.26), LipPOT
provides a far more distinct and useful signal of the network’s behaviour, albeit with a known
statistical risk.

10.5.2 Performance on Large Domain

We tested the largest domain from our experimental set (¢ = 0.13) to demonstrate
robustness under extreme expansion. In this regime, the search space is exponentially larger.

Table 12: Comparison on SMALLMNIST5 (Local 0.13 Domain, L_e= Norm)

Algorithm Upper Bound Lower Bound Time(s) Outcome
LipPOT (Ours) 102.80 101.98 40.46 Stable
auto_LIRPA 6143.19 NaN 0.80 Exploded
LipMIP 5484.33 NaN 1833.00 Timeout

10.5.2.1 Scalability and Stability
Table 12 demonstrates the failure modes of deterministic methods:

e LipMIP (Timeout): The exact solver runs for 30 minutes (1833s) and fails to converge.
It returns an upper bound of 5484.33, which is likely just a loose bound from the
branch-and-bound tree, not a verified tight bound.

e auto_LIRPA (Explosion): The analytical bound propagation suffers from the wrapping
effect, returning a value (6143.19) that is useless for verification purposes.
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e LipPOT (Stable): Our method remains computationally efficient (40s) and returns a
tight, stable interval [101.98,102.80].

While the result of 102.80 allows for a verification decision where other methods fail, we must
interpret it in light of the underestimation seen in Table 11. It is probable that the true
maximum is slightly higher than 102.80, but remarkably unlikely to be anywhere near the
5000+ range reported by the baselines. LipPOT effectively filters out the loose
overestimations to reveal the true scale of the Lipschitz constant.

10.5.3 Limitations: Sources of Underestimation

The results highlight that LipPOT provides a statistical certification, distinct from
deterministic verification. There are two primary theoretical risks where the method may
underestimate the true constant:

1. Sampling Failure (Statistical Risk): As evidenced by the € = 0.01 experiment, if the
sampler misses the global peak entirely, the EVT model will be fit to the local peaks it
did observe. The resulting Lp;4n, will be a valid upper bound for the observed
distribution, but invalid for the unobserved global anomaly. This risk is controlled by
the quality of the sampling engine but can never be reduced to zero.

2. Non-Local Lipschitz Behavior (Geometric Risk): Our approach assumes that the
Lipschitz constant is well-characterized by the maximum local gradient norm max ||
Jr(x) Il. For neural networks with ReLU activations, the function is continuous but non-

If -

llx=yll
this equals the maximum gradient norm. However, theoretically, the Lipschitz constant

could be defined by a "short-circuit" between two distant points across a decision
boundary or a sharp valley, which would not be reflected in any local Jacobian. Since
our method relies on gradient norms, it cannot detect non-local Lipschitz violations.

smooth. The global Lipschitz constant is defined as sup,.,, . In most cases,

10.6 Conclusion

In this chapter, we have presented a comprehensive statistical framework for the verification
of neural networks. By shifting the verification paradigm from intractable deterministic
guarantees to high-confidence PAC Intervals, we have developed a method that scales to
problems where exact solvers fail.

Our contribution is twofold. First, we established the DKW-Constrained POT method, a
rigorous statistical engine that translates tail samples into a conservative upper bound for the
Lipschitz constant. We showed how the Generalized Pareto Distribution, constrained by the
Reverse Weibull assumption, provides a physically motivated model for the finite limits of
neural network gradients.

Second, we addressed the scarcity of tail data with the Adam-Sobol sampling strategy. We
demonstrated that simple random sampling is insufficient in high dimensions and that a
targeted adversarial attack coupled with low-discrepancy Sobol refinement is necessary to
populate the tail of the distribution.
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The experimental results validate this approach as a pragmatic trade-off. While we sacrifice
the absolute certainty of exact methods—accepting a small, quantifiable risk of
underestimation—we gain the ability to generate tight, meaningful bounds in seconds where
other methods take hours or fail completely. This suggests that statistical verification, when
grounded in rigorous Extreme Value Theory, offers a viable path forward for certifying the
robustness of increasingly complex deep learning systems.
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11 Verification of EVENFLOW Use Cases

11.1Verification of Industry 4.0 use case

Autonomous robots are poised to become a foundational component of next-generation
factory automation, yet their dependable operation in highly dynamic industrial
environments remains a major challenge. A critical limitation lies in ensuring that the neural
networks governing perception, prediction, and control behave reliably under all possible
operating conditions. To address this formal verification techniques are applied to neural
systems deployed on autonomous mobile robots (AMRs), with the goal of providing provable
safety guarantees.

AMRs use deep neural networks to interpret sensor data, detect obstacles, recognise objects,
and make navigation decisions. However, these models are inherently opaque and can
behave unpredictably when exposed to noisy, adversarial, or rare environmental conditions.
In industrial settings—where robots must operate among workers, other robots, and fast-
changing surroundings—such unpredictability may result in unsafe stops, near-misses, or
collisions, disrupting production and posing significant safety risks. Traditional testing and
empirical evaluation cannot feasibly cover the enormous space of possible inputs generated
by high-frequency sensors.

Formal verification provides a principled solution by mathematically analysing neural
networks to ensure that their outputs remain safe under all input variations within a specified
range. These methods can reason over entire sets of sensor readings, certify robustness to
perturbations, and verify that safety-critical decisions (e.g., obstacle detection, emergency
braking, or collision avoidance) hold across all relevant scenarios. For factory-deployed AMRs
with constrained computational resources, verification must also account for the large
volumes of sensor data and the need for lightweight, efficient neural models.

Emerging work combines advanced verification algorithms, symbolic reasoning, and scalable
neural approximations to validate AMR behaviours before deployment. By leveraging large
datasets, simulations, and domain-specific safety constraints, researchers aim to produce
certifiably robust autonomous systems that can anticipate problematic situations while
guaranteeing safe responses. Integrating formal verification into the development pipeline
promises not only to increase the reliability and safety of AMRs but also to enhance
manufacturing productivity and trust in Al-enabled automation.

11.1.1 Neurosymbolic model for robot path planning and collision avoidance

To facilitate tractable formal verification, we employ a deliberately compact yet sufficiently
expressive convolutional neural network (CNN) to serve as the perception component of the
neurosymbolic collision-avoidance system. The model processes raw visual observations from
an autonomous robot platform and predicts whether the robot’s current trajectory is on a
collision course with another robot in the environment. The dataset used for this study was
provided by the German Research Center for Artificial Intelligence (DFKI). It consists of
synchronized left- and right-camera video streams recorded from two mobile robots
operating in a shared indoor space. Each image captures the robot’s first-person viewpoint,
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and potential collision events can be inferred when the second robot appears within the
camera’s field of view.

The original camera frames have a resolution of 1280 X 720 pixels. To reduce computational
overhead and improve verification scalability, all images are down sampled to 160 X
90 before being fed into the neural network. The resulting input tensor has shape
3 X 160 X 90, corresponding to RGB channels and reduced spatial dimensions. The output of
the neural network is classified into 20 bins representing different spatial configurations and
motion patterns associated with the two robots, enabling symbolic reasoning modules to
determine whether their trajectories are likely to intersect.

Figure 66 shows the overall neuro-symbolic architecture. The CNN comprises a sequence of
convolutional layers with ReLU activations and periodic max-pooling, progressively reducing
spatial resolution while increasing feature depth. After ten convolutional blocks, the feature
map is flattened into a 384-dimensional vector and passed through a two-layer classifier
(384->20->num_classes).

symbol 1 Arithmetic Circuit
Neural Object Detecto Symkol2
‘.‘ symbol 3
h-‘ - —-> -
! ] ) ‘ symbol 4 > Output
J / > v

symbol 20

Input Perturbations

Figure 66: Neurosymbolic model for robot collision avoidance using the DFKI dataset.

11.1.2 Verification of the Neurosymbolic system for Industry 4.0

In this section, we report the formal verification results obtained for the neuro-symbolic
collision-avoidance model developed for the DFKI robotic perception use case. The underlying
neural architecture was trained using a 5-fold cross-validation strategy to ensure robustness
and mitigate overfitting. For each fold, an independently trained model was subjected to
verification, enabling us to assess the consistency and reliability of the verification outcomes
across five distinct data splits. This evaluation methodology provides a comprehensive view
of the model’s behaviour under varying training distributions and supports a statistically
grounded assessment of its safety properties.

To analyse robustness, we compute certified guarantees under a range of e-bounded
perturbations applied to the input images. These perturbations simulate realistic sensor noise
and environmental variability that may arise during robot operation. Verification is performed
using a custom verification toolkit built on top of the auto_LiRPA framework, which enables
sound relaxation-based bound propagation for convolutional neural networks. The toolkit
supports the computation of lower and upper bounds on network outputs under adversarially
bounded perturbations, thereby allowing us to determine whether safety-critical
classification decisions—such as detecting potential robot trajectory collisions—remain
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invariant within specified perturbation sets. IBP is used to verify the network across various
noise perturbations.

The resulting certified robustness metrics for all five cross-validation splits (Split 1 ... 5) are
summarized in Table 13 showing the proportion of test samples for which safety predictions
remain formally guaranteed across different perturbation magnitudes.

Table 13: Verification results using IBP across 5 splits for various perturbation ranges.

Epsilons
Split
le10 le?® le® le”’ le® le® le10
Split 1 75.73% 75.73% 72.52% 24.05% 0.0063% 0.00% 75.73%
Split 2 79.03% 79.01% 68.36% 0.10% 0.00% 0.00% 79.03%
Split 3 76.55% 76.53% 67.58% 0.31% 0.00% 0.00% 76.55%
Split 4 76.21% 76.21% 64.09% 0.49% 0.00% 0.00% 76.21%
Split 5 78.48% 78.47% 72.92% 1.08% 0.00% 0.00% 78.48%
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Figure 67: Robust accuracy of the NeSy model at various noise perturbations.

To further enhance the verification performance of the proposed neuro-symbolic model,
future work will focus on tightening the verification bounds through the integration of more
advanced and expressive certification techniques. In particular, we plan to employ hybrid
bound-propagation methods such as CROWN+IBP, which combine linear relaxation with
interval reasoning to obtain significantly tighter output bounds while maintaining
computational tractability. Such methods have been shown to reduce over-approximation
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error and are expected to yield stronger certified robustness guarantees for high-dimensional
perceptual models.

In parallel, we intend to investigate training strategies that explicitly promote robustness
during model optimization. This includes adversarial training, where the model is exposed to
worst-case perturbations during training to improve empirical robustness, as well as certified
training, which incorporates verification-aware objectives that encourage the network to
produce representations more amenable to formal certification. Together, these approaches
aim to systematically strengthen the model’s resilience to input perturbations, ultimately
improving both its empirical performance and its provable safety properties.
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12 Status of the EVENFLOW Verification Toolkit

The EVENFLOW verification toolkit is available as a public repository at -
https://github.com/EVENFLOW-project-EU/nesy-veri.

= O EVENFLOW-project-EU / nesy-veri Q Type|[/] to search 8 -
<> Code () Issues I Pullrequests (3 Actions [0 Projects (@ Security |+~ Insights @3 Settings

* nesy-veri Public @ Unwatch 2 = % Fork 0 - 7% Star 1 -

¥ main ~ ¥ 6Branches © 0 Tags Q Go tofile t Add file ~ <> Code - About
Neuro-symbolic Verification: We
Ii vasilismanginas Update README.md 12957¢8 - last menth {5 54 Commits compile the symbolic part into a

computational graph, stack it on top of
B nesy_veri new method names for MNIST figure 10 months ago the neural network, port the combined

thing into ONNX, and use of-the-shelf

8 results new method names for MNIST figure 10 months ago o
“ o verifiers to propagate bounds through
0 .gitignore add MNIST results 10 months ago the neural and symbolic parts in one go.
[) README.md Update README.md Jast month 00 Readme
A Activity
(3 poetry.lock update poetry dependencies last year B Custom properties
[ pyproject.tom! update poetry dependencies last year o 1star
® 2 watching
- 0 forks
[0 README £ = ¥
Report repasitory
What is this? Releases
. . o No releases published
This is the repesitory for the paper "A Scalable Approach to Probabilistic Neuro-Symbelic Robustness Create  new release
Verification".
If you build on the idea or code please consider citing the paper! :) Packages
No packages published
Installation Publish your first package
We use Poetry for package management. Simply run: Languages

Figure 68: The verification toolkit at GitHub.

The verification toolkit for the Industry 4.0 robot navigation use case with Neuro-Symbolic
models built on the DFKI dataset is available at - https://github.com/EVENFLOW-project-

EU/dfki-robots.

= () EVENFLOW-project-EU / dfki-robots 8 Q Type [7]to search & -

<> Code (D Issues I Pullrequests () Actions [ Projects (@ Security |~ Insights £ Settings
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& Custom properties
[ .gitignore save plan distribution per robot last month 7 Ostars
® 0 watching
[ README.md first commit, data exploration ast year
% 0forks
[ poetry.lock add trained CNN for classification last month
. Releases
[ pyproject.toml add trained CNN for classification last month
No releases published
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] README £ =
Packages
Installation No packages published

first package

We use Poetry for package management. After you install Poetry itself, simply run:
Contributors 2

oetry install =)
postry 7]} vasilismanginas vasilis Manginas

to install all packages. The Python version requirement is >3.11 m SherwinVarghese Sherwin Varghese

Figure 69: The verification toolkit for the Industry 4.0 robot navigation use case at GitHub.
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