

This document is part of a project that is funded by the European Union under the Horizon Europe agreement No
101070430. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the Commission. The document is the property of the EVENFLOW project and should
not be distributed or reproduced without prior approval. Find us at www.evenflow-project.eu.

Robust Learning and Reasoning
for Complex Event Forecasting

Project Acronym: EVENFLOW

Grant Agreement number: 101070430 (HORIZON-CL4-2021-HUMAN-01-01 – Research

and Innovation Action)

Project Full Title: Robust Learning and Reasoning for Complex Event

Forecasting

DELIVERABLE

D5.2 – Final Version of Verification and Scalability
Techniques

Dissemination level: PU - Public, fully open

Type of deliverable: R - Document, report

Contractual date of delivery: 31 December 2025

Deliverable leader: Athena Research Center

Status - version, date: Final – v1.0, 2025-12-17

Keywords: scalability, verification, robustness, streaming data

http://www.evenflow-project.eu/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 2

Executive Summary
Deliverable D5.2 reports EVENFLOW’s final outcomes (for the second half of the project, since

April 2024) on scalability and verification techniques for online neuro-symbolic learning and

reasoning in real-time streaming settings. It consolidates methods, tools, and use-case

applications addressing the project’s core challenges.

The scalability of EVENFLOW is based on two pillars. Stream synopses and parallelism. On the

stream synopses side, a synopsis-driven optimization paradigm is introduced for continuous

learning. The SuBiTO Framework operationalizes the principle that training must adapt to

stream dynamics by jointly optimizing (i) synopsis/compression configuration, (ii) training

duration (e.g., epochs), and (iii) neural architecture, explicitly searching for strong accuracy vs

training-time trade-offs and presenting these choices through supporting tooling. Parallelism

cooperatively works with synopses through parallel synopsis maintenance and through a

data-driven synchronization protocol suite that reduces coordination and communication

costs in distributed learners. These components are integrated in Distribuito SuBiTO,

combining parallel synopsis derivation, smart synchronization, and batched/parallel inference

to increase throughput. In parallel, the NeuroFlinkCEP framework delivers scalable

neurosymbolic Complex Event Recognition by integrating neural simple-event inference with

symbolic, Apache Flink CEP pattern matching, supported by logical-to-physical workflow

optimization and monitored deployment across cloud–edge/IoT environments.

Scalability grounds these techniques in three vertical use cases via: SSTRESSED for Industry

4.0 simple event detection, RATS+ for personalized medicine with transfer-learning elements,

and infrastructure monitoring via reverse random hyperplane projection plus uncertainty-

aware synchronization.

On the verification side, the deliverable defines an EVENFLOW verification stack that spans:

(i) formal neural network verification, (ii) probabilistic neuro-symbolic verification, and (iii)

temporal verification for streaming neuro-symbolic pipelines where neural perception feeds

symbolic automata.

For neuro-symbolic (NeSy) pipelines, where neural outputs feed symbolic arithmetic circuits,

we found exact verification to be intractable in our evaluation. Therefore relaxation-based

and hybrid pipelines were proposed to balance completeness with scalability requirements.

These constitute abstract verification techniques and enable us to achieve robustness

guarantees for NeSy systems also using CNN networks.

The contributions include Spatio-Temporal Bound Propagation (STBP) and Spatio-Temporal

shared IBP (S-IBP). These are hybrid schemes that solve MILPs for the first layer under

structured (shared / fixed / bounded) perturbation constraints, then propagate tight layer-1

bounds forward with efficient interval or linear relaxations. The work also develops

probabilistic verification via PAC-interval estimation (LipPOT): a targeted Adam-Sobol

sampling engine plus Extreme Value Theory (POT/GPD) constrained by DKW confidence

bands to produce high-confidence upper bounds on local Lipschitz constants. For parallel

verification, SCANNV applies Bayesian optimisation (with transfer learning and ReLU-stability

grey-box signals) to find input splits that reduce wall-clock verification time.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 3

Experiments on synthetic MNIST addition, ROAD-R autonomous driving, temporal complex-

event traces, and medical/video benchmarks show STBP and PAC methods substantially

improve certified robustness and runtime compared to vanilla IBP and naive solver

approaches, at a marginal cost of additional MILP or sampling overhead.

Verification is further grounded in EVENFLOW use cases through a neuro-symbolic robot

navigation/collision-avoidance scenario, where robustness is assessed across multiple

perturbation levels and validation splits. We discuss routes to improve guarantee tightness

through stronger bound methods and robustness-aware training.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 4

Deliverable leader: Athena Research Center

Contributors:
Nikos Giatrakos, Alessio Lomuscio, Sherwin Varghese, Abdelrahman
Hekal, Milan Rakic

Reviewers: Nikos Katzouris, Vassilis Magginas (NCSR), Satyam Dudhagara (DFKI)

Approved by: Athanasios Poulakidas, Eleni-Vasiliki Provopoulou (INTRA)

Document History

Version Date Contributor(s) Description

0.1 06/10/2025 Nikos Giatrakos, Sherwin
Varghese

TOC creation

0.2 15/10/2025 Nikos Giatrakos Section 2.1, 3.1, 3.2

0.3 18/10/2025 Nikos Giatrakos Section 3.3, 3.4, 3.5

0.4 25/10/2025 Nikos Giatrakos Section 4, Section 5

0.5 07/10/2025 Nikos Giatrakos Section 6, Section 7

0.6 15/10/2025 Alessio Lomuscio,
Sherwin Varghese,
Abdelrahman Hekal,
Milan Rakic

Section 8

0.7 28/10/2025 Alessio Lomuscio,
Sherwin Varghese,
Abdelrahman Hekal,
Milan Rakic

Section 9

0.8 15/11/2025 Alessio Lomuscio,
Sherwin Varghese,
Abdelrahman Hekal,
Milan Rakic

Sections 10.1 – 10.4

0.9 30/11/2025 Alessio Lomuscio,
Sherwin Varghese,
Abdelrahman Hekal,
Milan Rakic

Sections 10.5 – 10.6, Section 11 - 12

0.10 15/12/2025 Nikos Giatrakos,
Alessio Lomuscio,
Sherwin Varghese,
Abdelrahman Hekal,
Milan Rakic

Final version before QA

1.0 17/12/2025 Athanasios Poulakidas,
Eleni-Vasiliki Provopoulou

Version to be submitted after final QA

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 5

Table of Contents
Executive Summary .. 2

Table of Contents ... 5

Table of Figures .. 8

List of Tables .. 11

Definitions, Acronyms and Abbreviations ... 12

 Introduction ... 13

1.1 Project Information .. 13

1.2 Document Scope .. 14

1.3 Document Structure .. 14

 Overview of Progress till M18 .. 16

2.1 Recap on Scalability Aspects in EVENFLOW... 16

2.2 Recap on Verification Aspects in EVENFLOW .. 19

 Scalable Neural Learning and Inference over Data Streams ... 22

3.1 Leveraging Synopses for Training Optimization – The SuBiTO Framework 22

3.1.1 The SuBiTO Architecture .. 22

3.1.2 The SuBiTO Dashboard .. 24

3.2 A NeSy SuBiTO Proof-of-Concept .. 24

3.3 Enriching the Algorithmic Foundations of Synopses-based Training Optimization 26

3.3.1 Experimental Evaluation on SuBiTO algorithms .. 27

3.4 Parallel Synopses Maintenance Revisited ... 29

3.5 Data-driven Synchronization and the EVENFLOW Protocol Suite 31

3.5.1 The Basic EVENFLOW Synchronization Protocol ... 32

3.5.2 The Fast EVENFLOW Synchronization Protocol ... 33

3.5.3 Handling Sliding Windows ... 33

3.6 Distribuito SuBiTO: Synopses, Parallelism & Smart Sync All in One 34

3.6.1 Experimental Evaluation of Distribuito SuBiTO ... 35

 Scalable Neurosymbolic Complex Event Recognition ... 44

4.1.1 NeuroFlinkCEP Architecture .. 45

4.1.2 From Logical CER workflows to Physical CER over IoT Executions 46

 Status of the EVENFLOW Scalability Toolkit .. 48

 Scaling EVENFLOW Use Cases .. 52

6.1 The SSTRESSED Framework for the Industry 4.0 Use Case...................................... 52

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 6

6.1.1 SSTRESED Experimental Evaluation ... 54

6.2 The RATS+ Framework for the Personalized Medicine Use Case 57

6.2.1 Overview on the RATS Framework .. 57

6.2.2 RATS+ Exploiting Transfer Learning ... 59

6.3 Synopses and Smart Sync for the Infrastructure Lifecycle Assessment Use Case ... 60

6.3.1 The Reverse Random Hyperplane Projection Scheme 60

6.3.2 Uncertainty-aware Synchronization Protocols .. 64

 EVENFLOW Verification Approach ... 70

7.1 Formal Verification of Neural Networks .. 70

7.2 Scalable approach towards Probabilistic Neuro-Symbolic Verification 71

7.2.1 Probabilistic Neuro-Symbolic Verification ... 71

7.3 Experimental Evaluation .. 72

7.3.1 Multi-Digit MNIST Addition .. 72

7.3.2 Autonomous driving - ROAD-R .. 75

7.4 Complex Event Verification for Temporal Neuro-Symbolic Models........................ 77

7.4.1 Verification Methodologies ... 77

7.4.2 Evaluation Scenario: Temporal Complex Event Recognition 77

7.4.3 Experimental Evaluation of Temporal Verification .. 78

7.4.4 Analysis of Results .. 79

 The SCANNV Approach for Parallel Verification .. 81

8.1 Input Splitting Black-box Optimization and Transfer Learning 82

8.2 ReLU-Based “Grey-Box” Optimisation ... 84

8.3 SCANVV Experimental Evaluation .. 84

8.3.1 Performance of BO-Based Input Splitting Optimisation 85

8.3.2 Impact of ReLU-Based Optimisation and Scheduling 86

 Verification of Spatio-Temporal Systems .. 88

9.1 Spatio-Temporal Bound Propagation Method .. 90

9.1.1 Modelling Spatio-Temporal Constraints .. 91

9.1.2 Spatio-Temporal Bound Propagation (STBP) ... 92

9.2 Datasets and Models ... 93

9.3 Experiments ... 93

 Probabilistic Verification of Neural Networks via PAC-Interval Estimation 96

10.1 The Verification Criterion ... 96

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 7

10.1.1 The Estimation Challenge .. 96

10.2 Theoretical Framework: The PAC Interval ... 96

10.2.1 Understanding the PAC Framework .. 96

10.2.2 The Cumulative Distribution Function (CDF) ... 97

10.2.3 The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality ... 97

10.2.4 Parameter Space Search for the Worst-Case Model 98

10.3 Targeted Sampling: The Adam-Sobol Method .. 99

10.3.1 Modularity of the Sampling Engine ... 99

10.3.2 Stage 1: Global Peak Discovery (Adam Attack) .. 100

10.3.3 Stage 2: Local Distributional Refinement (K-Box Sobol) 100

10.4 Estimation Engine: Peaks-over-Threshold (POT) ... 101

10.4.2 Automated Threshold Selection: Balancing Bias and Variance 102

10.4.3 Constraint-Based Verification Bound .. 103

10.5 Experimental Results ... 103

10.5.1 Performance on Small Domain .. 103

10.5.2 Performance on Large Domain .. 104

10.5.3 Limitations: Sources of Underestimation .. 105

10.6 Conclusion .. 105

 Verification of EVENFLOW Use Cases .. 107

11.1 Verification of Industry 4.0 use case .. 107

11.1.1 Neurosymbolic model for robot path planning and collision avoidance 107

11.1.2 Verification of the Neurosymbolic system for Industry 4.0 108

 Status of the EVENFLOW Verification Toolkit .. 111

 References ... 112

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 8

Table of Figures
Figure 1: Streaming Training and Inference Pipelines operating on par with one another [REF-

01]. ... 16

Figure 2: Parallel Streaming Training and Inference Pipelines [REF-01]. 17

Figure 3: Synopses Data Engine-as-a-Service (SDEaaS) Paradigm in EVENFLOW by M18 [REF-

02]. ... 18

Figure 4: Synopses-based Training Optimization by M18. .. 18

Figure 5: Demo prototype of Synopses-based Training Optimization by M18. 18

Figure 6: Perturbations on the input should not affect the classification. 19

Figure 7: Formal Verification as an Optimization problem. .. 19

Figure 8: Neural Network Verification. .. 20

Figure 9: MNIST based sequential model for sequence classification. 21

Figure 10: Convex combinations between adversarial attacks and IBP bounds. 21

Figure 11: SuBiTO Framework Architecture [REF-03]. SuBiTO Optimizer, Training and

Prediction pipelines. NAS along with configuring synopses compression ratio and number of

epochs as supported participating in the examined trade-offs. ... 23

Figure 12: The SuBiTO Dashboard [REF-03]. The SuBiTO Optimizer has devised three

alternative Neural Network Architectures along with synopses compression ratios and

number of training epochs. The user has not picked any of the devised options, therefore the

training latency (right middle part of the dashboard) is in the order of tens of seconds. 23

Figure 13: Forward pass (blue arrows) and backpropagation (red arrows) for the NeSy SuBiTO

proof-of-concept. ... 25

Figure 14: Median performance of SuBiTO algorithms across scoring functions for the CIFAR10

and UCF datasets. Relative execution time is encoded by marker area and labelled by its

multiple vs. the fastest method in the same dataset (1× = fastest). 28

Figure 15: Operation of the Weighted Priority Sampling on a single worker. 30

Figure 16: Priority Sampling parallel execution as illustrated at Dask Dashboard under 4

workers. ... 31

Figure 17: Basic EVENFLOW Protocol Rationale. Since no sphere intersects A, no sync is

triggered. .. 32

Figure 18: Distribuito SuBiTO Architecture. Synopses are derived using SDE on Dask (Section

3.4). The Fast EVENFLOW protocol (Section 3.5.2) is incorporated for smart, data-driven

synchronization. Parallel predictors and prediction batching used to boost inference speed.

.. 35

Figure 19: Synopses Scalability, original SuBiTO uses Stratified Sampling on NumPy while

Distribuito SuBiTO uses Priority Sampling on Dask with a parallelism of 6. 36

Figure 20: Synchronous Protocol using 2 Learners on the NSFW Dataset. 38

Figure 21: Fast EVENFLOW Protocol using 2 Learners on the NSFW Dataset. 38

Figure 22: Synchronous Protocol using 4 Learners on the NSFW Dataset. 39

Figure 23: Fast EVENFLOW Protocol using 4 Learners on the NSFW Dataset. 39

Figure 24: Synchronous Protocol using 2 Learners on the UCF Dataset. 40

Figure 25: Fast EVENFLOW Protocol using 2 Learners on the UCF Dataset. 40

Figure 26: Synchronous Protocol using 4 Learners on the UCF Dataset. 41

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 9

Figure 27: Fast EVENFLOW Protocol using 4 Learners on the UCF Dataset. 41

Figure 28: Throughput across batch sizes.. 42

Figure 29: Throughput of T4 Predictors with batch size = 32. ... 43

Figure 30: Throughput of A100 Predictors with batch size = 32. .. 43

Figure 31: Anatomy of a NeuroFlinkCEP Operator. ... 46

Figure 32: NeuroFlinkCEP Operator Parameterization. ... 46

Figure 33: NeuroFlinkCEP Workflow Design, IoT Optimization & Distributed Execution. 46

Figure 34: NeuroFlinkCEP dashboard for the Industry 4.0 Use Case. 47

Figure 35: Status of the Scalability Toolkit at EVENFLOW Repository. 48

Figure 36: SDEaaS at https://sdeaas.github.io/. .. 48

Figure 37: SuBiTO at https://subito-ai-for-bigdata.github.io/. .. 49

Figure 38: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (part 1). 50

Figure 39: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (Part 2). 51

Figure 40: Example training stream for a single simulated robot. Unlabelled movement

streams. .. 52

Figure 41: SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines [REF-12].

.. 53

Figure 42: SSTRESED output SDE Stream for the movement of a single robot. 54

Figure 43: SSTRESED Training Pipeline performance. ... 55

Figure 44: Performance of SSTRESED Prediction Pipeline. .. 55

Figure 45: Cumulative SSTRESED accuracy vs Number of Epochs. .. 56

Figure 46: SSTRESED performance without SeTraStream. .. 57

Figure 47: RRHP Performance on Clustering vs other Competitors. 63

Figure 48: RRHP Comm. Reduction vs Compression Ratio using ω = 16. 64

Figure 49: RRHP Network Lifetime vs Compression Ratio using ω = 16. 64

Figure 50: L1 function (left) and L2 function (right) Threshold (red line) vs actual function

values as time passes. .. 67

Figure 51: Variance Threshold Selection based on Sensor violations. 67

Figure 52: Number of transmitted messages for L1-based monitoring across δ values. 68

Figure 53: Number of transmitted messages for L2-based monitoring across δ values. 68

Figure 54: Number of transmitted messages for Variance-based monitoring across δ values.

.. 69

Figure 55: Probabilistic NeSy Verification illustrating the Verification of NeSy system trained

on the ROAD-R dataset. The symbolic constraints are encoded as an Arithmetic circuit. 71

Figure 56: Comparison of verification runtimes for E2E-R and R+SLV. The experiments are

evaluated for 3 different ϵ perturbations. ... 74

Figure 57: The Temporal Complex Event Recognition evaluation scenario. A sequence of

MNIST digits is processed by a multi-head CNN to extract semantic attributes (Parity and

Magnitude), which trigger transitions in a finite state automaton. .. 78

Figure 58: Bayesian Optimization-based Input Splitting Architecture. 81

Figure 59: BO Model Transfer Architecture. .. 82

Figure 60: Fine-Tuning of Transferred BO model. ... 83

Figure 61: Bayesian Optimization-based ReLU Monitoring Architecture. 84

Figure 62: Overview of Spatio-Temporal Bound propagation. .. 90

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 10

Figure 63: Adversarial Robustness of IBP, STBP, STBP using adversarial patches for MNIST 10

frame 28 x 28 video model; left: against perturbations (ϵ); right: against patch size (k). 94

Figure 64: The observed exceedances (blue line), fitted GPD (green line) and maximum

plausible fit (purple line). The goal of the algorithm is to find the GPD fit with the largest

endpoint that fits entirely in the confidence tube. ... 99

Figure 65: Top: Illustration of synthetic data lying above the detected and true threshold.

Bottom: Mean Residual Life (MRL) plot for synthetic data; the algorithm seeks to find the

smallest value at which the MRL begins to showcase a linear behaviour. This synthetic data is

composed of random uniform sampling and a GPD distribution imposed on the top range of

data, hence there is a true threshold which we use as comparison. 103

Figure 66: Neurosymbolic model for robot collision avoidance using the DFKI dataset. 108

Figure 67: Robust accuracy of the NeSy model at various noise perturbations. 109

Figure 68: The verification toolkit at GitHub. .. 111

Figure 69: The verification toolkit for the Industry 4.0 robot navigation use case at GitHub.

.. 111

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 11

List of Tables
Table 1: The EVENFLOW consortium. .. 13

Table 2: RRHP performance on various Machine Learning tasks, under a compression ratio of

8, over the reconstructed sensor time series, varying window sizes. 62

Table 3: Verification method performance for MNIST digit addition at ϵ= 0.001. 75

Table 4: ROAD-R network verification results, indicating robustness for various epsilon noise.

.. 76

Table 5: Verification Accuracy and Execution Time for Temporal Neuro-Symbolic Systems. 79

Table 6: Solution Rank comparison between Transferred Optimizer with 5% domain

adaptation vs a 10% Optimizer trained from scratch (Custom Property 1). 85

Table 7: Solution Rank comparison between Transferred Optimizer with 5% domain

adaptation vs a 10% Optimizer trained from scratch (Custom property 2). 86

Table 8: Solution Rank comparison between Transferred Optimizer with 5% domain

adaptation vs a 10% Optimizer trained from scratch (Custom property 2) 86

Table 9: Comparison between total verification times for standalone Venus, Random Splits +

Venus and SCANVV ReLU Monitoring .. 87

Table 10: Summary of results for MNIST, UCF-101, Udacity self-driving, and MEDMNIST

Synapse3D. ... 94

Table 11: Comparison on SMALLMNIST5 (Local 0.01 Domain, L_∞ Norm) 104

Table 12: Comparison on SMALLMNIST5 (Local 0.13 Domain, L_∞ Norm) 104

Table 13: Verification results using IBP across 5 splits for various perturbation ranges. 109

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 12

Definitions, Acronyms and Abbreviations

Acronym/
Abbreviation

Title

AMR Autonomous Mobile Robot

ARC Athena Research Center

BO Bayesian Optimization

CE Complex Event

CER Complex Event Recognition

CEP Complex Event Processing

GP(R) Gaussian Process (Regressor)

HPC High Performance Computing

ICL Imperial College London

NAS Neural Architecture Search

NeSy Neurosymbolic

PS Parameter Server

SE Simple Even

SDEaaS Synopses Data Engine-as-a-Service

SDE Synopses Data Engine or Simple Derived Events (depending on the context)

SCANNV Scalable Neural Network Verification

TNF Tumor Necrosis Factor

WP Work Package

Term Definition

-

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 13

 Introduction

1.1 Project Information

EVENFLOW develops hybrid learning techniques for complex event forecasting, which

combine deep learning with logic-based learning and reasoning into neuro-symbolic

forecasting models. This approach combines neural representation learning techniques that

construct event-driven features from streams of perception-level data with powerful

symbolic learning and reasoning tools, which utilize such features to synthesize high-level,

interpretable patterns for forecasting critical events.

To deal with the brittleness of neural predictors and the high volume/velocity of temporal

data flows, the EVENFLOW techniques rely on novel, formal verification techniques for

machine learning, in addition to a suite of scalability algorithms for training based on data

synopsis, federated training and incremental model construction. The learnt forecasters will

be interpretable and scalable, allowing for explainable and robust insights, delivered in a

timely fashion and enabling proactive decision making.

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting

in healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart

factories and (3) reliable life cycle assessment of critical infrastructure.

Table 1: The EVENFLOW consortium.

Number1 Name Country Short name

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU

2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH
"DEMOKRITOS"

Greece NCSR

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS
STIS TECHNOLOGIES TIS PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS

Greece ARC

4 BARCELONA SUPERCOMPUTING CENTER-
CENTRO NACIONAL DE SUPERCOMPUTACION

Spain BSC

5 DEUTSCHES FORSCHUNGSZENTRUM FUR
KUNSTLICHE INTELLIGENZ GMBH

Germany DFKI

6 EKSO SRL Italy EKSO

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY
AND MEDICINE

United
Kingdom

ICL

1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 14

1.2 Document Scope

This document provides the advancements made within the scope of EVENFLOW with special

emphasis on the time period between M19 (April 2024) to M39 (December 2025). It

elaborates on the developed algorithms and prototypes that serve as scalability and

verification pillars for the project. It also explains the way they are applied in real world

scenarios both derived from EVENFLOW use cases and broader application domains and/or

on standard benchmarks and testbeds. It also reports on the evolution of Scalability and

Verification Toolkit as exploitable assets of the project. In that, it describes the outcomes of

high-quality research in EVENFLOW with anticipated highly impactful software modules.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.

Chapter 2 summarises the main advancements till M18 of the project as reported in

Deliverable D5.1.

Chapter 3 emphasizes on the scalability aspects by means of data stream synopses and

distributed/parallel learning and inference presenting the developed prototypes.

Chapter 4 discusses scalable neurosymbolic CER over IoT platforms pushing the

developments on scalability made throughout the project, not only at the cloud side but

across the cloud to edge continuum.

Chapter 5 presents the current open-source contributions of the scalability approaches

developed throughout the project.

Chapter 6 emphasizes on use case-specific adaptations of the generic techniques described

in Chapters 3-4 to EVENFLOW use cases and novel scalable techniques for these specific

application fields.

Chapter 8 discusses techniques for improving scheduling and augmenting parallelization of

verification frameworks, such as Venus, for enhanced scalability in neural network verifiers

upon being treated as black or grey boxes.

Chapter 7 introduces the foundational concepts of formal verification for neural networks,

outlining core techniques and discussing their applicability to neuro-symbolic architectures.

It further examines methods for verifying complex temporal events within neurosymbolic

systems.

Chapter 8 extends these verification techniques to spatio-temporal models. It presents hybrid

approaches that combine linear programming with interval bound propagation, enabling

robustness analysis for high-dimensional perturbations and larger neural network

architectures.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 15

Chapter 10 explores verification through probabilistically approximately correct (PAC)

bounds. It evaluates the tightness of PAC intervals and assesses their suitability for providing

reliable robustness guarantees in comparison to deterministic methods.

Chapter 11 applies these verification techniques to the EVENFLOW Industry 4.0 use case,

demonstrating end-to-end verification of a neurosymbolic system deployed in an industrial

robotic environment.

Chapter 12 presents the current open-source contributions of the verification approaches

and the toolkits developed for verification of the EVENFLOW Industry 4.0 use case.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 16

 Overview of Progress till M18

2.1 Recap on Scalability Aspects in EVENFLOW

As documented in Deliverable D5.1, EVENFLOW training and inference pipelines target three

types of scalability: (a) horizontal scalability, i.e., scaling with the volume and velocity of the

incoming data streams, (b) vertical scalability, i.e., scaling with the number of processed

streams and (c) federated scalability, i.e., scaling the computation in (geo-)distributed

environments by reducing the amount of transmitted data to preserve bandwidth and reduce

network latencies.

The focal point of developing effective and efficient training and inference pipelines in

streaming settings revolves around the challenge of achieving appropriate balance/trade-off

between accuracy and training time. In streaming setups, the statistical properties and the

distribution of incoming streams are highly volatile. Consequently, a neural model that is

currently suitable for inference purposes may quickly become obsolete. Therefore, the

training process evolves continuously and on par with the prediction/inference process. As

soon as an up-to-date trained model becomes available, it should be directly deployed on the

prediction pipeline to maintain high quality inference, not only at the current time but, most

importantly, in the long run. Figure 1 illustrates the evolution of training and prediction

pipelines, instantiated using state-of-the-art frameworks for stream ingestion (i.e., Apache

Kafka) and neural learning (PyTorch). The architectural scheme though is independent of the

underlying technologies.

Figure 1: Streaming Training and Inference Pipelines operating on par with one another [REF-
01].

The main pillars for achieving scalability in EVENFLOW involve (a) data streams synopses, (b)

parallelism/distribution of computation and (c) optimal (or preferable) resource allocation

for the involved neural, symbolic or neurosymbolic (NeSy) tasks.

The use of synopses is motivated by the fact that, to establish accurate and rapid training

pipelines, it is important to train over representative, good quality data. This does not

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 17

necessarily include the lot of training data streams that may reach a training pipeline.

Therefore, by presenting a carefully crafted data summary in the training pipeline, an accurate

model can be continuously produced, simultaneously avoiding exacerbated training times.

However, synopses alone do not suffice for scalable processing. First, even if synopses do

manage to controllably reduce the portion of streams that are ingested in a training pipeline,

data summaries can still be voluminous. For instance, a recent stream of 10GB reduced by an

order of magnitude still yields a training volume of 1GB which may entail important training

latency for deep neural network architectures. Second, synopses can reduce the burden in

the training pipeline only. The prediction/inference pipeline still needs to operate on the

entire stream because client applications do not have the liberty of choosing to apply

predictions and forecasts only to a subset of the ingested, unlabelled streams. For these

reasons, besides synopses, parallelism on the training and prediction pipelines is the second

scalability pillar of EVENFLOW. Figure 2 enhances the streaming architecture of Figure 1 with

parallelism across the involved training and prediction pipelines.

Figure 2: Parallel Streaming Training and Inference Pipelines [REF-01].

The third scalability pillar related to resource allocation in EVENFLOW comes in two forms.

First in continuously configuring the degree of parallelism, the size of the synopses, the size

of the neural network and the duration of the training process so that the aforementioned

accuracy vs training time trade-offs and the preferable combination of such parameters

ensure high quality models in an online real-time fashion. Second, models deployed on

parallel predictors can be assigned not only at parallel threads being executed on powerful

clouds, but also across devices of the computing continuum, in IoT settings.

The progress achieved in EVENFLOW by M18, as reported in Deliverable D5.1, can be

summarized as follows:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 18

EVENFLOW proposed and developed the Synopses-as-a-Service paradigm (Figure 3)

introducing a state-of-the-art stream summarization engine implemented on Apache Flink

[REF-03].

Figure 3: Synopses Data Engine-as-a-Service (SDEaaS) Paradigm in EVENFLOW by M18 [REF-
02].

The Synopses-based Training Optimization Paradigm was introduced, which leveraged

Bayesian Optimization to continuously prescribe preferable configurations for (a) the size of

synopses, (b) the number of training epochs for the training pipelines, for a fixed – a priori

defined – neural network architecture.

Figure 4: Synopses-based Training

Optimization by M18.
Figure 5: Demo prototype of Synopses-
based Training Optimization by M18.

For parallel training, preliminary protocols and experimentation were presented to overcome

the limitation of the vanilla synchronous and asynchronous protocols of the Parameter Server

paradigm. The basic idea behind the proposed, preliminary protocols was to define a concept

drift based on any given thresholded function applied on neural network global (accumulated

in a Parameter Server) weights. Decompose this global concept drift trigger to local filters

installed on parallel learners and trigger a synchronization only when some learner finds its

local filter violated based on a geometric monitoring criterion.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 19

2.2 Recap on Verification Aspects in EVENFLOW

Deliverable D5.1 describes the verification approach for the EVENFLOW project in which we

mention about the need for formal verification, the scalability challenges of verification and

the approaches for verification of Neurosymbolic systems.

Modern neural networks (NNs) power critical AI applications but remain highly vulnerable to

adversarial perturbations—small, often imperceptible input changes that can lead to

catastrophic misclassifications. This raises significant safety concerns, especially in domains

such as autonomous driving, robotics, smart manufacturing, healthcare diagnostics, and

decision-support systems. Due to their black box behaviour and high input dimensionality,

understanding and guaranteeing NN behaviour is extremely challenging. Formal verification

aims to deliver provable guarantees about system behaviour by mathematically ensuring that

certain properties—primarily robustness—hold for all inputs within a perturbation set.

Figure 6: Perturbations on the input should not affect the classification.

Adversarial attacks in both 2D and 3D settings show the extent of NN fragility. Methods such

as adversarial image noise, point-cloud manipulation, and mesh perturbation can reliably fool

state-of-the-art models without visibly altering the input, strengthening the need for scalable

verification tools.

Figure 7: Formal Verification as an Optimization problem.

Verification seeks to determine whether the NN satisfies a desired property (e.g., robustness)

over an input region. This can be expressed as an optimization problem that checks whether

the network’s minimum logit margin remains positive across all admissible perturbations.

Exact verification approaches (MILP, SMT) are complete but computationally infeasible for

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 20

large networks. In contrast, incomplete or relaxation-based methods (IBP, LP relaxation,

CROWN) scale better but provide weaker guarantees due to over-approximation.

A central challenge stems from nonlinear activations such as ReLU, which must be

approximated using linear inequalities when the activation is unstable. These relaxations

allow propagation of lower/upper bounds but accumulate approximation errors as depth

increases.

Figure 8: Neural Network Verification.

Exact verification is NP-hard and rapidly becomes intractable for deep networks or high-

dimensional data. Nonlinearities, combinatorial explosion of ReLU states, and large input

spaces limit real-world applicability. This motivates abstraction-based techniques, which

replace nonlinear functions with sound convex relaxations, enabling propagation of

approximate bounds while maintaining efficiency. However, these techniques often yield

overly loose bounds, particularly in architectures with attention mechanisms or heavy matrix

multiplications.

Neuro-symbolic systems combine neural perception modules (CNNs, MLPs) with symbolic

reasoning engines such as Deterministic Finite Automata (DFAs). This decomposition reduces

architectural complexity and allows verification at two separate levels:

1. Neural level: Obtain probability intervals for simple-event detectors using relaxation

methods such as IBP.

2. Symbolic level: Propagate these intervals through DFA transitions to produce

lower/upper acceptance probabilities for temporal patterns.

This approach allows the verification of complex temporal events by combining probabilistic

bounds from multiple simple events. Experiments on MNIST-based sequence tasks show that

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 21

NeSy models drastically reduce the verification–accuracy gap (≤2%), demonstrating greater

verifiability compared with monolithic temporal models.

Figure 9: MNIST based sequential model for sequence classification.

Verified Training: Combining Adversarial and Formal Objectives

A major challenge is training models that are both empirically robust and formally verifiable.

Standard adversarial training improves empirical robustness but degrades verified

robustness. The report discusses two new expressive loss functions (CC-IBP, MTL-IBP) that

jointly optimise adversarial and verified objectives. These losses achieve state-of-the-art

trade-offs on datasets such as CIFAR-10, TinyImageNet, and ImageNet64, enabling models

that are more suitable for deployment in safety-critical settings.

Figure 10: Convex combinations between adversarial attacks and IBP bounds.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 22

 Scalable Neural Learning and Inference over Data Streams

3.1 Leveraging Synopses for Training Optimization – The SuBiTO

Framework

The SuBiTO Framework, developed in EVENFLOW, comes in three different versions. The

synopses-driven SuBiTO framework [REF-03] for synopses-based training optimization. The

NeSy SuBiTO proof-of-concept for supporting entire NeSy pipelines and the Distribuito SuBiTO

which leverages both synopses and parallelism across all its architectural components. In this

section we initially focus on the synopses-driven SuBiTO [REF-03], which we will henceforth

term as simply SuBiTO. Section 3.1.2 presents the NeSy SuBiTO and Section 3.6 details

Distribuito SuBiTO.

3.1.1 The SuBiTO Architecture

The architecture of the SuBiTO framework is illustrated in Figure 11. Compared to our

discussion in Section 2.1, SuBiTO performs Neural Architecture Search (NAS) besides

configuring the size of ingested stream synopses and the number of epochs. In that, SuBiTO’s

functionality is severely enhanced because it can examine a wide variety of additional options

that may involve deeper neural networks with highly compressed streaming input or

shallower networks with greater number of ingested streams being processed. Additionally,

the up-to-date neural models that are produced by the training pipelines are directly

delivered via Kafka to a Prediction Pipeline for online, real-time inference purposes.

As shown in Figure 11, SuBiTO is composed of three architectural elements. The training

pipeline, the prediction pipeline and the SuBiTO Optimizer.

The Training pipeline (middle of Figure 11) receives labelled streams and trains a neural

model, for a number of epochs using only a fraction of the labelled streams specified by a

stream compression ratio. These are specified by the SuBiTO Optimizer every time a concept

drift is detected.

The SuBiTO Optimizer (top of Figure 11) runs every time a concept drift if detected. It

accumulates a recent portion of the labelled stream and performs a number of Bayesian

Optimization [REF-04][REF-05] trials to learn the accuracy vs training time trade-offs under

different {stream compression ratio, neural architecture, number of epochs} configurations.

At the end of the optimization process, it devices the optimal such triplet based on a scoring

function, currently 𝑠𝑐𝑜𝑟𝑒(𝑐) = 𝑤1 ∙ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐 + 𝑤2 ∙ tanh (
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑐

𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
− 1) is the

default, which is deployed in the Training Pipeline.

The Prediction Pipeline processes unlabelled streams. It continuously receives the up-to-date

neural model produced by the Training Pipeline and deploys it for inference purposes.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 23

Figure 11: SuBiTO Framework Architecture [REF-03]. SuBiTO Optimizer, Training and
Prediction pipelines. NAS along with configuring synopses compression ratio and number of

epochs as supported participating in the examined trade-offs.

Figure 12: The SuBiTO Dashboard [REF-03]. The SuBiTO Optimizer has devised three
alternative Neural Network Architectures along with synopses compression ratios and number
of training epochs. The user has not picked any of the devised options, therefore the training

latency (right middle part of the dashboard) is in the order of tens of seconds.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 24

3.1.2 The SuBiTO Dashboard

The SuBiTO Dashboard, implemented on streamlit2, is illustrated in Figure 12. The vertical

middle of the dashboard displays the SuBiTO Optimizer operation and suggestions. After a

concept drift or a manually triggered optimization cycle, the optimizer presents the top-3

training configurations {neural network, compression ratio, number of epochs} based on a

scoring function. It also plots their expected training accuracy and loss. To further aid the user

cherry-pick among the top-rated alternatives, it also plots the expected accuracy, training

time trade-offs of each. As soon as the user activates one among the suggested alternatives,

the training pipeline is accordingly renewed as long as it finishes the current training round.

The upper right of the dashboard is devoted to the Training Pipeline. It shows the currently

deployed neural network architecture, the devised compression ratio and the number of

training epochs. Moreover, it plots the actual training accuracy, loss as well as the training

latency throughout the training process. The lower right of the dashboard plots a histogram

on stream label frequencies.

Finally, at the vertical left part of the dashboard, a panel is available for the user to specify

the parameters of the available search space to be taken into account during exploration. The

user can configure the stream train size, stream test size, default numbers of convolution,

pooling, dense or other types of layers, plus the learning rate and batch size. In the SuBiTO

dashboard the user can also choose the SuBiTO train and test sizes (portion of stream to be

collected during the optimization process), the compression ratio range (low/high), the range

on the number of epochs and the per-layer search ranges for architecture components:

number of convolution layers (low/high), pooling layers (low/high), dense layers (low/high),

as well as LSTM, GRU, vanilla RNN counts (each with low/high), and the dropout range

(low/high).

3.2 A NeSy SuBiTO Proof-of-Concept

The NeSy SuBiTO proof-of-concept accepts MNIST images as inputs and attempts to pinpoint

temporal sequences of numeric symbols on them. In particular, a positive sequence is one

where an even number larger than 6 is observed, followed at some point by an odd number

≤ 6, followed by a number ≤ 3. Expressed as a Regular Expression: ^[0-9]*8[0-9]*[135][0-

9]*[0-3][0-9]*$

Concretely, the automaton encodes:

• f(1,2) :- equals(even,1), equals(gt_6,1). → see an even & >6 digit → go to state 2.

• f(2,3) :- equals(odd,1), equals(leq_6,1). → later see an odd & ≤6 digit → go to state 3.

• f(3,4) :- equals(leq_3,1). → later see a digit ≤3 → go to state 4 (accepting state).

• Self-loops/backoffs keep the automaton in the same state when a guard is not met.

So the symbolic part is monitoring the temporal pattern: … → (even & >6) → … → (odd & ≤6)

→ … → (≤3) and accepts sequences reaching state 4.

2 https://streamlit.io/

https://streamlit.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 25

Figure 13: Forward pass (blue arrows) and backpropagation (red arrows) for the NeSy SuBiTO
proof-of-concept.

During the forward pass, images arrive as short sequences and are processed by a

convolutional neural network (Convolutional Neural Network, CNN). The network produces,

for every time step, a vector of class probabilities—the “soft symbols” that represent the

likelihood of each digit. In parallel, the rules you wrote in Answer Set Programming (ASP) are

compiled once into differentiable logic. Concretely, the ASP program is turned into circuits in

Negation Normal Form (Negation Normal Form, NNF) by the Sentential Decision Diagram

builder, and those circuits are then executed as a Symbolic Finite Automaton (SFA). The fusion

step ties these two sides together: a labelling function maps each symbolic variable in the

automaton to the corresponding slice of the CNN probability tensor, and the SFA evaluates

the sequence to produce a single acceptance score that reflects whether the rule-defined

pattern is present. That acceptance score is optionally clamped and length-decayed and then

compared with the ground-truth sequence label inside the loss and metrics block, where the

loss used is binary cross-entropy (BCE). For online use, the prediction pipeline simply runs

CNN to SFA to acceptance score.

During backpropagation, gradients originate at the loss and flow first into the fusion step.

From fusion they pass into the Symbolic Finite Automaton through its differentiable tensor

operations that implement the compiled rules; the rules and circuits themselves are fixed, but

the operations are differentiable so the gradient can traverse them. The gradient then crosses

the labelling function, which carries it from symbolic variables back to the appropriate

probability slices. Once it reaches the probability tensor, it continues into the logits and

through all layers of the Convolutional Neural Network, updating only the neural weights via

the optimizer. The ASP program and the Negation Normal Form circuits remain unchanged

during training, while the Convolutional Neural Network is the sole learnable component.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 26

The configurations provided by SuBiTO are as discussed in Section 3.1. Indicatively, in this

scenario SuBiTO provides more than an order of magnitude reduction in training time with a

negligible compromise in accuracy, lower than 5%.

3.3 Enriching the Algorithmic Foundations of Synopses-based

Training Optimization

So far, we have described the functionality of SuBiTO assuming the SuBiTO optimizer runs

under Bayesian Optimization and under a specific scoring function, as presented in [REF-03].

In this section we unveil the algorithmic foundation of synopses-based training optimization

introducing, besides Bayesian Optimization, Exhaustive, Greedy, Evolutionary and Heuristic

algorithms for the parameter space exploration by the SuBiTO optimizer. As we

experimentally show, for a variety of scoring functions, these algorithms exhibit

complementary characteristics with respect to the accuracy vs training time trade-offs of their

proposed solutions, as well as the execution time of each algorithm. Since these algorithms

are under peer-review by the time this deliverable is submitted, we here provide only

algorithmic sketches of their functionality.

Exhaustive Search Algorithm: The Exhaustive Search Algorithm constructs all valid

combinations of hyperparameters and layer structures up to a predefined maximum network

depth. For each candidate configuration, the corresponding model is generated, trained and

evaluated using the scoring function. The optimizer then selects the configuration with the

highest score as the optimal solution. While Exhaustive search guarantees that the optimizer

will return the global optimum configuration, its major drawback is the fact that it is

computationally intensive as the search space grows exponentially with the number of

parameters and possible layer types.

Greedy Search Algorithm: The Greedy Search Algorithm adopts an incremental strategy to

construct and tune neural network architectures under streaming constraints. In the initial

phase, the algorithm explores all valid combinations of epoch numbers, sampling rates, and

first-layer types. For each candidate, it creates a simple one-layer network and evaluates it

using the scoring function. The configuration achieving the highest score, reflecting the most

favourable balance between computational efficiency and model accuracy is selected as the

initial structure. Subsequently, once initialized, the algorithm proceeds iteratively by

expanding the network one layer at a time. During each iteration, it examines all valid layer

types and temporarily integrates each into the current network.

Heuristic Search Algorithm: The Heuristic Search Algorithm follows an iterative, Pareto-based

strategy. Unlike Greedy and BO approaches, Heuristic operates under the principle of Pareto

dominance, where a configuration is considered superior (or dominant) if no other

configuration performs better in both objectives, i.e., accuracy and training time,

simultaneously. The optimization process begins with an initial exhaustive search over all valid

combinations of epoch counts, sampling rates, and single-layer architectures. Each

configuration is trained, and its performance is evaluated with respect to accuracy and

training time. These results define a two-dimensional objective space from which the Pareto

front is derived. The configurations on the Pareto front will be explored further in the next

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 27

iterations as promising alternatives. Next, each Pareto-optimal (from the previous step)

configuration is expanded by adding one new layer. This process continues iteratively until a

maximum number of iterations is reached.

Evolutionary Search Algorithm: The Evolutionary Search Algorithm, similar to the other

variants, incrementally constructs the neural network by employing notions from

evolutionary theory, e.g., crossovers and mutations. Generally, this variant evolves a

population of configurations, i.e., triplets of neural network architectures, number of epochs

and sampling rates, across successive generations, and its goal is to find configurations that

‘fit’ well in a setting/environment that is defined by the user’s constraints. The optimization

process begins with an initial exhaustive evaluation of all valid combinations of epoch counts,

sampling rates, and single-layer architectures. From this set of candidates, the optimizer

selects a subset of top-performing networks. These networks represent the most promising

trade-offs between accuracy and training speed. Then, a subset of these elite architectures is

directly ‘promoted’ to the next generation. The remaining configurations, which will be

‘promoted’ to the next generation, are produced by crossover and mutation operations

applied to the current elites. This process continues until a fixed number of generations is

reached.

3.3.1 Experimental Evaluation on SuBiTO algorithms

To stress test the SuBiTO algorithms we utilize two real-world datasets, namely the CIFAR10

and the UCF50 dataset [REF-06]. We examine the performance of the Bayesian Optimization,

Greedy, Heuristic and Evolutionary (termed EVO) algorithms in terms of accuracy, training

time trade-off of the proposed solution as well as based on their execution time.

We further alter the scoring function used while exploring the search space. Besides the

scoring function discussed in Section 3.1.1, which we term ‘Original’, we employ the following

scoring functions:

• Original Scoring Function: see Section 3.1.1.

• F1-like Harmonic Trade-off: inspired by the harmonic mean structure of the F1-score,

this formulation balances accuracy and training time.

• Exponential Decay Penalty: emphasizes that the score decreases exponentially with

increasing training time.

• Inverse Additive Penalty: a fraction of accuracy over normalized training time. The

denominator increases with training time, gradually reducing the score without sharp

penalties, unlike the Exponential Decay variant.

• Min-based Trade-off: directly captures the ‘weaker’ (the minimum) performance

criterion among accuracy and normalized training time. As such, it benefits

configurations that perform well across all desired properties, i.e., achieve high

accuracy and low training latency.

• Log-Sigmoid Dominance Function: treats the difference between accuracy and

normalized training time as an indicator of relative performance. This is essentially a

sigmoid function which keeps the score within (0, 1) and produces smooth transitions,

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 28

i.e., models that perform slightly better in one aspect gain an adequate advantage,

while large imbalances are downgraded toward the middle of the scale.

We execute our experiments under a Google Colab Pro+ subscription using the A100 GPU

configuration. To show the complementarity of the various algorithms, in Figure 14, we plot

the median accuracy, training time of the solution yielded by each algorithm. In that, each of

the provided features in Figure 14, holds for at least half of the cases of scoring functions in a

per dataset fashion. Relative execution time is encoded in the figure by marker area and

labelled by its multiple vs. the fastest method in the same dataset (1× = fastest).

Figure 14: Median performance of SuBiTO algorithms across scoring functions for the

CIFAR10 and UCF datasets. Relative execution time is encoded by marker area and labelled
by its multiple vs. the fastest method in the same dataset (1× = fastest).

The complementarity of the algorithms is justified by the following observations:

Bayesian Optimization (BO) is always the fastest in terms of execution time. It is therefore the

best solution in cases of highly volatile data streams which yield frequent concept drifts and,

therefore, frequent optimization decisions. However, the accuracy vs training time trade-off

that it provides is inferior compared to the other alternatives, especially in the, more

demanding, video stream scenario.

Greedy provides solutions of good accuracy but it yields the highest training times. The

training time of Greedy is up to 2x worse than the best training time induced by EVO. In other

words, Greedy can keep high accuracy levels but moderately compromises the real timeliness

of the training pipeline of SuBiTO. Its execution time is the second best, though it remains 2x

and up to 4x slower than BO. It is suitable in case high accuracy and fast optimization times

for volatile data streams are prioritized higher than rapid training times.

EVΟ provides solutions of slightly worse (up to 7%) accuracy compared to the algorithm that

provides the most accurate solutions across these datasets, but it yields the fastest training

times. Therefore, it ensures the real timeliness of the training process. The caveat is that its

execution time is up to 10x times slower than BO and up to 2.5x slower compared to Greedy.

It is therefore suitable for settings where rapid training times and high accuracy are of the

essence, but with lower data stream volatility and rarer concept drifts.

Heuristic yields the best solutions in terms of execution vs training time trade-offs. It often

provides the best accuracy with only 15-20% higher training time compared to EVO. Its

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 29

execution time though is the highest among all algorithms. Heuristic is an order of magnitude

slower than BO and 3-4 times slower than Greedy. It is also 20-25% slower than EVO.

Overall, our experimental evaluation results in the following main findings:

• Highly Volatile Streams, real timeliness of training pipeline àBO

• High/Moderately Volatile Streams, prioritization on accuracy over training time à

Greedy

• Non-volatile Streams, real timeliness of training pipeline à EVO

• Non-volatile Streams, prioritization on accuracy over training time à Heuristic

3.4 Parallel Synopses Maintenance Revisited

However novel and practical SDEaaS [REF-02] was, it had an important limitation: it emitted

synopses via Apache Flink’s streaming APIs (e.g., DataStream/Table) that were not natively

tensor-compatible for neural training. Each time new synopses were produced, they first had

to be written to Kafka and then loaded into tensor-friendly structures (e.g., Pandas

DataFrames or NumPy ndarrays) for the training pipeline. This extra hop can undermine the

benefits of parallel synopsis maintenance, because the conversion/ingestion steps relied on

tools that are not inherently distributed. To remove this bottleneck, we re-implemented the

SDE on Dask3, enabling parallel synopsis maintenance with direct tensor-compatibility,

eliminating interleaving format transformations and preserving the potential for end-to-end

parallel training.

We further incorporated an inherently parallel synopsis technique, namely the (Weighted)

Priority Sampling Scheme introduced in [REF-07]. The Weighted Priority Sampler (WPS) is a

parallel streaming sampling algorithm designed to efficiently maintain a representative

subset of items from a continuous data stream. It keeps the k items with the smallest priorities

(implemented with a min-heap), where each item’s priority is defined as:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
lo g(𝑈)

𝑤𝑒𝑖𝑔ℎ𝑡

Here, U is a uniformly distributed random variable in the interval (0, 1), and weight is a user-

defined importance score for each item. This formulation ensures that higher-weight items

have a higher chance of being included in the sample, while also introducing randomness to

prevent bias. If all items are assigned equal weights, the sampling scheme reduces to uniform

sampling. Figure 15 illustrates the operation of the WPS on a single worker.

3 https://www.dask.org/

https://www.dask.org/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 30

Figure 15: Operation of the Weighted Priority Sampling on a single worker.

Each worker applies the procedure of Figure 15 on its local stream using an add operation

(see [REF-02]). The overall sample is formed in a merge step (see [REF-02]) by choosing the

overall top-K tuples. The following code snippet sketches the operation of WPS in Dask, while

Figure 16, illustrates the parallel execution of priority sampling on 4 workers as presented at

the Dask Dashboard.

Map over each Dask array block, applying `self.add` to produce per-block results.

- `.compute()` gathers all per-worker outputs to the driver (in-memory) as a NumPy array.

top_ks_splitted = stream.map_blocks(self.add, dtype=stream.dtype).compute()

Merge the per-block results into a single global result using your sampler’s merge logic.

merged_PS = self.merge(top_ks_splitted)

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 31

Figure 16: Priority Sampling parallel execution as illustrated at Dask Dashboard under 4
workers.

WPS is a highly useful parallel sampling scheme that is utilized in the SuBiTO optimizer and

across SuBiTO’s training pipelines as described in Section 3.6.

3.5 Data-driven Synchronization and the EVENFLOW Protocol Suite

As noted in Deliverable D5.1, the aim of the smart synchronization protocols for

distributed/parallel neural learning, introduced in EVENFLOW is to provide data-driven

synchronization mechanisms. The vanilla synchronous and asynchronous protocols entailed

in the Parameter Server paradigm [REF-08][REF-09], trigger laggy, full synchronizations on

predefined rounds (synchronous) or allow partial, inaccurate synchronizations

(asynchronous). The EVENFLOW protocol suite [REF-01], instead, requires a sync only when a

concept drift may have occurred based on data driven criteria.

In EVENFLOW, the application provides any thresholded function f(w(t)): RdàR and a threshold

T. w(t) corresponds to the global neural network weights at time t. A global sync is required

only when f surpasses the given threshold T. EVENFLOW decomposes this global trigger to

local tests which can be individually checked by each parallel learner locally, without

communicating with its peers. To achieve that, EVENFLOW employs a geometric approach

which, instead of distributively monitoring the function value, it monitors the input domain

of w(t) and their gradients.

More formally, we consider n learners i ∈ {1,…,n} training a shared model with weight vector

𝑤(𝑡) ∈ 𝑅𝑑. Learner i computes a local gradient 𝑔𝑖
(𝑡)

= ∇𝑤𝐿𝑖(𝑤(𝑡)) Local steps between two

synchronizations are indexed by κ = 0,1,…. An application-supplied monitoring function

𝑓: 𝑅𝑑 × 𝑅𝑑 → 𝑅 with tolerance T > 0 decides whether a global synchronization is required: a

sync is needed iff 𝑓(𝑤(𝑡 + κ + 1), 𝑤(𝑡)) > 𝑇.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 32

3.5.1 The Basic EVENFLOW Synchronization Protocol

Local updates (per learner i): The learner performs standard gradient steps with learning rate

η > 0:

𝑤𝑖(𝑡 + 𝜅 + 1) = 𝑤𝑖(𝑡 + 𝜅) − 𝜂 · 𝑔𝑖
(𝑡+𝜅)

= 𝑤(𝑡) − 𝜂 · 𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)

Geometric filter (distributed, no communication unless needed): Define the alarm set 𝐴 =

𝑥 ∈ 𝑅𝑑: 𝑓(𝑥, 𝑤(𝑡)) > 𝑇. Each learner i forms a d-dimensional sphere 𝐵𝑖 = 𝐵(𝑐𝑖, 𝑟𝑖) with:

 c =𝑖 𝑤(𝑡) − (𝜂/2) · 𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)
, 𝑟𝑖 = (𝜂/2) · ||𝛴𝑟=0

𝜅 𝑔𝑖
(𝑡+𝑟)

||.

If 𝐵𝑖 ∩ 𝐴 = ∅, the learner stays silent; if 𝐵𝑖 ∩ 𝐴 ≠ ∅, it requests a synchronization. If no

learner requires a sync, local training continues (no global round completion).

Figure 17: Basic EVENFLOW Protocol Rationale. Since no sphere intersects A, no sync is
triggered.

Global aggregation (upon any sync): The aggregator computes a weighted average of current

local models and broadcasts it:

 𝑤(𝑡 + 𝜅 + 1) = (𝛴𝑖𝛾𝑖 · 𝑤𝑖(𝑡 + 𝜅 + 1))/(𝛴𝑖𝛾𝑖), with 𝛾𝑖 > 0.

𝛾𝑖s can quantify cases of learners that receive inequivalent number of tuples, therefore, their

participation in the global average is weighted accordingly. Finally, all learners set w ←

w(t+κ+1), reset κ ← 0, and continue.

Correctness: The global model lies in the convex hull of 𝑤(𝑡) − 𝜂𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)

𝑖
, which is

contained in ⋃ 𝐵𝑖𝑖 . Therefore, if each 𝐵𝑖 is disjoint from A, then f(w(t+κ+1), w(t)) ≤ T. An

intersection on any learner indicates a potential threshold crossing and triggers a

synchronization (potentially false positive).

A fundamental limitation of the Basic EVENFLOW protocol is that in neural learning, the

number of weights may well reach the order of millions. Having learners perform sphere

intersection checks against A in case of high d values may slow down, instead of benefitting,

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 33

the training process. To overcome this limitation, we introduce the Fast EVENFLOW protocol

which utilizes only m << d important values, based on Discrete Fourier Transform (DFT)

coefficients of the local weight vectors, to speed up local intersection checks.

3.5.2 The Fast EVENFLOW Synchronization Protocol

The Fast EVENFLOW protocol operates on offsets from the last global model computed during

a synchronization: 𝛥𝑤(𝑡 + 𝜅 + 1) = 𝑤(𝑡 + 𝜅 + 1) − 𝑤(𝑡). The monitoring task now

becomes 𝑓(𝛥𝑤(𝑡 + 𝜅 + 1), 0) > 𝑇𝑡𝑟 for an equivalent but transformed threshold 𝑇𝑡𝑟. For

each learner i, Fast EVENFLOW computes the DFT of the cumulative gradients 𝐺𝑖
(𝜅)

=

𝛴𝑟=0
𝜅 𝑔𝑖

(𝑡+𝑟)
. We denote 𝐺̃𝑖

(𝜅)
= 𝐷𝐹𝑇(𝐺𝑖

(𝜅)
), and retain only the top-m (m ≪ d) coefficients by

magnitude: 𝐺̃𝑖,𝑚
(𝜅)

. The linearity of DFT ensures 𝐷𝐹𝑇(𝛴𝑟𝑔𝑖
(𝑡+𝑟)

) = 𝛴𝑟𝐷𝐹𝑇(𝑔𝑖
(𝑡+𝑟)

).

Reduced-space filter (per learner): We Define the m-dimensional sphere 𝐵̃𝑖 = 𝐵(𝑐̃𝑖, 𝑟̃𝑖) with:

 𝑐̃𝑖 = −(𝜂/2) · 𝐺̃𝑖,𝑚
(𝜅)

, 𝑟̃𝑖 = (𝜂/2) · ||𝐺̃𝑖,𝑚
(𝜅)

||.

Intersection of 𝐵̃𝑖 with the transformed alarm set 𝐴𝑡𝑟 = 𝑥: 𝑓(𝑥, 0) > 𝑇𝑡𝑟 triggers a sync.

Otherwise, the learning step stays local. Aggregation/broadcast proceed as in Basic

EVENFLOW.

Deterministic quality bounds. Using Parseval’s identity and highest-m reduction, the time-

domain approximation error satisfies (IDFT is the Inverse Discrete Fourier Transform):

 ||𝐺𝑖
(𝜅)

− 𝐼𝐷𝐹𝑇(𝐺̃𝑖,𝑚
(𝜅)

)|| ≤ √(𝜅 + 1) · √(1 − 𝑚/𝑑) · 𝑚𝑎𝑥𝑟 ||𝑔𝑖
(𝑡+𝑟)

||.

Thus, the center and radius in the reduced space approximate those of the Basic protocol

within (η/2) times the bound above, which upper-bounds both center displacement and

radius approximation due to dimensionality reduction.

3.5.3 Handling Sliding Windows

In streaming settings, a sliding window model is often used in order to account for the most

recent observations, while mark older observations as expired obsolete. The Fast EVENFLOW

protocol can be trivially extended to make synchronization decisions depend only on the most

recent W global steps, rather than all steps since the last global sync.

Windowed cumulative gradients (per learner i): We define 𝑆𝑖
(𝑡)

= 𝛴𝑟=𝑡−𝑊+1
𝑡 𝑔𝑖

(𝑟)
 and its DFT

𝑆̃𝑖
(𝑡)

= 𝛴𝑟=𝑡−𝑊+1
𝑡 𝑔̃𝑖

(𝑟)
. The window-slide recursion is exact due to DFT linearity: 𝑆̃𝑖

(𝑡+1)
=

𝑆̃𝑖
(𝑡)

− 𝑔̃𝑖
(𝑡−𝑊+1)

+ 𝑔̃𝑖
(𝑡+1)

. Each learner maintains 𝑆̃𝑖
(𝑡)

 and keeps only the top-m coefficients

𝑆̃𝑖
(𝑡)

𝑖,𝑚

(𝑡)
.

Windowed reduced-space filter: We replace 𝐺̃𝑖,𝑚
(𝜅)

 with 𝑆̃𝑖,𝑚
(𝑡)

 in the Fast EVENFLOW test:

𝐵̃𝑖
𝑤𝑖𝑛 = 𝐵(𝑐̃𝑖

𝑤𝑖𝑛, 𝑟̃𝑖
𝑤𝑖𝑛), where 𝑐̃𝑖

𝑤𝑖𝑛 = −(𝜂/2) · 𝑆̃𝑖,𝑚
(𝑡)

, 𝑟̃𝑖
𝑤𝑖𝑛 = (𝜂/2) · ||𝑆̃𝑖,𝑚

(𝑡)
||.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 34

If 𝐵̃𝑖
𝑤𝑖𝑛 ∩ 𝐴𝑡𝑟 ≠ ∅, learner I requests a sync; else it keeps up local training. Aggregation upon

a sync remains unchanged.

Error and correctness: The same deterministic bound applies with κ+1 replaced by W, i.e.,

(𝜂/2) · √𝑊 · √(1 − 𝑚/𝑑) · 𝑚𝑎𝑥𝑟∈[𝑡−𝑊+1,𝑡] ||𝑔𝑖
(𝑟)

||. Therefore, decisions in reduced space

track those in full space up to the stated bound.

Complexity (per step, per learner). Compute in O(dℓog(d)) FFTs and reuse FFTs of per-batch

gradients; update the sliding DFT via the O(d) recursion above; maintain top-m coefficients

(selection/heap); run the m-dimensional sphere check. After caching 𝑔̃𝑖, monitoring is

essentially O(m) per step.

3.6 Distribuito SuBiTO: Synopses, Parallelism & Smart Sync All in One

The fully distributed version of SuBiTO incorporates the EVENFLOW advancements described

in Section 3.4 and Section 3.5.2. The architecture of Distribuito SuBiTO is illustrated in Figure

18. The entire implementation of Distribuito SuBiTO is on Dask for parallel synopses

maintenance and Ray4 for distributed/parallel training and inference purposes.

As shown in Figure 18, data streams arrive partitioned across Kafka topics. Parallel synopses

maintenance over Dask (Section 3.4) plays a role at both the SuBiTO optimizer and the SuBiTO

training pipeline. At the SuBiTO Optimizer side, Distribuito SuBiTO examines different

parallelization degrees on par with NAS, compression ratio and epoch numbers. Bayesian

Optimization is still used here since, as shown in Section 3.3.1, it is the most preferable option

for highly volatile streams, across scoring functions.

The solution {parallelism, Neural Architecture, epoch number, compression ratio} returned

by BO is conveyed to the Training Pipeline at runtime. This then becomes the currently

deployed configuration. That is, the training pipeline now dynamically configures the

parallelism of synopses maintenance at runtime.

At both the SuBiTO Optimizer and the Training Pipeline, Fast EVENFLOW (Section 3.5.2) is

adopted, across the parallel learners, to provide rapid training times, reducing inter-learner

communication and maintaining high accuracy.

Finally, at the Prediction Pipeline, unlabelled streams are consumed by parallel predictors.

Again, the most up-to-date global neural model extracted by the Training Pipeline is

transferred to the parallel predictors via Kafka. Based on this updated model, the parallel

predictors label the streaming tuples belonging to their assigned partitions. Besides

parallelism, predictors incorporate an important optimization that boosts throughput

(number of tuples being labelled per second). The talk involves prediction batching. As we

experimentally show in Section 3.6.1, throughput is dramatically increased when – instead of

labelling streaming tuples one by one – streaming tuples are first organized into batches and

4 https://www.ray.io/

https://www.ray.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 35

are labelled all together. This optimization reduces data exchanges between RAM and GPU

RAM, therefore boosting throughput.

Figure 18: Distribuito SuBiTO Architecture. Synopses are derived using SDE on Dask (Section
3.4). The Fast EVENFLOW protocol (Section 3.5.2) is incorporated for smart, data-driven

synchronization. Parallel predictors and prediction batching used to boost inference speed.

3.6.1 Experimental Evaluation of Distribuito SuBiTO

The experiments conducted regarding the distributed SuBiTO are based on the three main

parts of the framework: synopses construction, training and inference. We start by discussing

the experiments on the synopses’ construction part of the framework, focusing on parallel

sampling scalability. We continue by presenting the experiments carried out on the new

distributed Training Pipeline, using the novel Fast EVENFLOW protocol, under the PS

paradigm. The experiments regarding the Prediction Pipeline are presented in the end, testing

the scalability of the inference mechanism, by examining the throughput of its new version.

3.6.1.1 Synopses Scalability

The experiments presented in this section focus on testing the new scalable sampling

approach of the Distribuito SuBiTO framework, using Priority Sampling on Dask and assigning

random weights on each data point (Section 3.4). On this experiment we stream the NSFW

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 36

Dataset (available from HauggingFace) through Kafka and test the sampling execution time

on both the original SuBiTO framework, which uses stratified sampling over NumPy, and the

Distribuito SuBiTO framework, which uses Weighted Priority Sampling over Dask.

The original SuBiTO performs sampling centrally using NumPy, while the Distribuito SuBiTO

uses 6 Dask Workers, performing sampling on Dask. Recall that 6 Dask Workers are used only

for experimental purposes, during the deployment of SuBiTO the number of Dask Workers is

set by the SuBiTO Optimizer. In order to compare the two approaches, we chose to

experiment using sample sizes of 20%, 40%, 60% and 80% of varying dataset size. On each

experiment the dataset is duplicated 25, 30, 35, 40, 45 and 50 times for stress testing SuBiTO

and Distribuito SuBiTO on various stream volumes. The sampling times reported are the mean

across 5 trials, performed on the same computation hardware.

On this experiment we test both sampling approaches on a single machine. It should be noted

that NumPy offers no way of scaling on a large cluster. On the contrary, Dask offers the ability

to scale our application on large clusters, leveraging the computing power of multiple

processors on multiple servers.

Figure 19: Synopses Scalability, original SuBiTO uses Stratified Sampling on NumPy while
Distribuito SuBiTO uses Priority Sampling on Dask with a parallelism of 6.

As we can see in Figure 19, when the dataset can fit in memory of a machine, the original

approach of stratified sampling on NumPy achieves a quicker execution time compared to the

Dask approach, on nearly all sample size cases. This trend can be observed on the duplication

factors of 25 and 30. This behaviour is expected as NumPy is very efficient when computing

within the limits of system memory, compared to Dask which introduces unnecessary

computation overhead (Task Graph building, Execution Optimization, etc.). When the dataset

is extended 35 times, stretching the system’s memory limits, we observe that NumPy needs

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 37

more time for sampling, compared to Dask, for 40% sample size. As the datasets duplication

factor grows from 40 to 45 and 50 times, surpassing the system’s memory limits, it becomes

evident that Dask’s sampling time scales linearly, compared to NumPy’s exponential scaling.

In the particular case of duplicating the dataset 50 times, we observe that NumPy needs twice

the time for sampling on 20% sample size, compared to Dask and 60 times as long in the case

of 80% sampling size.

The observations made above show clearly that using Priority Sampling on Dask, gives the

Distribuito SuBiTO framework’s sampling approach the ability to handle large data streams

with ease and therefore maintain the real-time character of the application on both medium

and large scale environments.

3.6.1.2 Training Scalability

This section includes the experimental evaluation of the Distribuito SuBiTO Training Pipeline.

This set of experiments focuses on testing the Distribuito SuBiTO learning approach of using

the PS paradigm and the Fast EVENFLOW synchronization protocol, across multiple Learner

instances. Therefore, the execution times reported in this section denote only the time that

the set of Learners needed for training, excluding stream ingestion and sampling. Our results

are compared to the Distribuito SuBiTO framework using the vanilla synchronous protocol

under the PS paradigm. Our tests vary the number of Learners between 2 and 4 and conduct

the experiments using the NSFW Image Dataset5 and a subset of the UCF50 Video Dataset,

containing 10 out of the 50 classes. Moreover, we report the number of the PS’s

synchronizations invoked on each case, in order to examine the overall communication

overhead of our approach. The Datasets are continuously streamed on Kafka on a loop. Our

training limit is 1400 batches on the NSFW Dataset and 4000 batches on the UCF Dataset [REF-

06], essentially letting each learning approach process the entire data stream two times. After

reaching the batch processing limit, deducted only when the Learners synchronize with the

PS, each learning process is terminated. On both approaches we use a learning rate of 10-3

and batch sizes of 32 and 10, on the NSFW Dataset and UCF Datasets, respectively. Regarding

the Fast EVENFLOW Protocol, our threshold decay function is set empirically, through careful

examination of the learning process and the loss function, with the aim to stabilize learning

throughout the batch processing:

𝑇 = 2 𝑒−0.4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 + 0.15, for the NSFW dataset,

𝑇 = 64 𝑒−0.2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑢𝑛𝑑 + 0.5

We start by observing the results of the NSFW Dataset, with 2 Learner instances, using the

vanilla Synchronous protocol and the Fast EVENFLOW synchronization protocol, in Figure 20

and Figure 21, respectively. As we can see both synchronization protocols achieve high test

and train accuracy scores, indicating that both the Fast EVENFLOW and the Synchronous

protocols achieve adequate model generalization.

5 https://huggingface.co/datasets/deepghs/nsfw_detect

https://huggingface.co/datasets/deepghs/nsfw_detect

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 38

Comparing the test accuracy metric of both synchronization techniques, the Fast EVENFLOW

protocol only lacks on test accuracy by 4% shining in terms of both reduced training time and

number of synchronizations. The number of synchronizations is perceived here as a measure

of communication cost between the workers and the Parameter Server. The training time

achieved by the Fast EVENFLOW protocol is 4 times less, compared to the synchronous

protocol, while the number of synchronizations is reduced from 701 to only 7.

Figure 20: Synchronous Protocol using 2 Learners on the NSFW Dataset.

Figure 21: Fast EVENFLOW Protocol using 2 Learners on the NSFW Dataset.

We continue by examining the same experimental setup, with the only exception of using 4

Learners this time. As we can see in Figure 22 and Figure 23 regarding the Synchronous and

Fast EVENFLOW synchronization protocols, we observe similar results. Both approaches

achieve equally high test accuracy scores, generalizing their models adequately. The training

time of the synchronous protocol is reduced to 92 seconds (s), compared to the 143s needed

on the 2 Learner approach, while the training time of Fast EVENFLOW is decreased only

slightly going from 35s to 31s. The use of more Learners did not benefit the FAST EVENFLOW

approach on the number of synchronizations but reduced the synchronizations of

Synchronous in half. This training time of the Fast EVENFLOW protocol is a consequence of

processing more than 2000 batches, compared to the 1400 batches that the synchronous

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 39

approach processes on the same experiment. As we mentioned earlier the NSFW Dataset

contains 700 batches and is streamed on a loop, though due to the nature of the Fast

EVENFLOW protocol we are able to deduct the number of batches that are processed by the

Learners, only when the synchronization process is initiated. Therefore, we stop the training

process when the Learners synchronize with the PS and we have processed at least 1400

batches, leaving the experiments regarding the Fast EVENFLOW protocol, always processing

more batches compared to the synchronous approach. But the important finding resides to a

different, more important observation.

Figure 22: Synchronous Protocol using 4 Learners on the NSFW Dataset.

Figure 23: Fast EVENFLOW Protocol using 4 Learners on the NSFW Dataset.

The Fast EVENFLOW synchronization protocol using 2 Learners (Figure 21) provides the

same accuracy as the Synchronous protocol using 4 Learners (Figure 22) while reducing the

training time by a factor of 3 and the number of synchronizations by 2 orders of magnitude,

all while using less hardware, specifically half the number of Learners and therefore half

the number of GPUs. Regarding the communication overhead, Fast EVENFLOW transmits 21

messages during the training process while the synchronous approach transmits 1755,

reducing drastically the communication cost of the training process. This indicates that the

Fast EVENFLOW protocol can indeed provide a scalable solution to perform Distributed

Learning on the Distribuito SuBiTO platform, while maintaining the real-time character of the

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 40

application, through reduced training time and communication cost, with half the hardware

requirements.

We continue the experimental evaluation by presenting the experiments conducted using the

UCF Dataset. The UCF Dataset is larger in size compared to the NSFW Dataset used in the

previous experiments both in terms of data items and item size, as videos carry much more

information compared to images. Therefore, we utilized the Ray Store library, essentially

sharing the data across the Actors (Learners), minimizing the memory footprint of the training

process. This resulted in a memory efficient training process, which indeed impacted the

training time. Given this remark, it is evident that there should be no comparison of the

training times between the experiments conducted with the NSFW and the UCF datasets.

Figure 24: Synchronous Protocol using 2 Learners on the UCF Dataset.

Figure 25: Fast EVENFLOW Protocol using 2 Learners on the UCF Dataset.

The results of using 2 Learners with the Synchronous and the Fast EVENFLOW protocol on the

UCF dataset are provided in Figure 24 and Figure 25, respectively. Both approaches reach a

Test accuracy score of 60%, while the synchronous approach seems to lack in terms of model

generalization given a train accuracy score of nearly 70%. The Fast EVENFLOW occasionally

improves Synchronous on model generalization, due to the fact that by synchronizing less

frequently, it avoids overfitting that occurs during the streaming training process. In terms of

communication cost, Fast EVENFLOW requires only 12 synchronizations compared to 201 of

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 41

the synchronous approach, reducing synchronization by an order of magnitude, and therefore

the communication cost, while achieving the same training performance. This observation is

reflected on training time as well, with the Synchronous approach 35s training time,

compared with the 8s of Fast EVENFLOW.

Figure 26: Synchronous Protocol using 4 Learners on the UCF Dataset.

Figure 27: Fast EVENFLOW Protocol using 4 Learners on the UCF Dataset.

We can see the results of on the UCF dataset using 4 Learners in Figure 26 and Figure 27. We

observe that the training time is improved in both cases, compared to the 2 Learner approach

discussed above. Both protocols achieve concise accuracy metrics with the Fast EVENFLOW

approach lacking just by 7%. The use of more Learners, reduced the synchronizations of

Synchronous in half. This observation is related to the fact that Fast EVENFLOW already

performs a very limited number of synchronizations, with further reduction risking the

stability of the training process. Regarding learning time, Fast EVENFLOW is again faster,

needing 7s compared to the 24s of Synchronous approach. Again, we can see that comparing

the use of Fast EVENFLOW with 2 Learners (Figure 25) and the use of Synchronous with 4

Learners (Figure 26), Fast EVENFLOW achieves the same test accuracy, while reducing

training time by a factor of 3 and the number of synchronizations by an order of magnitude,

all while using half the number of Learners and therefore half the number of GPUs.

Regarding the communication overhead, Fast EVENFLOW transmits 36 messages during the

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 42

training process while the synchronous approach transmits 505, reducing drastically the

communication cost of the training process, once again.

3.6.1.3 Inference Scalability

Our last set of experiments focus on the Prediction Pipeline and the updated SuBiTO

Predictors. Our approach uses parallel Predictors performing inference and communicating

their results to a server orchestrator process. This experimental setup focuses only on

examining the throughput of the updated Predictor and therefore uses a static pre-trained

neural network throughout the experiment. It should be noted that on a real deployment

setting the orchestrator process constantly receives the up-to-date model of Training Pipeline

and deploys it for inference on the fly. These experiments focus on measuring the increase in

throughput that we get when using multiple Predictor instances, compared to the original

SuBiTO approach of using a single Predictor. In these experiments we utilise the NSFW dataset

and various types of hardware. Each result presented below is the mean value of 10 trials.

We start by examining the limits of a single Predictor running on a standard T4 GPU on Google

Colab Pro+. We experiment with various batch sizes and a parallelism of 1 and report the

achieved throughput in Figure 28. The results indicate that we achieve higher throughput on

batch sizes ranging from 32 to 512, with the maximum being achieved by a batch size of 512.

This result indicates that our next experiments should be conducted with a batch size within

the aforementioned range.

Figure 28: Throughput across batch sizes.

Using the same hardware we utilise a varying number of Predictors, each as a separate Google

Colab Pro+ instance, and examine the effect that multiple Predictors can have on throughput.

The results regarding T4 Predictors using batch sizes of 32 are presented in Figure 29. We

observe that going from 1 to 2 Predictors yields nearly twice the throughput. When scaling to

more Predictors we observe that throughput increases almost linearly. The “almost” linear

increase is due to the effect of the orchestration process that handles model reception,

transmission and fetching of the inference results, therefore introducing latencies.

We continue our experiments by deploying the Prediction Pipeline on state-of-the-art

hardware, namely the A100 GPU. Each Predictor is modelled as a separate Google Colab

instance, though limited to 3 instances due to Google’s policy restrictions. Our experiments

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 43

examine throughput by varying the number of Predictors within Google’s policy limits and use

a batch size of 32. The results are presented in Figure 30.

Figure 29: Throughput of T4 Predictors with batch size = 32.

Figure 30: Throughput of A100 Predictors with batch size = 32.

The results indicate twice the throughput, compared to the respective same amount of T4

Predictors, which is a result of using more advanced hardware. Specifically, using 3 A100

Predictors we perform inference on more than 50000 images/s, whereas using 3 T4 Predictors

the throughput is decreased by 26000 images/s.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 44

 Scalable Neurosymbolic Complex Event Recognition
Consider the following pattern, stemming from a smart factory scenario, similar to the

Industry 4.0 EVENFLOW use case, where raw robot navigation data are monitored:

R_successful_delivery := (¬StationDetected)* · (¬StationDetected) · (StationDetected ∧

¬DeliveryManeuver)* · (StationDetected ∧ DeliveryManeuver)

The Simple Event (SE) StationDetected occurs when a robot detects a station in the smart

factory. The DeliveryManeuver SE occurs when the robot is moving at a certain speed,

changing directions while manoeuvring to approach the detected factory station. The

Complex Event (CE) R_successful_delivery is satisfied when initially a robot has not detected

a station, then it detects one and, having detected the station, attains the required speed and

repeated change of movement direction to approach it. The Complex Event Recognition (CER)

system continuously evaluates the rapidly ingested robot streams, converts them to the

aforementioned SEs and deduces a successful delivery CE.

In such a scenario, each SE represents the detection of a behaviour that can only be deduced

by a machine or neural learning model. The role of the neural model is to receive streams of

frames (e.g., from vision, LIDAR, or other contextual cues) and the manoeuvring behaviour

for delivery and provide classification outcomes, i.e., class/symbol A = StationDetected and

symbol B = DeliveryManeuver, for CER to be possible. Then, a CER engine will ingest the

aforementioned SEs (symbols A, B) and evaluate the occurrence of the involved CEs.

Evidently, such scenarios call for both neural inference and symbolic CER to operate

synergistically.

FlinkCEP is the CER API of a state-of-the-art Big Data platform, namely Apache Flink. FlinkCEP

focuses on scaling-out the computation to a number of machines in a computer cluster/cloud,

working in parallel on partitions of the streams, to speed up continuous analytic outcomes.

FlinkCEP provides a CER language of high expressive power in terms of formulating patterns

for CEs. However, there are certain barriers to the adoption of FlinkCEP. First, FlinkCEP

requires business analysts, who are not necessarily expert programmers, to write functional

programming code. Second, pattern expression and parameterization involve cumbersome

notation, making the whole code writing process error prone. Third, with the proliferation of

IoT devices as SE producers, the classic paradigm in which we first accumulate raw data at the

cloud and then submit a FlinkCEP job is severely suboptimal. For instance, in our running

example, sending video frames from robots to the cloud and then performing CER would

deplete the available bandwidth, causing network latencies that would prevent the real-time

character of the involved applications. What should be done instead, is to ship trained neural

models and FlinkCEP jobs to network devices, assign parts of the SE and/or CER process

directly on them, and only a subset of SEs and/or CEs should be delivered to the cloud, alerting

for the occurred events.

Despite the fact that few previous efforts have integrated neural and symbolic CER, no

existing approach has enabled neither parallel processing of neurosymbolic CER nor

optimized, distributed neurosymbolic CER over IoT settings. The work presented in this section

contributes to advancing the state-of-the-art by tackling all the aforementioned challenges.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 45

We introduce NeuroFlinkCEP [REF-10], the first framework that integrates neural (aka sub-

symbolic) and symbolic CER over a state-of-the art Big Data platform for parallel processing

that is also optimized to operate distributedly over IoT settings composed of various devices.

To alleviate business analysts from the burden of writing FlinkCEP programs, NeuroFlinkCEP

receives expressed patterns in the form of extended regular expressions (RegEx) and

transforms them to FlinkCEP jobs. To enable detection of SEs and CEs, NeuroFlinkCEP

integrates any chosen, domain-specific neural model inside the FlinkCEP job deployed per

device. To optimally decide whether operators of the CER workflow should be executed at

the cloud or the device network side, NeuroFlinkCEP enhances a state-of-the-art IoT optimizer

with CER-specific optimizations.

4.1.1 NeuroFlinkCEP Architecture

NeuroFlinkCEP’s key architectural components are: (i) the RegEx2-NeuroFlinkCEP operator,

(ii) the synapSEflow operator and (iii) the DAG*4CER Optimizer. RegEx2NeuroFlinkCEP and

synapSEflow operators are nested into a newly introduced NeuroFlinkCEP operator. We have

developed a NeuroFlinkCEP GUI for graphical workflow design using NeuroFlinkCEP operators

and we have incorporated it as an extension to a commercial platform, Altair AI Studio6.

The RegEx2NeuroFlinkCEP operator receives as input Extended Regular Expressions

describing the pattern based on which a CE would be detected, i.e., this nested operator

describes the symbolic part of a NeuroFlinkCEP operator. As shown in Figure 31, each such

pattern can be parameterized with time windowing constraints as well as selection strategies

and consumption policies supported by FlinkCEP. FlinkCEP supports the following SE selection

strategies: (i) Strict Contiguity, (ii) Relaxed Contiguity, and (iii) Non-Deterministic Relaxed

Contiguity. For event consumption policies, FlinkCEP provides: NO_SKIP, SKIP_TO_NEXT,

SKIP_PAST_LAST_EVENT, SKIP_TO_FIRST[p], and SKIP_TO_LAST[p]. These can be graphically

parameterized in a NeuroFlinkCEP operator via the developed extension on Altair AI Studio

(Figure 32).

The synapSEflow operator nests the TensorFlow Java API within the NeuroFlinkCEP operator.

It receives as input the TensorFlow (.pb) file with a trained neural model. The operator loads

the model, composes features from incoming raw streams (e.g., video frames, positional

streams), feeds them through the model, and derives labels/symbols. It then (i) directs the

simple event outputs to the core of FlinkCEP for pattern matching and (ii) listens to a

broadcast stream for model updates via Kafka, installing received models so predictions use

the latest version. If no .pb file is specified, the input to a downstream NeuroFlinkCEP

operator should be another, upstream NeuroFlinkCEP operator feeding SEs for pattern

matching.

The DAG*4CER Optimizer incorporates a state-of-the-art IoT optimization algorithm, DAG*

[REF-11], and extends it with FlinkCEP-specific optimizations. DAG* topologically sorts the

logical workflow and progressively examines physical instantiations to network devices for

the involved operators, computing g(n)=f(n)+h(n) where f(n) is the current partial-plan cost

6 https://altair.com/altair-ai-studio

https://altair.com/altair-ai-studio

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 46

and h(n) is an admissible heuristic. Two rules enforce graph (not path) outputs: (i) at each

step, only one operator can be examined for instantiation; (ii) no logical operator can be

instantiated unless all upstream operators are already in the current partial plan.

DAG*4CER adds CER-oriented rewritings:

• Pattern Decomposition: assigns SE detection across devices instead of placing the

entire pattern at one device),

• Early Filtering: prunes irrelevant events with DataStream.filter() before FlinkCEP,

• Reordering: evaluates selective predicates first within FlinkCEP), and

• Pushing Predicates Upstream: moves filtering to source connectors like KafkaSource

to save network costs.

Figure 31: Anatomy of a NeuroFlinkCEP
Operator.

Figure 32: NeuroFlinkCEP Operator
Parameterization.

Figure 33: NeuroFlinkCEP Workflow Design, IoT Optimization & Distributed Execution.

4.1.2 From Logical CER workflows to Physical CER over IoT Executions

NeuroFlinkCEP’s users and applications are able to perform the numbered tasks in Figure 33.

① The user interacts with the NeuroFlinkCEP GUI in Altair AI Studio to design and

parameterize their own logical workflows. The user drags and drops each NeuroFlinkCEP

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 47

operator on a canvas and connects NeuroFlinkCEP operators and Kafka Source/Sinks to define

the data flow as shown on the upper right part of Figure 33. As shown in Figure 32, for each

NeuroFLinkCEP operator, the user graphically defines the pattern of interest, selection

strategy, consumption policy, time window for the nested RegEx2NeuroFlinkCEP operator.

Also, they specify the .pb file path for the nested synapSEflow operator. ② When the user

submits the logical workflow, a Logical Workflow Parser checks its validity. It then converts

this logical plan to a JSON file that is fed to DAG*4CEP optimizer and to a Neural Net Repo.

③ The DAG*4CER optimizer detects the available network devices via a Device Registry and

examines physical assignments to devices for each NeuroFLinkCEP operator, outputting the

optimal physical plan. It also projects the optimized physical plan back to the GUI of Altair AI

Studio. There are 3 options for the user to interact with the DAG*4CER Optimizer: (a) optimize

and deploy: which instructs the Optimizer to directly feed the optimal plan to the Job

Dispatcher, (b) only optimize: which instructs the Optimizer to show the suggested physical

plan in the GUI for the user to inspect it or change it, before deploying it, (c) only deploy:

which will feed the workflow, after (b), to the Dispatcher. ④ In ③(a), ③ (c), the DAG*4CER

optimizer feeds the physical plan to the Job Dispatcher, while the Neural Net Repo provides

the .pb files for the neural nets engaged in the CER workflow. ⑤The Job Dispatcher submits

Flink jobs to the network sites based on the assignment of NeuroFlinkCEP operators by

DAG*4CER. ⑥ Detected CEs are continuously visualized in an interactive dashboard (Figure

34). ⑦The deployed plan is monitored and statistics including processing and network

latency, throughput and other relevant metrics are collected for future DAG*4CER plan cost

estimations.

Figure 34: NeuroFlinkCEP dashboard for the Industry 4.0 Use Case.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 48

 Status of the EVENFLOW Scalability Toolkit
In addition to what was reported in Deliverable D5.1, the EVENFLOW code repository and the

Scalability Toolkit in particular, now hosts the 3 main pillars of EVENFLOW scalability. Namely,

a) the Synopses-as-a-Service (SDEaaS), (b) SuBiTO and (c) NeuroFlinkCEP. SDE on Dask along

with Distribuito SuBiTO on Ray will be provided open source directly after the corresponding

systems’ papers are published.

Figure 35: Status of the Scalability Toolkit at EVENFLOW Repository.

Each of these pillars have also dedicated github.io sites that are continuously in sync with the

overall Scalability Toolkit advancements at the EVENFLOW main branch. In particular, SDEaaS

has a dedicated site at https://sdeaas.github.io/.

Figure 36: SDEaaS at https://sdeaas.github.io/.

https://sdeaas.github.io/
https://sdeaas.github.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 49

SuBiTO has a dedicated site available at: https://subito-ai-for-bigdata.github.io/.

Figure 37: SuBiTO at https://subito-ai-for-bigdata.github.io/.

NeuroFlinkCEP has a dedicated site available at https://neuroflinkcep.github.io/.

https://subito-ai-for-bigdata.github.io/
https://subito-ai-for-bigdata.github.io/
https://neuroflinkcep.github.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 50

Figure 38: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (part 1).

https://neuroflinkcep.github.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 51

Figure 39: NeuroFlinkCEP at https://neuroflinkcep.github.io/ (Part 2).

Each dedicated site provides additional material including the published papers, videos and

images as well as posters and presentation slides of the involved scalability pillars.

https://neuroflinkcep.github.io/

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 52

 Scaling EVENFLOW Use Cases

6.1 The SSTRESSED Framework for the Industry 4.0 Use Case

Detecting Simple, Derived Events (SDEs) is the first step towards Complex Event Recognition.

In time critical applications, such as safe robot navigation in dynamic smart factory

environments of Use Case II, SDE detection should be performed continuously over

voluminous streams of movement data arriving at high speeds. In such scenarios, extracting

SDEs out of raw streams is a challenging task engaging (a) online neural network training for

continuously maintaining an up-to-date model for SDE labelling purposes and (b) semantic-

aware trajectory processing for identifying homogeneous movement portions, defining the

SDE duration, before using the neural model for labelling it. By definition, output SDEs are

simple pieces of information, but the volume and velocity of the original raw streams (Figure

40) in large scale smart factory applications call for scaling out (parallelizing) the computation

to a number of machines to ensure real-time processing. Therefore, both (a) and (b) should

be set up in state-of-the-art, relevant platforms. To tackle these challenges, we developed

SSTRESED, a prototype for scalable SDE detection over streaming movement data. For the

first time, SSTRESED establishes a direct connection between semantic trajectory

computation and SDE detection in the streaming context. This is in contrast to prior art which

uses predetermined, application-defined time windows to a priori restrict eligible SDE

durations.

Figure 40: Example training stream for a single simulated robot. Unlabelled movement
streams.

The SSTRESSED Framework [REF-12], illustrated in Figure 41 and described in Deliverable

D5.1, composes two connected pipelines distributed across worker machines. In the Industry

4.0 use case of EVENFLOW, truthful, timestamped and labelled movement streams are

continuously produced by robotic simulators, as SDEs and their raw features, per robot.

The training pipeline (blue-coloured path) in Figure 41 abides by the one reported in Figure 2.

It continuously receives these robot movement time series ingested in Apache Kafka

partitions of the Training Topic. The Training Topic is read by parallel PyTorch Learners. Each

such learner utilizes an identical neural model (specified by the application) but performs the

training process on a separate set of robots. The local models learned at each Learner i (top

of Figure 41) are synchronized into a global neural model maintained by a Parameter Server.

At a global model update, new weights of the neural network are written to a Weights Topic

of Kafka.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 53

Figure 41: SSTRESED Architecture. Training (blue) and SDE Detection (red) Pipelines [REF-12].

The SDE detection pipeline (red-coloured path in Figure 41) also abides by Figure 2 and

extends it with semantic trajectory episode determination via SeTraStream [REF-13]. It

receives raw, unlabelled streaming movement data, partitioned in the Movement Streams

Kafka Topic. These incoming tuples, ingested directly from the application field, have the

same schema as those of the Training Topic, but lack a label/SDE field. Ingested Movement

Streams of robots (or, optionally, samples of them) are processed by a distributed version of

SeTraStream [REF-13] developed in Apache Flink. Distributed SeTraStream uses each parallel

Segmentor i to continuously identify homogeneous movement portions based on the

ingested features per robot, thus semantically and temporally segmenting each trajectory. In

that, the duration of a SDE is determined, which also bounds the feature tensors that should

then be used for labelling the SDE.

Let us assume that there is a buffer containing batches of records of a homogenous

movement. The segmentation algorithm of SeTraStream starts by extracting a batch of m

records from the streaming data. Once the batch is extracted, its similarity is evaluated

against the last batch that was found to be consistent with the previous batches within the

current buffer of a specific movement. If similarity is satisfied, the algorithm continues by

testing the new batch against the last 2n batches in the buffer, where n starts from 0 and

increases until 2n reaches the buffer length. This process continues until the batch is found

to be similar to the entire buffer, in which case it is appended to it. When no similarity is

detected, the current buffer is assumed to be a separate movement, and the new batch

initializes a new buffer corresponding to the next movement. The algorithm then repeats.

Similarity is quantified using a metric known as the RV coefficient. The RV-coefficient

constitutes a generalization of the correlation coefficient for matrix data. We organize Wl into

a d × m matrix, where d is the number of movement features and m represents a number of

vectors (at different timestamps) that are the columns of the matrix. Similarly, Wr is organized

in a d × m matrix i.e. n columns exist. The RV coefficient is mathematically defined as follows:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 54

𝑅𝑉(𝑊𝑙, 𝑊𝑟) =
𝑇𝑟(𝑊𝑙𝑊𝑙

𝑇𝑊𝑟𝑊𝑟
𝑇)

√𝑇𝑟((𝑊𝑙𝑊𝑙
𝑇)2) 𝑇𝑟((𝑊𝑟𝑊𝑟

𝑇)2)

Where Wl and Wr are the matrices to be tested if similar, W⊤l , W⊤r refer to the transpose

matrices, Tr() denotes the trace of a matrix and 0 ≤ RV ≤ 1. RV values closer to zero are

indicative of uncorrelated movement patterns. Based on a division point threshold σ, matrices

Wl, Wr can be either assigned to a pair of different episodes or to a single episode.

Each parallel Segmentor i writes the result of its processing to an intermediate Kafka topic

connecting Distributed SeTraStream with a PyTorch Semantic Tagger in the red-coloured

path. Each parallel Tagger i (bottom of Figure 41) of the Semantic Tagger, at any given time

instance, reads the up-to-date weights from the Weights Topic and uses the updated neural

model to label SDEs. The final SSTRESED output goes to the SDEs Kafka topic in the form of

tuples as illustrated in Figure 42 (per robot).

Figure 42: SSTRESED output SDE Stream for the movement of a single robot.

6.1.1 SSTRESED Experimental Evaluation

In Deliverable D5.1 of EVENFLOW we introduced the SSTRESSED architecture [REF-12] and

reasoned about its utility in the Industry 4.0 use case. In this section, we experimentally

validate the feasibility and scalability of SSTRESSED implementation over robot movement

data.

To evaluate the performance of the SeTraStream in accurately classifying robot motion data

of homogeneous movement segments, three widely used classification metrics are employed:

Precision, Recall, and F1-Score. These measures provide complementary insights into the

model’s predictive behaviour and are suitable for problems where class imbalance or partial

misclassifications may occur.

The training pipeline, in the scheme of streaming data input, employs a distributed learning

method so that the system can benefit significantly in terms of time through data allocation.

In applications such as robot navigation within a smart factory environment, where robots

are prone to intermediate collisions, the distributed approach helps prevent system latencies

and ensures a more stable processing flow. The training pipeline was executed for 1, 2, and 4

workers, and the results of the training time per number of workers are presented in the

diagram below. As Figure 43 illustrates the training time upon using 2 learners reduces by

1.7x, while it further decreases to 2.7x times in the case of 4 learners, compared to the single

learner alternative. The difference between the linear decrease in training time i.e., 2 times

for 2 learners and 4 times for 4 learners, is due to the fact that in this experiment we utilized

the synchronous, instead of the EVENFLOW, protocol of the parameter server paradigm for

parallel training. We did so, in order to stress-test the accuracy of the Prediction Pipeline of

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 55

SSTRESED even in the presence of laggy transfer of the most up-to-date model, from the

Training to the Prediction Pipeline.

Figure 43: SSTRESED Training Pipeline performance.

Figure 44 presents the SSTRESED throughput, illustrating the number of predictions per

second with respect to the number of taggers (predictors) operating in parallel. As shown in

the following diagram, the system throughput increases with the number of taggers. In

particular, making the transition from 1 to 2 predictors/taggers increases the throughput by

4x, while from 4à8 taggers throughput increases by 3x. This super linear increase in

throughput comes from the fact that predictors, contrary to learners, do not need to

synchronize and can operate independently provided they have the most up-to-date neural

model at any given time.

Figure 44: Performance of SSTRESED Prediction Pipeline.

An important question that needs to be answered involves the accuracy of SSTRESED. Instead

of evaluating the accuracy of the Training Pipeline and the Prediction Pipeline independently,

we choose to directly show the overall accuracy of SSTRESED in the detected SDEs. This is

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 56

because, by reporting accuracy of the detected SDEs we provide the cumulative accuracy of

the framework across (i) the Training Pipeline: not only how accurate is the neural network

but also how the small time lap between producing the most up-to-date neural model at each

epoch and deploying it across predictors affects the overall accuracy, (ii) the Segmentation

part of the Prediction Pipeline: how well robot trajectories are segmented to homogeneous

portions of movements (episodes) and (iii) how well the neural model deployed at the

Prediction Pipeline, generalizes to unseen data.

Figure 45: Cumulative SSTRESED accuracy vs Number of Epochs.

Figure 45 shows SSTRESED accuracy across the number of epochs. The number of epochs here

denotes the time frame of SSTRESED operation since each new epoch yields a new neural

model that is conveyed from the Training to the Prediction Pipeline. This is the reason the

number of epochs in the horizontal axis of the figure is halved across the plots, every time we

double the number of workers, i.e., the entire dataset is partitioned to more workers. As

Figure 45 shows, SSTRESED achieves a cumulative accuracy of 80% with the exception of 4

workers where accuracy reaches 70%, but for early stopping at epoch 200 due to the reason

mentioned above. This 70% accuracy at epoch 200 is consistent with the rest of the cases (1

worker, 2 workers) proving that the only reason for the 10% lack is the boundedness of the

robot dataset rather than convergence issues of the framework.

Finally, it is important to note that the lower absolute throughput numbers in Figure 44

compared to Figure 29 and Figure 30 comes from the fact that the current Prediction Pipeline

includes SeTraStream for segmentation purposes. SeTraStream must not be considered as a

performance bottleneck though, since the absence of SeTraStream significantly compromises

the accuracy of the framework. This is due to omitting the segmentation step in a setup where

SDEs are durative. Therefore, even if a version of SSTRESED without SeTraStream provides

much higher throughput, the accuracy of the framework remains significantly low. This is due

to the fact that the predictors retain correct tagging of individual motion tuples due to the

neural model, but even a single incorrectly tagged tuple splits durative SDEs into non-

consecutive time periods and introduced erroneous interleaved SDEs, as well. In other works,

if SSTRESED makes predictions on individual tuples, instead of episodes, most of the labels

remain correct, but even few wrongly labelled tuples lead to SDEs of invalid duration.

Therefore, the overall prediction accuracy is diminished.

To validate our claim, Figure 46 shows the accuracy and throughput of SSTRESED without

SeTraStream. As shown in Figure 46, throughput dramatically increases up to 15x for 1

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 57

predictor upon omitting SeTraStream from the prediction pipeline, but accuracy receives a

maximum value below 0.25

Figure 46: SSTRESED performance without SeTraStream.

6.2 The RATS+ Framework for the Personalized Medicine Use Case

6.2.1 Overview on the RATS Framework

Tumour simulations such as those run on PhysiBoSS 2.0 are expensive, highly parallel, and

parameter-rich. Each simulation corresponds to a tumour treatment methodology under

examination, described by three TNF parameters—drug administration frequency, duration,

and concentration. To cut down time to market for new therapies, each set of simulations

needs to be properly scheduled. That is, there is a need to aid life scientists reserve a sufficient

number of core hours for their medical study each time, devote the proper number of cores

to each simulation so that the study finishes as early as possible and prioritize higher the most

promising simulations so that early, useful results can be extracted and prematurely end the

rest of the unpromising simulations if needed. In realistic studies, the number of possible TNF

combinations is large: in the initial RATS framework [REF-14], described in Deliverable D5.1,

our experiments consider 512 TNF triplets and core configurations up to 32 cores per

simulation, resulting in 2,560 different {TNF, cores} configurations that could potentially be

executed on the MareNostrum 4 supercomputer. Running all these configurations just to

learn how performance and treatments behave is clearly infeasible. At the same time, life

scientists need answers to three tightly coupled questions: (i) how many cores should be

assigned to each simulation so that cores are not under- or over-utilized, (ii) under a global

core-capacity cap, which simulations should run at each time step, and with how many cores,

to minimize the overall time of the study, and (iii) among all candidate treatments, which ones

look most promising and should therefore be prioritized. RATS addresses this full chain of

decisions: it learns performance models from a small number of micro-benchmarks and then

solves a series of knapsack-style optimization problems to prescribe core allocations and

derive a schedule.

The RATS framework [REF-14] starts from a discretized treatment space. TNF Frequency,

Duration, and Concentration are discretized into fine-grained ranges via [low, high, step]

triplets. All combinations form the set SS of TNF triplets under study. For each simulation Si in

SS, the user may choose a core count k from a set of valid core configurations (e.g., 2, 4, 8,

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 58

16, 32). For every pair (simulation, core count), three quantities matter: throughput (THPi(k)),

simulation time (STi(k)), and utility (UTLi). RATS tackles two optimization problems. First, it

chooses, for each simulation, the “sweet-spot” number of cores—the value of k where

doubling the cores from k/2 to k still yields a good throughput ratio but avoids diminishing

returns. Second, if not all simulations can be started at once due to capacity constraints, it

must schedule the simulations in time, subject to a global core capacity cap, so that the total

completion time is minimized and high-utility treatments tend to finish earlier. This second

problem is formulated as a multiple-choice knapsack: for each simulation, exactly one

(simulation, k) choice is picked, and the sum of assigned cores at any time cannot exceed the

capacity cap.

To solve these optimization problems, RATS needs good predictors for throughput, simulation

time, and utility. It cannot, however, afford to run all 2,560 configurations just for training.

Instead, employs Bayesian Optimization (BO) with Gaussian Process (GP) regressors. The RATS

Modeler component uses a small simulation budget N (5% or 10% of all 2,560 configurations)

and iteratively selects new configurations to benchmark by maximizing an acquisition

function over the {TNF, cores} space. Each new micro-benchmark yields observations of

throughput, simulation time, and utility; these are used to update three GPs, one per target.

Practically, RATS uses a Rational Quadratic kernel (which empirically captured the variability

of tumour simulations best), no explicit warm-up set, and only two acquisition functions: an

LCB-type function for throughput and an EI-type function for simulation time, with utility

modelled passively. This design dramatically reduces the number of required sample

simulations without sacrificing GP accuracy, enabling useful models from as little as 5–10% of

the configuration space.

Once the regressors are trained, the RATS Solver uses them to make decisions. For each

simulation, it queries the throughput model over all allowed core counts and picks the k that

maximizes a throughput-ratio-based objective, effectively identifying the optimal core

allocation per simulation. This defines both the optimal core hours if all simulations are

launched at once and their expected individual completion times. If the total number of cores

required exceeds the available capacity, the RATS Solver turns to the second optimization

stage. It first queries the utility regressor to obtain an expected utility for each simulation and

sorts the simulation queue in descending utility. Then, in rounds, it solves a multiple-choice

knapsack: it chooses a subset of simulations and core counts that fit within the capacity cap,

favouring high utility and shorter simulated runtimes. The chosen simulations are submitted

and, later on, once they complete, capacity is freed, and the solver iterates until all

simulations are processed.

Using a ground-truth dataset of 2,560 simulations on MareNostrum 4 as reference, in [REF-

14] and Deliverable D5.1, we show that with N = 10% (256 sample simulations), RATS

approximates the optimal core hours within 3–9% error, while with N = 5% (128 samples), the

error is around 10–18%. Under strict capacity constraints (cap = 5%|SS|), RATS matches the

“Optimal” scheduling solution: it reduces total simulation time by up to four days in resource

constrained environments and core hours by up to 15% to less constrained setups, compared

to the best manual baseline (always using a fixed core count), while also achieving higher

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 59

aggregate utility. These results justify the core design of RATS as a data-efficient, BO-driven

resource allocator and scheduler for a single tumour study.

6.2.2 RATS+ Exploiting Transfer Learning

In practice, life scientists rarely run a single, fixed study. As early results come in, they may

adjust TNF parameter ranges based on emerging hypotheses. For instance, after studying TNF

concentrations in a certain range with a given step, they may suspect that higher doses could

be more effective and extend the range to concentrations beyond this interval. The new

study’s domain therefore overlaps with, or fully contains, the old one. If RATS treated each

study independently, it would have to re-run Bayesian Optimization from scratch on the

expanded domain, wasting the simulations already executed in the previous study. RATS+ is

introduced specifically to avoid this waste. Its goal is to reduce the new-study simulation

budget N, reusing the BO models learned in the old study, without sacrificing the quality of

the regressors.

The enhanced EVENFLOW contribution involves RATS+ [REF-15], which recasts this scenario

using transfer-learning. It defines a source domain DS: a subset SS' of the original simulation

set SS with its own ranges for TNF frequency, duration, and concentration and full core

configurations, and a target domain DT: the new, expanded SS, which partially overlaps or

fully contains the source domain. The learning task T is the same in both domains: predict

throughput, simulation time, and utility for any {TNF, cores} configuration. RATS in the source

domain has already trained GP regressors for these targets using BO. The question is how to

transfer these regressors to the target domain to reduce the number of new micro-

benchmarks needed there. RATS+ follows a modular approach: it first trains regressors on DS

(as in RATS), then replays the BO calls made in DS as the initial calls in DT. This effectively seeds

the target-domain optimizer with the source domain’s GP, while leaving freedom for BO in DT

to explore new parameter regions that did not exist in SS'.

RATS+ operates under the same total budget N as RATS but splits it between source and target

domains. Two main configurations are used experimentally: RATS+ (N = 3% + 2%), total N =

5%, where roughly 3% of the 2,560 configurations are sampled in the source domain and 2%

in the target, and RATS+ (N = 6% + 4%), total N = 10%, where about 6% are sampled on the

source domain and 4% on the target. In both cases, about 60% of the total budget is spent on

the source domain and 40% on the new target domain. For comparison, we also consider

RATS trained from scratch on the target domain with N = 10%, 5%, 4%, or 2%. A key practical

decision is the choice of acquisition functions. For the original RATS Modeler in the source

domain, Lower Confidence Bound (LCB) is used for throughput to ensure good mid-range

exploration. For the extended RATS+ model in the target domain, Expected Improvement (EI)

is preferred. The intuition is that uncertainty is highest in the newly introduced parameter

regions; EI naturally directs sampling there, while still exploiting high-mean predictions

inherited from the old domain.

6.2.2.1 RATS+ Experimental Highlights

The first RATS+ experiment [REF-15] assesses how well it can estimate the total optimal

number of core hours needed to run all simulations in the extended study, compared to the

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 60

optimal baseline. Six configurations are evaluated: RATS trained from scratch on the target

domain with N = 10%, 5%, 4%, and 2%, and RATS+ with transfer using N = (6% + 4%) and N =

(3% + 2%). The crucial observation is that RATS+ (6% + 4%) and RATS (10%) converge to the

optimal solution with comparable accuracy, and RATS+ (3% + 2%) and RATS (5%) also behave

very similarly, both achieving near-optimal performance. However, from the perspective of

new simulations in the extended study, RATS (10%) uses 10% of 2,560 configurations (256

simulations) in the new domain, whereas RATS+ (6% + 4%) uses only about 4% (roughly 102

simulations) in the new domain. Similarly, RATS (5%) uses 128 new simulations, while RATS+

(3% + 2%) uses only about 51 new simulations. In both cases, RATS+ cuts the new-study

budget by roughly 60% while achieving essentially the same accuracy in total core-hour

estimation as its full-budget RATS counterpart.

The second RATS+ experiment embeds transfer learning into the full RATS pipeline, including

capacity constraints. Two capacity settings are considered: cap = 5%|SS| (strict) and cap =

25%|SS| (moderate). For each cap, we measure how many simulations have completed over

time, the aggregate utility of completed simulations over time, and how close the total

execution time is to the optimal schedule. Across both capacities, all RATS and RATS+

configurations closely track the optimal completion time curve. More importantly, the

aggregate utility curves show that RATS+ (6% + 4%) is almost indistinguishable from RATS

(10%), and RATS+ (3% + 2%) is almost indistinguishable from RATS (5%), in terms of how

quickly high-utility simulations are completed and how much utility is accumulated over time.

This confirms that transfer learning does not distort scheduling decisions: with fewer new

simulations, RATS+ still identifies and prioritizes the same promising treatment

methodologies as a freshly trained, full-budget RATS model on the new domain.

We also compare the RATS GP regressors to Tabular Q-Learning and DQN under identical

budgets (up to 256 episodes). As shown in [REF-15], Tabular Q-Learning fails to learn

meaningful predictions. DQN improves but does not converge. By contrast, the GP models

steadily reduce L1 error and drive correlation coefficient R² towards 1, supporting the choice

of BO/GPR as the model that RATS and RATS+ transfer across studies.

Second, we design a scheduler inspired by Flux [REF-16], which uses a utility-sorted queue

with dynamic core assignment and backfilling. Even when this baseline is given oracle

knowledge of the true utilities, RATS’ knapsack-based solver completes all 512 simulations

tens to hundreds of hours earlier and with higher aggregate utility under both strict and

moderate capacity caps. These comparisons make clear that the performance gains observed

with RATS+ stand on top of an already strong modelling and scheduling foundation.

6.3 Synopses and Smart Sync for the Infrastructure Lifecycle

Assessment Use Case

6.3.1 The Reverse Random Hyperplane Projection Scheme

In Wireless Sensor Networks (WSNs), as those deployed in EVENFLOW’s Use Case III for

Infrastructure Maintenance, the dominant energy cost is communication. Before reaching the

point of performing neural or neurosymbolic tasks at a central base station, communication

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 61

burden is incurred while collecting data from sensors to the base station. Sensors

continuously produce streams by sampling quantities of interest from their realm, usually

organized over fixed-size windows. Continuously transmitting all raw time series to a base

station is expensive in terms of both bandwidth and battery life. Existing data compression

approaches either rely on non-reversible random hyperplane projection (RHP) [REF-21][REF-

22], which produces compressed bitmaps only suitable for similarity and outlier detection, or

on reversible transforms such as DFT, DWT, DCT, and PAA [REF-17][REF-18][REF-19][REF-20],

which can provide looser, deterministic error guarantees. In EVENFLOW, we introduce

Reverse Random Hyperplane Projection (RRHP) [REF-23], which is designed to inherit the

strengths of both lines of existing work on lightweight, reversible summaries. RRHPS uses

RHP-style bitmaps for in-network compression, but also provides a principled way to

reconstruct approximate real-valued vectors at a base station, together with explicit

probabilistic (instead of deterministic) guarantees on the approximation of the original time

series. In that, neural learning or broader data mining tasks can be performed on the

approximated sensor time series.

The starting point for RRHP is the traditional RHP. Each window of sensor readings is modelled

as a vector u ∈ ℝ ω (ω denotes the window size). RHP constructs d random unit vectors r₁, …,

rd ∈ ℝ ω. Each rk defines a hash function that maps u to one bit according to the sign of the

dot product:

ℎ𝑟𝑘
(𝑢) = {

1, 𝑖𝑓 𝑟𝑘 ⋅ 𝑢 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A bitmap 𝑋𝑢 ∈ 0,1𝑑 is formed by concatenating these d bits. For two vectors u and v with

angle θ(u, v), the probability that they collide on a random hyperplane is:

𝑃[ℎ𝑟(𝑢) = ℎ𝑟(𝑣)] = 1 −
𝜃(𝑢, 𝑣)

𝜋

Equivalently, the normalized Hamming distance between 𝑋𝑢 and 𝑋𝑣 approximates θ(u, v)/π.

As such, RHP offers a one-way mapping ℝ𝜔 → 0,1𝑑 useful for similarity estimation, but it does

not provide a way to reconstruct u from 𝑋𝑢.

RRHP [REF-23] augments RHP with a reverse mapping. All motes and the base station share a

common random matrix 𝑅 ∈ ℝ𝜔×𝑑 produced using a different, but equal seed for each time

window. The columns of R are the random unit vectors r₁, …, rd. For each window/vector u,

RRHP can conceptually compute the projected vector 𝜉 = 𝑢 · 𝑅 ∈ ℝ𝑑 and then quantize it to

a bitmap 𝑋𝑢 via the above sign test. Only 𝑋𝑢 (d bits) is transmitted by each sensor.

For reasonably large ω, R has full row rank almost surely, so a right inverse 𝑅† ∈ ℝ𝑑×𝜔 exists.

At the base station, RRHP reconstructs an approximate vector:

𝑢̂ = 𝑋𝑢 · 𝑅†

The key property is that angular similarities are preserved (in expectation) through

compression and reconstruction. If θ(u, v) is the angle between original vectors and θ(û, v̂)

the angle between their reconstructions, then RRHP shows that [REF-23]:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 62

𝐸 [
𝜃(𝑢,𝑣̂)

𝜋
] =

𝜃(𝑢,𝑣)

𝜋
.

Thus, the cosine similarity 𝑐𝑜𝑠(𝜃(𝑢, 𝑣)) is approximately preserved. Since many measures

such as Pearson correlation and Euclidean distance on normalized vectors can be expressed

via cosine similarity, RRHP can support generic mining tasks on the reconstructed vectors 𝑢̂.

RRHP provides a Chernoff-style bound that relates the bitmap length d with the quality of

angle estimation. To approximate the normalized angle between two vectors within an

additive error ε with probability at least 1 − δ, it suffices to choose d proportional to

log(1/δ)/ε². Thus, RRHP exposes a direct and tuneable trade-off between compression ratio

and relative distance /reconstruction accuracy.

6.3.1.1 RRHP Experimental Evaluation

We tested RRHP on two settings. Initially we conduct experiments, examining the

reconstruction quality of RRHP on several Machine Learning tasks (including neural learning),

with compression ratios of 4 and 8. For stress testing RRHP on a high number of sensors, we

use the Intel Lab Dataset7 for clustering tasks and the Pump Sensor Dataset8 for regression

and classification.

Table 2: RRHP performance on various Machine Learning tasks, under a compression ratio of
8, over the reconstructed sensor time series, varying window sizes.

Window 𝝎 16 32 64 128 Average per
Metric

Feed Forward
Neural Net

0.92 0.97 0.98 0.99 Classification
Accuracy

DBSCAN
Clustering

0.95 0.96 0.97 1.00 Clustering
Similarity on
Adjusted
Rand Index
(ARI)

Linear
Regression

0.12 0.12 0.12 0.07 Root Mean
Square Error

Support Vector
Machine

0.92 0.97 0.98 0.99 Classification
Accuracy

K-NN 0.83 0.96 0.98 0.99 Classification
Accuracy

In our first experiment we showcase the accuracy of RRHP across different window sizes, on

various mining tasks, by compressing sensor windows by a factor of 8, i.e., compression ratio

is 8. In Table 2, we can see that the performance of RRHP significantly increases when we

7 https://db.csail.mit.edu/labdata/labdata.html
8 https://www.kaggle.com/datasets/nphantawee/pump-sensor-data

https://db.csail.mit.edu/labdata/labdata.html
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 63

increase the window from 16 to 32 observations but, in all cited cases, RRHP yields high

accuracy with respect to the metrics cited in the rightmost column of the table.

We also provide a comparison of RRHP vs DFT, DCT, DWT and PAA reversible data summaries,

indicatively, for clustering sensor time series. This experiment tests RRHP on a clustering task,

across sliding windows using the Intel Lab Dataset and reports the Adjusted Rand Index (ARI)

score with 95% confidence interval. In Figure 47, we tested compression ratios of 4 and 8

across two rows of plots. As we can see in the figure, RRHP outperforms competition by, on

average, 20% on both compression ratios, regarding the ARI score of the clustering task. Note

that RRHP achieves also the tightest 95% confidence interval.

Figure 47: RRHP Performance on Clustering vs other Competitors.

We then conduct a WSN simulation, examining RRHPs ability to prolong the lifetime of

sensors in a real scenario, using the TOSSIM simulator [REF-24]. The hierarchical network

tested consists of 4 cluster heads with 12 sensors per cluster. The communication and lifetime

gains plotted below hold irrespectively of the chosen Machine Learning task, since the task

itself takes place at the base station after having collected the compressed sensor data

streams and having recovered the RRHP-approximated ones.

In Figure 48, we see the total number of bytes that are transmitted during the simulation,

including the ones of retransmissions. In Figure 49, we plot the total energy drain of the

setups of Figure 48, essentially interpreting the communication costs to network lifetime.

Retransmissions occur when multiple motes transmit their messages simultaneously,

therefore resulting in corrupted messages due to collisions. Large message size and frequent

communication are the main culprits of signal retransmissions. We observe that the

compression ratios of 4 and 8, reduce the total number of bytes transmitted and the energy

drain by 5 and 10 times, respectively. This increased reduction, compared to the theoretically

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 64

expected reduction of 4 and 8 on both cases, is the combined result of the reduced message

size of RRHP due to compression, and the reduced number of message collisions and

retransmissions.

Figure 48: RRHP Comm. Reduction vs

Compression Ratio using ω = 16.

Figure 49: RRHP Network Lifetime vs

Compression Ratio using ω = 16.

6.3.2 Uncertainty-aware Synchronization Protocols

In Section 3.5 we presented data-driven synchronization protocols that postpone a global

model update until a considerable drift in the neural network weights, defined based on any

given thresholded function, may exist. However, in EVENFLOW’s Use Case III, the

Infrastructure Maintenance Monitoring utilizes sensors which produce uncertain

measurements, for instance, due to noise or calibration errors.

This uncertainty passes on to the weights of the neural network of the various distributed

learner during the training process. Therefore, instead of monitoring whether a function f

parameterized by the global weight vector has crossed the threshold, we instead want to

know if f has crossed the threshold with sufficiently high confidence, provided we know the

uncertainty distribution of learners’ weights.

The Uncertainty-aware Global Monitoring (UGM) method addresses the problem of

continuously monitoring a non-linear function over many distributed data streams whose

values are uncertain. Each learner 𝑁𝑖 produces a local data stream 𝑆𝑖, modelled as a time-

varying random variable 𝑥𝑖(𝑡) with its own distribution 𝑝𝑖(𝑡). The Parameter Server (PS)

wants to monitor a global function f(y(t)) of all streams and automatically raise an alert when

f(y(t)) crosses a threshold T with high statistical confidence, while minimising communication.

To this end, each learner maintains a sliding window of recent observations, from which it

estimates the parameters of its local distribution 𝑝𝑖(𝑡) (e.g., empirical mean and covariance).

Learners are assigned weights 𝑤𝑖 ≥ 0 with ∑ 𝑤𝑖𝑖 = 1, and the global random vector at time t

is 𝑦(𝑡) = ∑ 𝑤𝑖𝑥𝑖(𝑡)𝑖 . The monitoring task is to decide, at any time t, whether f(y(t)) ≶ T holds

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 65

with confidence at least δ, without continuously transmitting raw data or full local models to

the Parameter Server. Since the techniques we describe henceforth are currently under

submission, we provide only algorithmic sketches of their functionality.

In a centralized setting, the monitoring condition can be expressed as the global filter

Pr[f(y(t)) ≶ T] ≤ δ, which guarantees that an alert is raised only when the probability of

violating the threshold exceeds δ. However, evaluating this global filter centrally would

require frequent updates from all learners. UGM decomposes the global filter into local filters

that can be evaluated independently at each learner. The PS periodically synchronises with

the learners at times 𝑡𝑠 and computes the global average vector

𝑒(𝑡𝑠) = ∑ 𝑤𝑖𝑜𝑖(𝑡𝑠)𝑖 , where 𝑜𝑖(𝑡𝑠) is the last local average vector sent by learner i. Around this

point, the coordinator constructs a convex “DONT-region” in the global feature space: a

region that contains only “good” points, i.e., points where f(y(t)) is guaranteed to satisfy the

monitored inequality with high confidence. As long as y(t) remains inside this DONT-region

with sufficient probability, the global filter is satisfied and no alert is needed. The key design

is to choose the DONT-region so that (i) it is convex, enabling rigorous decomposition into

local conditions, and (ii) it is as large as possible, so that communication is reduced.

We instantiate the DONT-region as a d-dimensional ball 𝐵(𝑀, 𝑟) = 𝑥 ∈ 𝑅𝑑: ||𝑥 − 𝑀||
2

≤ 𝑟 in

the global feature space. The ball is constructed via a greedy sphere augmentation process:

starting from a conservative initial ball around the current global mean, we iteratively

increase its radius and slightly shift its center, as long as we can still guarantee that all points

inside remain “good” (i.e., they satisfy the monitored inequality f(x) ≶ T). The procedure stops

when any further inflation or shift would introduce points that might violate the constraint.

The resulting ball is a maximal convex DONT-region that can be safely decomposed into local

filters at the individual nodes.

If no non-trivial sphere that contains only good points exists (e.g., when the global mean

already lies near or beyond the threshold), the method enters a NO-SPHERE period; in this

case, learners temporarily send updates eagerly, without local filtering.

Given the DONT-region, each learner 𝑁𝑖 evaluates a local filter that decides whether to raise

an alert. The learner maintains a set of drift vectors 𝐷𝑖(𝑡) that describe how its local

distribution, translated near the last global mean, might move in the global space. Concretely,

each drift vector has the form 𝑑𝑗
𝑖(𝑡) = 𝑒(𝑡𝑠) − 𝑜𝑖(𝑡) + 𝑧𝑗, where 𝑧𝑗 is a sample drawn from

the current local distribution 𝑝𝑖(𝑡). Each learner holds m such drift vectors per time t.

At time t, learner i estimates the probability that its local contribution keeps the global vector

inside the DONT-region by counting the fraction of drift vectors that fall inside the sphere:

𝑝𝑖(𝑡) = # {drift vectors in don’t-region} / m.

Each learner is associated with a confidence threshold 𝛼𝑖 ∈ [0,1]. If 𝑝𝑖(𝑡) falls below 𝛼𝑖,

learner i has strong evidence that the global function may have crossed the threshold and

sends an alert to the coordinator; otherwise, it remains silent. Initially, all learners share the

same 𝛼𝑖, derived from δ and |N|, ensuring that if all local filters hold, then the global filter

also holds. When the PS receives an alert from one or more learners, it distinguishes between

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 66

true positives (TP), where f(y(t)) has indeed crossed the threshold, and false positives (FP),

where local filters were overly conservative. Only TP alerts trigger an application-level

reaction (e.g., reconfiguration, mitigation).

As the number of learners grows, having a uniform confidence threshold 𝛼𝑖 can become

overly strict, causing excessive alerts and communication. A Slack Allocation mechanism

dynamically redistributes “slack” among learners by adapting their local thresholds 𝛼𝑖 after

each synchronisation, based on their recent behaviour.

Learners are partitioned into GOOD and BAD sets depending on the last alert:

• In the FP case, learners that raised unnecessary alerts are marked as BAD, and learners

that remained silent are GOOD. The coordinator computes a slack measure for each

GOOD learner, reflecting how comfortably its local probability 𝑝𝑖(𝑡) was above its

threshold 𝛼𝑖. It then gradually lowers the thresholds of BAD learners (making them

less sensitive) and compensates by slightly raising the thresholds of selected GOOD

learners, preserving a global probabilistic guarantee.

• In the TP case, learners that failed to alert in time are BAD, while learners that correctly

alerted are GOOD. A symmetric slack definition is used, and thresholds are adjusted

in the opposite direction, making BAD learners more sensitive.

This iterative procedure continues until all learners satisfy the global constraint on the joint

probability of violation. In practice, Slack Allocation significantly reduces communication by

allowing learners whose behaviour is well contained within the DONT-region to take on

stricter thresholds, freeing other learners to relax theirs.

6.3.2.1 UGM Experimental Evaluation

For our experiments we utilize a 10-sensor dataset provided by EKSO using 5 computing

nodes. We monitor L1, L2 and Variance functions posing the threshold as shown in Figure 50

and Figure 51. In each experiment we present 5 bars with the vertical axis showing the

number of transmitted messages, while the horizontal axis varies δ:

• Naïve: representing continuous model updates

• Sphere Max Off, Slack Allocation Off: which is the basic UGM protocol without any

optimization

• Sphere Max On, Slack Allocation Off: the protocol that uses the maximal, augmented

sphere according to our discussion in Section 6.3.2, but does not perform wise Slack

Allocation

• Sphere Max On, Slack Allocation On: the protocol that uses both the maximal

augmented sphere and performs wise Slack Allocation

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 67

Figure 50: L1 function (left) and L2 function (right) Threshold (red line) vs actual function

values as time passes.

Figure 51: Variance Threshold Selection based on Sensor violations.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 68

Figure 52: Number of transmitted messages for L1-based monitoring across δ values.

Figure 53: Number of transmitted messages for L2-based monitoring across δ values.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 69

Figure 54: Number of transmitted messages for Variance-based monitoring across δ values.

Across Figure 52, Figure 53 and Figure 54 we observe that UGM “Sphere Max Off, Slack

Allocation Off” improves the Naïve approach yielding 17% (Var) to 3x fewer messages for

loose δ = 0.25. The communication gains progressively increase for δ=0.5 to δ=0.95, reaching

values of reaching 10x communication gains for δ=0.95.

“Sphere Max Off, Slack Allocation On”, “Sphere Max On, Slack Allocation Off” as well as

“Sphere Max On, Slack Allocation On” further reduce the amount of communicated messages

up to 50% compared to “Sphere Max Off, Slack Allocation Off”. As we can observe in the

figures, setting On or Off some optimization may occasionally increase communication

although more optimizations are applied. For instance, in Figure 52 for δ=0.5, setting “Sphere

Max Off, Slack Allocation On” gives a few more messages compared to “Sphere Max Off, Slack

Allocation Off” or “Sphere Max On, Slack Allocation On” gives few more messages compared

to “Sphere Max On, Slack Allocation Off”. This is because, when we apply each optimization,

the synchronization timepoints differ between experiments. Therefore, a false positive

synchronization that happens at a specific time, changes oi and cascades the timepoints at

which future synchronization will take place. As such, a difference series of synchronization

timepoints may yield a slightly different behaviour in the monitoring process.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 70

 EVENFLOW Verification Approach

7.1 Formal Verification of Neural Networks

Deep neural networks have become the dominant paradigm for modelling complex functions

across vision, language, control, and decision-making tasks. Their power stems from the

universal approximation property [REF-27]: with sufficient capacity, a neural network can

approximate virtually any continuous function to arbitrary precision. Yet, this expressive

capability comes with a fundamental drawback—the internal workings of neural networks are

opaque and highly nonlinear, making it difficult to reason about how they will behave under

perturbations, distribution shifts, or intentionally manipulated inputs. Even small amounts of

noise, such as adversarial perturbations or sensor uncertainty, can cause unexpected

deviations in the network’s output.

A neural network represents a mapping 𝑓: ℝ𝑛 → ℝ𝑚, taking real-valued inputs and producing

real-valued outputs. While this functional view is mathematically elegant, it does not provide

direct insight into the internal decision logic learned during training. Formal specifications

describe what the network should do for all possible inputs within a given domain. These

properties capture the intended safe or acceptable behaviour of the system without requiring

explicit interpretability of its internal parameters. A property is considered satisfied when the

network is guaranteed to behave safely for every input in a defined set, not just for those

seen during testing.

Formal verification aims to provide provable guarantees about network behaviour over all

possible perturbations within a defined region (e.g., an ℓ∞-ball around an input). Ensuring

the robustness of neural network classifiers involves demonstrating that the model’s

predicted label does not change when its input is perturbed within a small region of radius 𝜖

[REF-52]. Formal verification methods address this by reasoning over all possible inputs within

this perturbation region, effectively providing mathematical certificates that guarantee

robustness. For a neural network 𝑓, the robustness requirement can be stated as follows: for

any input 𝑥 that the network classifies correctly, and for every perturbed input 𝑥′satisfying

∥ 𝑥 − 𝑥′ ∥≤ 𝜖, the prediction must remain unchanged, i.e., 𝑓(𝑥) = 𝑓(𝑥′).

This verification problem can be reduced to analysing the relationships between the
unnormalized outputs (logits) of the network’s final layer. Specifically, robustness around 𝑥is
guaranteed if, for every 𝑥′in the 𝜖-ball, the logit for the true class 𝑦trueexceeds the logits for
all other classes 𝑦𝑖by a positive margin:

𝑦true − 𝑦𝑖 > 0 for all 𝑖 ≠ true class.

Checking this requires computing the minimum of these logit differences over all possible

𝑥′within the perturbation set. If this minimum remains positive, the classifier is provably

robust for that radius 𝜖 [REF-29]. However, computing this minimum exactly is an NP-hard

optimisation problem [REF-30], which makes robustness verification computationally

challenging in practice.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 71

7.2 Scalable approach towards Probabilistic Neuro-Symbolic

Verification

Neuro-symbolic (NeSy) systems bridge deep neural networks with symbolic reasoning to

achieve generalization, interpretability, and structured inference. In probabilistic variants of

these systems, neural networks extract latent concepts from raw inputs, and a symbolic

reasoning layer performs probabilistic inference using logical constraints. For probabilistic

NeSy AI architectures [REF-28], formal verification is even more difficult, as the symbolic

component requires evaluating weighted model counts (WMC) over latent concept

probabilities.

7.2.1 Probabilistic Neuro-Symbolic Verification

We now formalize the goal of relaxation-based methods within neuro-symbolic (NeSy)

reasoning systems. For a given NeSy model, as introduced in Section 7.1, the objective is to

determine the following quantities:

min
𝑥′

 𝑝(𝑦𝑖 ∣ 𝑥′), max
𝑥′

 𝑝(𝑦𝑖 ∣ 𝑥′) for all 𝑥′ such that ∥ 𝑥′ − 𝑥 ∥≤ 𝜖

for every output label 𝑦𝑖in 𝑦. In other words, we seek to compute tight lower and upper

bounds on each probabilistic output of the NeSy system when its input is subject to

perturbations of radius 𝜖. As outlined in Section 7.1, these bounds can then be used to

formally evaluate the robustness of a particular input instance.

Figure 55: Probabilistic NeSy Verification illustrating the Verification of NeSy system trained
on the ROAD-R dataset. The symbolic constraints are encoded as an Arithmetic circuit.

To illustrate, consider the NeSy architecture shown in Figure 55. Its neural components
consist of two networks: (1) an object detector that identifies whether a red traffic light or a
car is present in front of an autonomous vehicle (AV), and (2) an action-selection network that
decides whether the AV should accelerate or brake. The symbolic component encodes a
conjunction of two logical constraints, detailed in Appendix A. For an input image 𝑥, the
system outputs 𝑦, representing the probability that these symbolic constraints are satisfied.

An input instance is deemed robust if

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 72

min
𝑥′

𝑝(𝑦 ∣ 𝑥′) > 𝑇,

for some threshold 𝑇 ∈ [0,1]. This condition states that, across the entire 𝜖-ball surrounding

𝑥, the probability of satisfying the symbolic constraints never drops below 𝑇. For the purposes

of the remainder of this work, we focus on the case 𝑇 = 0.5.

7.2.1.1 Relaxation-Based Approach

Because computing exact bounds through the compiled symbolic component is

computationally intractable, we turn to relaxation-based methods. These techniques can be

naturally extended to neuro-symbolic (NeSy) systems and offer a scalable pathway for solving

the equation in Section 7.2.1.

In the NeSy architectures, the neural network outputs serve as inputs to an arithmetic circuit.

Owing to this compositional structure and the algebraic nature of the circuit, the entire NeSy

model can be treated as a fully differentiable computational graph. This enables us to

implement the whole system as a single module within common machine learning

frameworks such as PyTorch. The resulting model can then be exported into the Open Neural

Network Exchange (ONNX) format [REF-31].

The ONNX format is widely supported by state-of-the-art neural network verification tools,

including solver-based systems such as Marabou [REF-32] and relaxation-based verifiers like

auto-LiRPA [REF-33] and VeriNet [REF-34]. By exporting a NeSy model to ONNX, we can

leverage these tools with minimal additional engineering effort, effectively enabling “plug-

and-play’’ verification of complex neuro-symbolic pipelines.

Although the framework is compatible with a broad range of verifiers, the focus is on

relaxation-based methods to demonstrate scalable probabilistic verification for NeSy

systems. These methods allow us to apply input perturbations and compute bounds directly

on the system’s final outputs—bypassing the need to derive intermediate bounds on

individual neural network components.

7.3 Experimental Evaluation

In this section, an empirical evaluation of the proposed verification framework is presented,

focusing on both its effectiveness and practical applicability. The scalability of the method is

first examined using a synthetic task derived from MNIST addition, a widely adopted

benchmark in the neuro-symbolic reasoning literature [REF-35]. To further demonstrate real-

world relevance, the approach is applied to an autonomous driving dataset, where a safety-

critical driving property is verified over two six-layer convolutional neural networks. This

experiment highlights the capability of the proposed technique to manage high-dimensional

inputs and larger neural architectures—conditions commonly encountered in operational

autonomous systems. All experiments were conducted on a high-performance computing

machine equipped with 128 AMD EPYC 7543 32-core processors (3.7 GHz) and 400 GB of RAM.

7.3.1 Multi-Digit MNIST Addition

In this experiment, the primary objective is to examine how well the proposed method scales

as the complexity of the symbolic reasoning component increases. As symbolic structures

grow larger and more intricate, they naturally introduce greater computational demands;

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 73

therefore, understanding how our approximate verification strategy behaves under these

conditions is crucial. The experiment is designed to shed light on two key aspects: (1) how the

inherent approximations used in our method enable significantly improved scalability, and (2)

what trade-offs emerge in the accuracy and tightness of the resulting verification guarantees.

To systematically study these effects, we compare our approach against two distinct

verification paradigms:

1. End-to-End Relaxation-Based Verification (E2E-R): This approach corresponds to a

direct implementation of our proposed method using auto-LiRPA, a leading relaxation-

based neural network verification toolkit. In this setting, the entire neuro-symbolic

system—including both the neural and symbolic components—is provided as input to

auto-LiRPA. The system is internally converted into an ONNX computational graph,

enabling uniform processing and bound propagation across the full pipeline. We

employ Interval Bound Propagation (IBP), as implemented within auto-LiRPA, to

compute end-to-end bounds on the perturbed outputs. This baseline allows us to

evaluate how a fully relaxed, approximate strategy behaves when applied to complete

NeSy models.

2. Hybrid Verification (R+SLV): The second baseline adopts a hybrid strategy that

combines relaxation-based analysis for the neural modules with solver-based exact

bound computation for the symbolic reasoning layer. More concretely, IBP in auto-

LiRPA is used to derive bounds on the outputs of the neural networks, while the

symbolic component is processed using exact optimization. Following the

transformation of the symbolic circuit into an equivalent polynomial representation,

we perform constrained optimization using the Gurobi solver to compute tight

bounds. This hybrid method serves as a point of comparison to assess the trade-off

between computational scalability and verification precision. Contrasting this

approach with E2E-R highlights the relative benefits of exact symbolic reasoning

versus the efficiency of fully relaxed, approximate propagation.

7.3.1.1 Dataset and Experimental Setup

To examine scalability, a synthetic dataset is curated that allows precise control over the

complexity of the symbolic reasoning component while keeping the neural architecture fixed.

Specifically, we construct a modified version of the multi-digit MNIST addition benchmark

[REF-35]. In this setting, each data instance is composed of several MNIST digit images and is

annotated with the arithmetic sum of the depicted digits. By varying the number of digits

included in each sample, we can directly manipulate the size and depth of the symbolic

computation required; for example, in a 3-digit addition scenario, a single instance may

consist of images such as , , and , with a corresponding label of 18. The verification

dataset is derived from the 10,000 samples of the MNIST test set, ensuring that each image

is used exactly once. Consequently, the number of verification instances for a given choice of

#digits is 10,000 divided by the number of digits per sample, enabling controlled

experimentation across symbolic complexities of increasing scale.

The experimental setup employs a convolutional neural network (CNN) trained to classify

individual MNIST digits. Using the full MNIST training set of 60,000 images in a supervised

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 74

learning setup, the model achieves a test-set accuracy of 98%. The symbolic reasoning

component encodes the arithmetic rules governing multi-digit addition. It takes as input the

probabilistic digit predictions produced by the CNN and infers a probability distribution over

all possible sums. As the number of summands increases, the size and complexity of the

reasoning circuit grow accordingly, since more combinatorial pathways exist for generating a

given total (for example, there are multiple ways in which 2-digit, and 5-digit combinations

can yield the sum of 17).

To evaluate scalability under increasing symbolic complexity and varying levels of input

uncertainty, we systematically vary both the number of digits per instance and the magnitude

of input perturbation. Specifically, we consider five configurations for the number of digits:

{2, 3, 4, 5, 6}, and three perturbation budgets ϵ ∈ {10⁻², 10⁻³, 10⁻⁴}, resulting in fifteen distinct

experimental settings. Each experiment—defined by a particular (#digits, ϵ) pair—is executed

with a timeout threshold of 72 hours. The end-to-end relaxation-based method (E2E-R) is

executed on a single computational thread, whereas the hybrid solver-based approach

(R+SLV) leverages the Gurobi optimizer, which dynamically allocates up to 1024 threads to

accelerate the constrained optimization phase.

Figure 56: Comparison of verification runtimes for E2E-R and R+SLV. The experiments are
evaluated for 3 different ϵ perturbations.

7.3.1.2 Scalability of the approaches and verification results

Figure 56 provides a comparative analysis of the scalability of the two verification methods.

The plot reports the average time required to verify the robustness of a single NeSy instance

across the test dataset. All experimental configurations complete within the 72-hour timeout,

with two notable exceptions for the R+SLV approach. Specifically, for the configurations ⟨ϵ =

10⁻², #digits = 5⟩ and ⟨ϵ = 10⁻², #digits = 6⟩, R+SLV fails to verify any sample before the timeout,

which explains why the corresponding curves for ϵ = 10⁻² terminate at four digits. Additionally,

for ⟨ϵ = 10⁻³, #digits = 6⟩, R+SLV can verify fewer than 5% of the inputs; the values shown in

Figure 56 therefore reflect the average runtime computed over this small subset.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 75

As clearly illustrated by the log-scale plot, E2E-R exhibits dramatically superior scalability

compared to R+SLV. This advantage stems from the inherent computational burden of

performing exact bound propagation through the symbolic probabilistic reasoning

component. For context, verifying the robustness of the CNN alone using Marabou requires

an average of 314 seconds per sample across 100 MNIST test images—demonstrating that

solver-based verification of even a single neural module is several orders of magnitude slower

than our full end-to-end relaxation-based approach.

These findings are consistent with both theoretical results [REF-36] and recent empirical

analyses [REF-37] which highlight the limited scalability of SMT-based verification techniques.

The experimental outcomes strongly indicate that, in the NeSy setting—where verification

routinely involves multiple neural networks coupled with complex symbolic reasoning—the

trade-off favouring approximate but scalable methods is not only acceptable but essential.

We next analyse how increasing the complexity of the symbolic reasoning component

influences the quality of the verification outcomes. Table 3 summarises two key metrics

across different experimental configurations. First, we report the tightness of the computed

output bounds, expressed as the lower–upper interval for the probability assigned to the

correct sum, averaged over all samples in the test set. This metric provides insight into how

precisely each method can characterise the behaviour of the NeSy system under

perturbations. Second, we evaluate robustness, defined as the proportion of test instances

for which the system remains provably robust, i.e., the number of verified robust samples

divided by the total number of samples. Together, these metrics enable us to assess how

symbolic complexity impacts both the accuracy and reliability of the verification process.

Table 3: Verification method performance for MNIST digit addition at ϵ= 0.001.

Verification
Method

Metric #MNIST digits

2 3 4 5

R+SLV

Lower/Upper Bound 0.871-0.981 0.815-0.972 0.764-0.962 0.731-0.928

Robustness (%) 90.60 86.17 81.33 78.31

E2E-R

Lower/Upper Bound 0.871-0.982 0.815-0.974 0.763-0.965 0.716-0.958

Robustness (%) 90.60 86.11 81.21 76.67

7.3.2 Autonomous driving - ROAD-R

In this experiment, we evaluate our proposed verification framework on a real-world dataset

drawn from the autonomous driving domain. The objective is to assess the robustness of a

neural autonomous driving system with respect to the safety and commonsense constraints

illustrated in Figure 55. Specifically, we aim to determine whether small perturbations to the

input can cause the underlying neural components to violate logical constraints that were

originally satisfied. This setting enables us to examine how well the system maintains correct

and safe behaviour under realistic variations in sensory input, thereby providing a practical

test of robustness in a domain where reliability is critical.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 76

7.3.2.1 Dataset and experimental setup

To conduct this evaluation, we make use of the ROad event Awareness Dataset with logical

Requirements (ROAD-R) [REF-38]. This dataset contains 22 dashcam videos recorded from the

perspective of an autonomous vehicle (AV), with each frame annotated using bounding boxes

that identify agents (e.g., pedestrians), the actions they are performing (e.g., approaching the

vehicle), and their spatial locations (e.g., on the right pavement).

For the experiments, we restrict attention to the subset of frames that are relevant to the

symbolic constraints. Specifically, we select only those frames that satisfy either of the

following conditions:

1. the AV is moving forward, and the scene contains neither a red traffic light nor a

stopped car in front; or

2. the AV is stationary, and either a red traffic light or a stopped car is present.

Sampling every two seconds across the videos yields a curated dataset of 3,143 instances.

Each sample consists of a 3 × 240 × 320 RGB image and four associated binary labels: red light,

car in front, stop, and move forward.

The neural component of the NeSy system includes two six-layer convolutional neural

networks, one performing object detection and the other determining the appropriate driving

action. Both models are trained using an 80/20 train–test split over the selected frames. The

object detection network attains 97.2% accuracy, while the action selection network reaches

96.3% accuracy on their respective test sets. To evaluate robustness, we perturb the test

images using five perturbation magnitudes, ϵ ∈ {10⁻⁵, 5×10⁻⁵, 10⁻⁴, 5×10⁻⁴, 10⁻³}.

Table 4: ROAD-R network verification results, indicating robustness for various epsilon noise.

Metric Epsilon

1e-5 5e-5 1e-4 5e-4 1e-3

Robustness (%) 96.82% 92.68% 82.64% 6.21% 0.00%

Runtime per Sample (s) 0.091 0.092 0.091 0.092 0.092

Table 4 summarizes the experimental results. We report two key metrics: robustness, defined

as the proportion of test instances that are provably robust, and the verification runtime for

the E2E-R method. Because this task involves a relatively small symbolic arithmetic circuit

paired with a substantially larger neural component, the computational cost and bound-

propagation error are dominated by the neural network rather than the symbolic reasoning

module. Consequently, E2E-R and R+SLV—which differ only in how the symbolic component

is handled—yield nearly identical outcomes, and we therefore omit the redundant R+SLV

results from the table. As anticipated, the verified robust accuracy decreases as the

perturbation magnitude increases. With respect to runtime, the findings further support the

trends observed in Section 7.3.1.2: the overall verification time for our approach is largely

insensitive to changes in the perturbation bound ϵ, underscoring its practical scalability even

under varying adversarial budgets.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 77

7.4 Complex Event Verification for Temporal Neuro-Symbolic Models

While Sections 7.2 and 7.3 address the verification of static neuro-symbolic models,

EVENFLOW use cases often rely on streaming data, necessitating the verification of temporal

neuro-symbolic systems. This introduces an additional axis of complexity: time. In such

systems, a neural network processes perception data at each time step 𝑡, extracting high-level

attributes (symbols) that feed into a symbolic component—specifically a finite state

automaton—which maintains state over a sequence.

Verifying properties in this context requires unrolling the system over a time horizon 𝑇. This

effectively creates a deep computational graph where errors and uncertainties can compound

rapidly. A primary challenge identified in temporal verification is that standard Interval Bound

Propagation (IBP) becomes insufficiently precise. As the system is unrolled, the coarse over-

approximations of IBP accumulate, leading to "exploded" bounds that fail to verify valid

properties.

7.4.1 Verification Methodologies

To address these challenges, we move beyond simple IBP end-end verification and evaluate

three distinct methodologies for verifying temporal neuro-symbolic systems. These

techniques range from purely neural approaches to hybrid optimization techniques:

1. End-to-End Verification: The entire temporal neuro-symbolic system (neural network

+ unrolled automaton) is compiled into a single, end-to-end differentiable

computational graph. Standard neural verification tools (e.g., auto_LiRPA) are then

applied using IBP or CROWN (a linear bound propagation method).

2. IBP/CROWN + Step Gurobi: This is a decomposed approach. The neural network is

verified first using IBP or CROWN to obtain bounds on the symbolic inputs. The

automaton verification is then handled by solving a local optimization problem at each

time step using the Gurobi solver. Because the symbolic interaction is multilinear, the

resulting optimization problem is quadratic. We evaluate using both Exact and Relaxed

solving, where the latter employs McCormick relaxations to handle bilinear

constraints.

3. IBP/CROWN + Unrolled Gurobi: Similar to the stepwise approach, but the verification

of the automata is constructed as one large, monolithic optimization problem covering

the entire trace. Due to the scale of unrolled traces, this is solved only using relaxed

McCormick constraints (Linear Programming).

7.4.2 Evaluation Scenario: Temporal Complex Event Recognition

To validate the proposed verification techniques, we utilize a Temporal Complex Event

Recognition task on video sequences. This scenario is designed to stress-test temporal neuro-

symbolic reasoning by requiring the system to identify complex patterns over a stream of

inputs. As illustrated in Figure 57, the example system is composed of the following stages:

1. Input Stream: A sequence of standard MNIST digit images (e.g., 7, 8, 2, 1, 4).

2. Multi-Attribute Perception: Unlike simple digit classification, the CNN here acts as a

multi-head classifier that predicts specific semantic attributes for each frame:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 78

a. Parity: Classifies the digit as Odd or Even.

b. Magnitude: Classifies the digit into ranges: 𝑥 < 3, 3 < 𝑥 < 6, or 𝑥 > 6.

3. Temporal Reasoning: The sequence of attribute probabilities is processed by a finite

state automaton that monitors for a specific complex event pattern: "An even digit

larger than 6, followed eventually by an odd digit smaller than 6, followed eventually

by a digit smaller than 3".

a. State S0 (Start): Loops until it detects an input satisfying 𝑒𝑣𝑒𝑛 ∧

𝑙𝑎𝑟𝑔𝑒𝑟𝑡ℎ𝑎𝑛6(e.g., digit 8), transitioning to S1.

b. State S1: Loops until it detects 𝑜𝑑𝑑 ∧ 𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝑡ℎ𝑎𝑛6 (e.g., digit 1, 3, 5),

transitioning to S2.

c. State S2: Loops until it detects 𝑠𝑚𝑎𝑙𝑙𝑒𝑟𝑡ℎ𝑎𝑛3 (e.g., digit 0, 1, 2), transitioning

to the accepting state S3.

Robustness in this scenario requires proving that no combination of adversarial perturbations

across the input image sequence can alter the final acceptance/rejection decision of the

automaton, where S3 is the acceptance state.

Figure 57: The Temporal Complex Event Recognition evaluation scenario. A sequence of
MNIST digits is processed by a multi-head CNN to extract semantic attributes (Parity and

Magnitude), which trigger transitions in a finite state automaton.

7.4.3 Experimental Evaluation of Temporal Verification

We evaluated the robustness of these methodologies against adversarial perturbations (ϵ)

ranging from 10-5 to 10-2. The comprehensive results are detailed in Table 5.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 79

Table 5: Verification Accuracy and Execution Time for Temporal Neuro-Symbolic Systems.

Method
Type

Specific
Method

Variation ϵ=10−5 ϵ=10−4 ϵ=10−3 ϵ=10−2

End-to-End IBP - 50.20%
(09s)

44.22%
(09s)

20.35%
(09s)

-

CROWN - 99.80%

(26m)
99.95%
(26m)

81.96%
(25m)

-

CROWN-IBP - 59.05%

(12s)
44.22%
(12s)

20.45%
(10s)

-

Step Gurobi IBP Exact 99.69%
(2m)

98.21%
(2m)

51.74%
(5m)

0.00% (2m)

IBP Relaxed 99.69%

(1m)
98.01%
(1m)

51.23%
(1m)

0.00% (1m)

CROWN Exact 100.0%

(3m)
100.0%
(4m)

99.28%
(4m)

86.96%
(5m)

CROWN Relaxed 99.95%
(2m)

99.95%
(3m)

99.34%
(3m)

86.81%
(3m)

Unrolled
Gurobi

IBP Relaxed 99.69%
(1m)

98.06%
(1m)

51.28%
(1m)

0.00% (1m)

CROWN Relaxed 99.95%

(2m)
99.95%
(3m)

99.34%
(3m)

86.86%
(3m)

alpha-
CROWN

Relaxed - - - 88.55% (3h
41m)

7.4.4 Analysis of Results

The experimental data reveals distinct performance tiers among the verification strategies:

• Inefficacy of IBP: Pure IBP-based methods struggle significantly with temporal depth.

The End-to-End IBP verification accuracy collapses from ~50% at ϵ = 10−5 to ~18% at

ϵ = 10−3. Even when combined with symbolic optimization (IBP + Step/Unrolled

Gurobi), IBP bounds are too loose to support verification at higher perturbations (ϵ =

10−2 results in 0.00% accuracy).

• Robustness of CROWN-based Hybrids: Using CROWN bounds results in far greater

resilience. The CROWN + Step Gurobi (Relaxed) and CROWN + Unrolled Gurobi

(Relaxed) approaches maintain near-perfect accuracy (>99%) up to ϵ = 10−3. At ϵ =

10−2, where IBP methods fail completely, CROWN-based unrolling retains

approximately 86.6% verification accuracy.

• High-Precision Trade-off: For the most demanding scenarios (ϵ = 10−2), the

specialized alpha-CROWN + Unrolled Gurobi method achieved the highest robustness

of 88.55%. However, this precision incurs a massive computational cost, requiring

over 3 hours and 41 minutes compared to just a few minutes for the relaxed CROWN

approaches. We note that we utilize the computationally intensive alpha-CROWN

method exclusively for the largest perturbation level (ϵ = 10−2). For smaller

perturbations (ϵ ≤ 10−3), the standard CROWN-based relaxed methods already

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 80

achieve near-perfect verification accuracy (> 99%), rendering the significant

computational overhead of alpha-CROWN unnecessary.

These results suggest that for EVENFLOW's real-time constraints, CROWN + Unrolled Gurobi

(Relaxed) offers the most balanced trade-off, providing high robustness with execution times

(approx. 3 minutes) that promises feasibility for scalable deployment.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 81

 The SCANNV Approach for Parallel Verification
This chapter summarises a Scalable Neural Network Verification (SCANNV) approach, a set of

techniques that can reduce the execution time of parallel neural network (NN) verification by

optimising (i) how an input property is split into subproblems that can be verified in parallel

and (ii) how these subproblems are scheduled for execution.

Most state-of-the-art verifiers expose only a coarse interface. They accept a verification

property and internally manage subproblem generation, branching and scheduling. SCANNV

treats such a verifier as a black box and adds a thin optimisation layer on top of it. This adds

on layer:

• Controls the initial input splitting: it decides how to partition the precondition of the

property into a set of subproblems (input polytopes).

• Uses Bayesian Optimisation (BO) to search over possible splitting strategies, using

either verification time or internal structural metrics (ReLU stability information) as an

optimization objective.

• Optionally performs transfer learning of BO models across related properties on the

same neural network, and

As a result, the verifier receives an, expectedly, more “verification-friendly” set of initial

subproblems and an execution order that tends to reduce overall wall-clock time.

In our discussion, we henceforth use Venus [REF-25] as the verifier, but the SCANVV

framework remains independent of the underlying verification tool.

Figure 58: Bayesian Optimization-based Input Splitting Architecture.

The precondition of each property is defined as an axis-aligned box over the input dimensions

(e.g., sensor ranges, distances, angles). SCANNV introduces a splitting vector V, where each

component Vi specifies into how many equal sub-intervals the i-th input dimension is split.

Given a splitting vector, the Input Splitting Module:

• Splits each input dimension into the required number of equally sized sub-intervals.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 82

• Forms the Cartesian product of these sub-intervals across all dimensions.

• Treats each resulting box (polytope) as an initial subproblem and passes the set of

subproblems to the verifier.

This procedure preserves the semantics of the original property (the union of all subproblems

equals the initial input domain), but exposes a large design space of possible initial splits.

Different splitting vectors can lead to very different verification times, even though they are

all logically equivalent.

8.1 Input Splitting Black-box Optimization and Transfer Learning

SCANNV models the total verification time corresponding to a given splitting vector as a black-

box function. The objective is to find a splitting vector V that minimises this time. To do so,

SCANNV applies Bayesian Optimisation with a Gaussian Process (GP) surrogate model, using

an RBF kernel and a suitable acquisition function.

For time-based optimisation, it uses a Lower Confidence Bound (LCB) acquisition with a high

exploration parameter. This is motivated by the fact that the search space of splitting vectors

is discrete and relatively small, but only a limited fraction (e.g., 10%–20%) of candidate splits

can be evaluated via micro-benchmarks. Each BO iteration proposes a candidate splitting

vector V. SCANNV generates the corresponding set of subproblems, runs a full verification on

that set, and measures the overall wall-clock time. The GP is then updated with this pair (split,

time), and the acquisition function is maximised again to propose the next split. After a

predefined budget of micro-benchmarks is exhausted, the best-performing split observed so

far is selected as the optimised initial split. This process is illustrated in Figure 58.

Figure 59: BO Model Transfer Architecture.

But this approach by itself, does not reduce verification time. This is because we do perform

a number of parallel splits and corresponding verification tasks to acquire knowledge about

the best-performing split. But, under the same philosophy of RATS+, having acquired

knowledge about a property, we can then transfer the GP model to another property and

with a minimal number of additional benchmarks we can acquire knowledge about the best-

performing input splitting for that new property. If the process continuous for a sufficiently

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 83

large number of queries/properties, every new property will be served by the developed BO

Model, virtually without additional micro-benchmarks.

Figure 60: Fine-Tuning of Transferred BO model.

SCANNV therefore extends the above BO process with transfer learning across properties. A

BO model trained on a source property is reused as an initial surrogate for a target property,

instead of training a new model from scratch (Figure 59). Because the input domains of the

two properties may differ, SCANNV performs a fine-tuning phase on the target property with

a small number of micro-benchmarks (Figure 60). In this phase, the acquisition function is

switched to Expected Improvement (EI) with a large exploration parameter to quickly adapt

the surrogate to the new domain. This transfer can substantially reduce the optimisation cost

for new properties, especially when the input domains overlap or are subset/superset

relations.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 84

8.2 ReLU-Based “Grey-Box” Optimisation

Figure 61: Bayesian Optimization-based ReLU Monitoring Architecture.

Beyond purely black-box optimisation, SCANNV also exploits internal information exposed by

the verifier, in particular the stability of ReLU neurons. A neuron is considered stable on a

subproblem if its input interval is entirely non-negative or non-positive, i.e., its activation

pattern does not depend on the exact input within that subproblem. For each candidate

splitting vector, SCANNV computes an average stability ratio across all resulting subproblems,

without running full verification, but only inference on Vis. Instead of minimising verification

time directly, SCANNV minimises this average stability ratio via BO (using EI as acquisition

function). The ReLU-based Grey-Box operation of SCANVV is illustrated in Figure 61.

Experimentally, we show that for UNSAT properties, this counter-intuitively leads to lower

verification times than the heuristic currently implemented by Venus, which aims to increase

stability. The explanation is that less stable initial regions trigger more pruning and faster

proof of unsatisfiability in the specific parallel setup.

8.3 SCANVV Experimental Evaluation

SCANVV experiments are conducted on the ACAS Xu benchmark [REF-26], a widely used suite

of 45 feed-forward ReLU networks for airborne collision avoidance. Each network has 6

hidden layers and 300 ReLU neurons and replaces a large look-up table-based legacy system.

Inputs include relative distances and headings of aircraft, as well as own and intruder speeds.

Outputs are discrete advices (e.g., “clear-of-conflict”, “weak left”, “hard right”).

The evaluations focus on a subset of the standard ACAS Xu safety properties, including

Properties 2 and 3, resulting in 172 verification queries in total. All experiments use the Venus

verifier in a fixed parallel configuration (two splitter processes and four worker processes),

with internal heuristics such as the dependency analyser disabled to avoid confounding

effects. A maximum of 243 initial subproblems is allowed (e.g., splitting each of 5 input

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 85

dimensions into up to 3 equal parts), as higher levels of splitting are not consistently

manageable within memory and time constraints.

8.3.1 Performance of BO-Based Input Splitting Optimisation

The BO-based input splitting experiments consider two micro-benchmark budgets: (a)10%

coverage of the splitting space (e.g., 24 BO evaluations out of 243 possible splits), and (b) 20%

coverage (e.g., 48 evaluations). Each BO evaluation runs a full verification of all subproblems

generated by the candidate split. Over all properties and networks, the theoretical upper

bound of pure verification time is estimated at around three to four months of continuous

execution, assuming no timeouts. In practice, due to time limits and early terminations, the

effective duration is lower but remains substantial, illustrating the need for sample-efficient

BO strategies.

When targeting verification time as objective on property 2 across all associated networks,

we compare the BO-selected split against a full grid search over all 243 candidate splits. The

quality metric is the rank of the selected by BO split (1 = globally fastest).

With 10% coverage, BO finds a valid split for 22 out of 36 queries. For these:

• All selected splits rank within the top 50;

• 21/22 are within the top 20;

• 18/22 within the top 10; and

• 12/22 within the top 5.

With 20% coverage, BO finds a valid split for 26 out of 36 queries. For these:

• 25/26 are within the top 20;

• 21/26 within the top 10;

• 12/26 within the top 5.

These results show that even with a small fraction of the search space explored, BO identifies

near-optimal splits in the majority of cases.

Having acquired good knowledge on a source domain, we proceed to evaluate SCANNV on

three transfer scenarios for the BO model:

Subset property (Custom Property 1): whose domain is a subset of Property 2. The

transferred model, fine-tuned with a small (e.g., 5%) budget, achieves ranks comparable to

or better than those of a newly trained 10% model, and in several networks it even provides

strictly better splits.

Table 6: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom Property 1).

ACAS Neural
Network ID

Transferred 10%
Solution Rank

From scratch
10%

3_6 3 3

4_6 2 3

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 86

ACAS Neural
Network ID

Transferred 10%
Solution Rank

From scratch
10%

5_6 1 1

Superset property (Custom Property 2): whose domain is a superset of Property 2. Again, the

transferred + fine-tuning configuration consistently yields splits in the top ranks, often

matching or surpassing the from-scratch BO runs.

Table 7: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom property 2).

ACAS Neural
Network ID

Transferred 10%
Solution Rank

From scratch
10%

3_6 2 6

4_6 1 1

5_6 2 2

Completely Different Property (Property 3): with only partial overlap in input dimensions.

Here the domain shift is larger. While the transferred model can perform worse than the

newly trained one in some networks, in others it still identifies top-ranked splits.

Table 8: Solution Rank comparison between Transferred Optimizer with 5% domain
adaptation vs a 10% Optimizer trained from scratch (Custom property 2)

ACAS Neural
Network ID

Transferred 10%
Solution Rank

From scratch
10%

3_6 216 5

4_6 2 6

5_6 234 3

Overall, transfer remains beneficial when properties are sufficiently related (subset/superset

or substantial overlap). In more distant cases where every dimension of a property is varied,

a BO model developed from scratch is preferable.

8.3.2 Impact of ReLU-Based Optimisation and Scheduling

The ReLU-monitoring variant of SCANNV is evaluated by comparing plain Venus against Venus

augmented with SCANNV’s ReLU-based initial split and schedule.

For UNSAT queries of Property 2, the SCANNV-augmented configuration achieves

approximately a 2× reduction in both total and average verification time across the relevant

networks. Reducing the total verification time from 619 seconds to 293 seconds

For SAT queries of Property 3, SCANNV achieves equivalent to Venus verification time,

although the magnitude of improvement is property dependent.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 87

Overall, ReLU-Based Optimisation and Scheduling seems to favour UNSAT queries, without

harming the input splitting performance of SAT ones. Additional validation runs confirm that

these improvements are robust and not artifacts of specific random seeds or machine

conditions.

Table 9: Comparison between total verification times for standalone Venus, Random Splits +
Venus and SCANVV ReLU Monitoring

Venus Random Split +
Venus

SCANVV

705.86 secs 731.12 secs 319.71 secs

To further validate our claim, we design an experiment where we compare Venus, Random

Splits + Venus and SCANVV ReLU-based Optimization, on Property 2. As Table 9 shows, the

verification time of standalone Venus is comparable to Venus upon being provided initial

random splits. On the contrary, SCANVV reduces the total verification time by more than 2

times.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 88

 Verification of Spatio-Temporal Systems
Formal robustness guarantees for neural networks have yet to achieve broad practical

adoption, primarily due to fundamental scalability limitations. Contemporary verification

techniques often fail when applied to high-dimensional input spaces, either because they rely

on overly coarse relaxations that weaken the resulting guarantees or because the exact

verification procedures become computationally intractable. However, in domains where

inputs exhibit inherent spatial or temporal structure—such as consecutive frames in video

data or sequential slices in medical imaging—the effective adversarial search space can be

substantially reduced. By constraining perturbations to respect realistic spatio-temporal

correlations, it becomes possible to narrow the adversary’s strength and obtain more

meaningful verification outcomes.

In this work, we address the challenge of formally certifying adversarial robustness under such

structured perturbation regimes. We introduce spatio-temporal bound propagation (STBP),

a new computational technique that begins by solving a mixed-integer linear program (MILP)

over the network’s initial layer and then propagates the resulting tight bounds through the

subsequent layers using a combination of exact and relaxed reasoning. This hybrid design

enables the method to capture fine-grained constraints in the early stages of computation

while maintaining tractability throughout the network.

Our experiments demonstrate that STBP delivers stronger certified guarantees than standard

adversarial training and offers practical advantages over certified training approaches.

Notably, STBP achieves more than a 1.7× improvement in robust accuracy for equivalent

perturbation budgets, highlighting its potential to make formally verified robustness more

achievable in realistic, temporally structured settings.

Despite the clear value of formal certification in safety-critical machine learning, certified

robustness techniques have seen limited practical adoption. This gap arises primarily because

existing verification methods either (a) rely on coarse approximations that produce

guarantees too loose to be actionable, or (b) require computational resources far beyond

what is feasible for large-scale models. These issues become even more pronounced as input

dimensionality increases. Approximate abstract-interpretation methods, such as interval

bound propagation, tend to be overly conservative in high-dimensional spaces and thus fail

to produce meaningful robustness guarantees [REF-39]. Conversely, exact verification

approaches, such as mixed-integer linear programming (MILP), scale poorly and become

prohibitively expensive for modern architectures [[REF-40], [REF-41], [REF-42]]. As a result,

current verification efforts are largely restricted to low-dimensional datasets and relatively

small neural models [[REF-43], [REF-32]].

To address these limitations, we propose a computational framework that leverages domain

knowledge to impose realistic spatio-temporal constraints on input perturbations. Such

constraints are highly relevant in domains involving video data [[REF-44], [REF-45]] or

volumetric medical imaging [REF-46], where common verification approaches implicitly

assume that an adversary is capable of independently perturbing video frames occurring

milliseconds apart. In practice, adversarial manipulations—such as placing misleading traffic

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 89

signs or altering visual artifacts—tend to be externally induced and therefore temporally

correlated. Likewise, sensor-induced noise exhibits well-documented spatial correlation

patterns [[REF-46], [REF-47], [REF-48]]. Motivated by these observations, we introduce

spatio-temporal shared interval bound propagation (S-IBP), a hybrid verification technique

that combines the precision of MILP with the scalability of abstract interpretation. Our

method first uses MILP to compute exact, tightly bounded perturbations at the network’s first

layer under the given spatio-temporal constraints and then propagates these bounds through

the remaining layers using abstract interpretation. Furthermore, by exploiting the

differentiable components of the bound-propagation process, we formulate new training

objectives that enable learning neural networks that are provably robust to structured spatio-

temporal perturbations.

We conduct extensive experiments validating the effectiveness of our approach across

diverse datasets, including UCF-101 for action recognition [REF-49], the Udacity self-driving

car dataset [REF-51], and several medical imaging benchmarks [REF-50]. To evaluate

robustness in a manner grounded in real-world behaviour, we construct novel spatio-

temporal verification benchmarks. For autonomous driving, we design perturbation scenarios

that identify plausible regions in each frame where adversarial elements—such as spoofed

road signs or artificial bumper stickers—could be introduced. For medical imaging, guided by

known sensitivity patterns in MRI acquisition, we develop procedures that generate spatio-

temporal perturbation constraints aligned with realistic acquisition errors.

Our results demonstrate that, under these structured robustness specifications, S-IBP enables

the training of neural networks with certified robustness an order of magnitude higher than

that provided by standard adversarial training. Moreover, when compared with existing

certification-based training approaches calibrated to the same robustness thresholds, our

method achieves over 30% higher accuracy on clean data, indicating substantial practical

utility. Beyond these performance gains, we also conduct a systematic analysis of widely used

spatio-temporal neural architectures, characterizing the extent to which they can be made

provably robust to realistic perturbation patterns.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 90

Figure 62: Overview of Spatio-Temporal Bound propagation.

Figure 62 illustrates the overall architecture of the Spatio-Temporal Bound Propagation

(STBP) framework. In this setup, adversarial patches are generated using a YOLO-based

pipeline, which provides realistic, structured perturbations aligned with the spatial and

temporal characteristics of the input domain. STBP achieves tight robustness guarantees by

applying linear programming to the network’s first layer, enabling the computation of highly

precise bounds at the point where perturbations first enter the model. For the subsequent

layers, where exact methods would be computationally prohibitive, the framework

transitions to more efficient relaxation techniques—specifically Interval Bound Propagation

(IBP)—to propagate the bounds forward through the network. This hybrid strategy balances

tightness and scalability, ensuring that STBP captures fine-grained adversarial constraints

without incurring the full cost of exact verification across the entire architecture.

9.1 Spatio-Temporal Bound Propagation Method

We consider a supervised learning setting in which a model

𝑓: ℝ𝐶×𝐻×𝐿 → 𝒴

maps an input tensor 𝐱 ∈ ℝ𝐶×𝐻×𝐿to an output in a label space 𝒴. Here, 𝐶denotes the number

of channels, 𝐻the spatial resolution, and 𝐿the temporal or sequential dimension, such as

video frames or stacked imaging slices. The model 𝑓is typically instantiated as a deep neural

network composed of alternating affine transformations and nonlinear activations. We

assume a data distribution 𝒟over input–label pairs (𝐱, 𝑦) ∈ ℝ𝐶×𝐻×𝐿 × 𝒴, and our goal is to

verify not only the model’s behaviour at individual data points, but its behaviour over entire

neighbourhoods defined by allowable perturbations.

To formalize this, we define an input specification 𝑇(𝐱) ⊆ ℝ𝐶×𝐻×𝐿capturing the set of

perturbed inputs considered semantically equivalent to a given 𝐱. Robustness verification

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 91

aims to show that the model’s predicted label remains invariant across this set. Specifically,

we seek to prove that 𝑓(𝐱′) = 𝑓(𝐱)for all 𝐱′ ∈ 𝑇(𝐱).

A certificate of this form constitutes a formal guarantee that the network is robust to all

perturbations permitted by the specification. However, verifying such guarantees becomes

increasingly challenging in high-dimensional spatio-temporal domains, where existing

methods struggle to propagate tight bounds through deep architectures. This motivates the

development of new verification techniques that can exploit structured spatial and temporal

dependencies in the input.

9.1.1 Modelling Spatio-Temporal Constraints

We next introduce a mixed-integer linear programming (MILP) formulation to compute tight,

certified bounds on the activations of the first layer under structured perturbations. Let

𝐱 ∈ ℝ𝐶×𝐷×𝐻×𝑊

be a four-dimensional input tensor and let

𝑇(𝐱) ⊆ ℝ𝐶×𝐷×𝐻×𝑊

denote the set of admissible perturbed inputs constrained to satisfy realistic spatio-temporal

coherence. Let 𝜹 ∈ ℝ𝑛be the flattened perturbation tensor, with 𝑛 = 𝐶 ∗ 𝐷 ∗ 𝐻 ∗ 𝑊.

The perturbed input is 𝐱 + 𝜹. We impose structured constraints on 𝜹via the following sets:

• Bounded perturbations: for 𝑖 ∈ ℬ ⊆ {1, … , 𝑛},

−𝜖𝑖 ≤ 𝛿𝑖 ≤ 𝜖𝑖.

• Shared perturbations: for all index pairs (𝑖, 𝑗) ∈ 𝒮,

𝛿𝑗 = 𝛿𝑖.

• Fixed (non-perturbed) entries: for 𝑖 ∈ ℱ ⊆ {1, … , 𝑛},

𝛿𝑖 = 0.

These constraints encode known structural priors such as temporal smoothness or anatomical

consistency across slices, thereby reducing adversarial degrees of freedom.

9.1.1.1 Affine layer

Let the network’s first layer be affine, with weight matrix 𝐖 ∈ ℝ𝑚×𝑛and bias 𝐛 ∈ ℝ𝑚. The

pre-activation response is

𝐳 = 𝐖(𝐱 + 𝜹) + 𝐛 ∈ ℝ𝑚.

To obtain tight bounds on 𝑧𝑗over all valid perturbations, we solve two MILPs per output

coordinate 𝑗 ∈ {1, … , 𝑚}:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 92

9.1.1.2 MILP Formulation

max
𝜹

/min
𝜹

𝑧𝑗 = 𝐰𝑗
⊤(𝐱 + 𝜹) + 𝑏𝑗

subject to 𝛿𝑖 ∈ [−𝜖𝑖, 𝜖𝑖]∀𝑖 ∈ ℬ,

𝛿𝑖 = 𝛿𝑘∀(𝑖, 𝑘) ∈ 𝒮,

𝛿𝑖 = 0∀𝑖 ∈ ℱ.

Although each problem is a linear program with bound and equality constraints, the shared

perturbation sets introduce nontrivial coupling among variables. Nonetheless, the resulting

optimal values give certified, input-dependent intervals for the activations of the first layer,

which form the foundation of the hybrid verification pipeline.

9.1.2 Spatio-Temporal Bound Propagation (STBP)

Given the structured input specification 𝑇(𝐱) ⊆ ℝ𝑛, our goal is to compute sound output

bounds for the neural network

𝑓 = 𝑓(𝑘) ∘ ⋯ ∘ 𝑓(1)
under all admissible perturbations. To accomplish this, we propose Spatio-Temporal Bound

Propagation (STBP), a hybrid verification algorithm combining exact MILP-based bounds at

the input layer with efficient relaxation-based propagation for deeper layers.

For each neuron 𝑗in the first layer, we compute exact bounds

ℓ𝑗
(1)

: = min
𝐱′∈𝑇(𝐱)

𝑧𝑗
(1)

(𝐱′), 𝑢𝑗
(1)

: = max
𝐱′∈𝑇(𝐱)

𝑧𝑗
(1)

(𝐱′),

where 𝑧𝑗
(1)

(𝐱′) = 𝐰𝑗
⊤𝐱′ + 𝑏𝑗. These MILP-certified bounds provide a tight enclosure of the

first-layer activations.

For subsequent layers (𝑖 > 1), we propagate bounds using interval bound propagation (IBP)

or similar linear relaxations. Given bounds ℓ(𝑖−1)and 𝑢(𝑖−1), define the center and radius:

𝐜(𝑖−1) =
1

2
(ℓ(𝑖−1) + 𝑢(𝑖−1)) , 𝐫(𝑖−1) =

1

2
(𝑢(𝑖−1) − ℓ(𝑖−1)).

For an affine transformation with weights 𝐖 and bias 𝐛:

ℓ(𝑖) = 𝐖𝐜(𝑖−1)−∣ 𝐖 ∣ 𝐫(𝑖−1) + 𝐛, 𝑢(𝑖) = 𝐖𝐜(𝑖−1)+∣ 𝐖 ∣ 𝐫(𝑖−1) + 𝐛,

where the absolute value is elementwise.

The key innovation of STBP lies in combining exact layer-1 MILP bounds, which encode

detailed spatio-temporal structure, with fast, conservative relaxation methods for deeper

layers. This results in a verification approach that is both scalable and significantly tighter than

standard IBP, particularly in domains where spatio-temporal correlations substantially reduce

the effective perturbation dimension.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 93

9.2 Datasets and Models

We evaluate the proposed verification methods across four heterogeneous datasets

encompassing synthetic, real-world, and medical imaging domains. For MNIST, we construct

a video-style variant by temporally concatenating individual digit frames, enabling the

evaluation of two 3D CNN architectures operating at different spatial resolutions; these

models achieve classification accuracies of up to 94.67%. For UCF-101, a standard video

action-recognition benchmark, we reduce both the spatial resolution and the number of

action classes to improve the tractability of verification. Under this simplified setting—

restricted to five broad action categories—the resulting model attains a clean accuracy of

74.41%.

For the Udacity self-driving dataset, we convert the original steering-angle regression task

into a three-way classification problem. To facilitate verification, we downsample the input

images and employ a compact CNN, which achieves 84.24% accuracy. Finally, for MEDMNIST,

we focus on the Synapse-3D subset, where the task is to classify neuron types from 3D voxel

representations. Using a model architecturally aligned with the MNIST baseline, we obtain an

accuracy of 73.01%.

Across all experiments, the neural networks are deliberately designed to be compact—each

containing no more than ten layers—to ensure that spatio-temporal verification remains

computationally feasible. These models nonetheless capture the essential complexity of their

respective domains, enabling a meaningful evaluation of the scalability and effectiveness of

our verification techniques.

9.3 Experiments

We empirically assess the effectiveness of the proposed approach in certifying the adversarial

robustness of neural networks across a diverse set of spatio-temporal tasks. Our evaluation

demonstrates consistent and significant improvements in certified robustness over standard

verification techniques for every dataset and model considered. In particular, we study

robustness under perturbation magnitudes 𝜖 ∈ {10−5, 10−4, 10−3, 10−2, 10−1}and

adversarial patch sizes 𝑘 ∈ {1, … ,10}, comparing standard Interval Bound Propagation (IBP)

against our hybrid Spatio-Temporal Bound Propagation (STBP) method.

Figure 63 presents the certified robust accuracy of the MNIST video model—constructed

using 10 frames at 28 × 28resolution—under increasing perturbation magnitudes (left) and

patch sizes (right). Across all settings, STBP consistently outperforms IBP, with particularly

pronounced gains under structured perturbations. The patch-based version of STBP achieves

near-perfect robustness for perturbations up to 𝜖 = 10−4and for small patch sizes,

underscoring the advantage of integrating domain-specific spatial and temporal structure

into the verification pipeline.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 94

Figure 63: Adversarial Robustness of IBP, STBP, STBP using adversarial patches for MNIST 10

frame 28 x 28 video model; left: against perturbations (ϵ); right: against patch size (k).

A consolidated summary of results is provided in Table 10, reporting both clean and certified

robust accuracies across the four benchmark domains: MNIST, UCF-101, Udacity self-driving,

and MEDMNIST Synapse3D. STBP yields substantial improvements compared to IBP—for

example, on the MNIST video model, STBP with patch constraints increases certified robust

accuracy from 49.32% to 77.05% at 𝜖 = 10−4. For the autonomous driving and medical

imaging tasks, STBP achieves over 85% certified robustness under patch perturbations,

demonstrating that the method scales effectively to more complex real-world systems.

Although STBP scales well for moderate-sized 3D CNNs, verifying larger architectures—such

as ResNet-style backbones—remains challenging even when using shared perturbation

models. As expected, the inclusion of a MILP optimization step on the first layer introduces

additional computational overhead, but this cost is offset by the substantial improvements in

certification quality.

Table 10: Summary of results for MNIST, UCF-101, Udacity self-driving, and MEDMNIST
Synapse3D.

Experiment Clean Acc. Input Dim Output Dim # Samples

MNIST Toy Model 93.1% 1×5×8×8 10 10000

MNIST Toy Model 94.67% 1×10×28×28 10 1000

UCF-101 74.41% 3×30×32×32 5 7

Udacity Steering
Angle

84.23% 3×30×32×32 3 15

MEDMNIST
Synapse3D

73.01% 32×32×32 2 100

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 95

Experiment

IBP Acc. STBP Acc.

ε=0.1 ε=0.01 ε=10-3 ε=10-4 ε=10-5 ε=0.1 ε=0.01 ε=10-3 ε=10-4 ε=10-5

MNIST Toy
Model

0.0 0.0 1.2 53.2 89.1 0.0 1.15 42.0 91.2 93.10

MNIST Toy
Model

0.0 0.0 0.0 49.32 93.75 0.0 0.0 58.20 77.05 78.71

UCF-101 0.0 0.0 0.0 23.03 26.36 0.0 7.3 19.36 21.9 53.81

Udacity
Steering Angle

0.0 0.0 0.0 85.71 85.71 85.71 85.71 85.71 85.71 85.71

MEDMNIST
Synapse3D

0.0 0.0 19.0 72.0 72.0 0.0 72 72 72 72

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 96

 Probabilistic Verification of Neural Networks via PAC-

Interval Estimation

10.1 The Verification Criterion

PAC Interval Estimation defines verification in the context of the local Lipschitz constant. Let

𝐵𝜖(𝑥0) = {𝑥: ∥ 𝑥 − 𝑥0 ∥≤ 𝜖} be the input region of interest (an 𝜖-ball).

Let 𝑀(𝑥0) be the margin (distance) from the output 𝑓(𝑥0) to the nearest decision boundary.

A sufficient condition for robustness is given by:

𝐿∗ ⋅ 𝜖 < 𝑀(𝑥0)

where 𝐿∗ = max𝑥∈𝐵𝜖(𝑥0) ∥ 𝐽𝑓(𝑥) ∥ is the maximum operator norm of the Jacobian (the local

Lipschitz constant) within the ball. If this inequality holds, it is geometrically impossible for

the network to misclassify an input within the region.

10.1.1 The Estimation Challenge

Calculating 𝐿∗ exactly is an NP-hard problem for general neural networks. The optimization

landscape of ∥ 𝐽𝑓(𝑥) ∥ is highly non-convex, filled with local maxima and sharp peaks.

• Analytical Bound Propagation (e.g., AutoLIRPA): These methods propagate error

intervals layer-by-layer through the network. While computationally fast, they often

suffer from the dependency problem (the "wrapping effect"), resulting in loose upper

bounds that are orders of magnitude larger than the true constant. This often leads to

a failure to satisfy Eq. (1) even for robust networks.

• Exact Methods (e.g., LipMIP): Mixed Integer Programming (MIP) can theoretically find

the true global maximum. However, these solvers scale poorly with network depth

and width, often timing out before finding a solution.

To overcome these limitations, we relax the requirement for a deterministic maximum in

favour of a probabilistic bound that is tight enough to be useful but rigorous enough to

provide safety guarantees.

10.2 Theoretical Framework: The PAC Interval

We frame the verification task as a statistical estimation problem. Instead of a single point

estimate, we seek a Probably Approximately Correct (PAC) Interval [𝐿𝑙𝑜𝑤, 𝐿ℎ𝑖𝑔ℎ] for the true

maximum 𝐿∗.

10.2.1 Understanding the PAC Framework

The concept of Probably Approximately Correct (PAC) learning originates from computational

learning theory. In its standard form, it addresses the question: "How many samples do we

need to learn a hypothesis that is accurate with high probability?"

In the context of Lipschitz estimation, we adapt this framework to quantify uncertainty. Since

we cannot evaluate the gradient at every single point in the continuous domain 𝐵𝜖(𝑥0) (which

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 97

would require infinite time), we must rely on a finite set of samples. Consequently, there is

always a non-zero probability that the true maximum lies in an unobserved region.

The PAC framework allows us to formalize this risk. We seek an upper bound 𝐿ℎ𝑖𝑔ℎ such that

the probability of the true maximum exceeding this bound is bounded by a small parameter

𝛾. In simple terms, we are making a statistical contract:

"We cannot guarantee with 100% certainty that 𝐿∗ is below 𝐿ℎ𝑖𝑔ℎ. However, we

have constructed 𝐿ℎ𝑖𝑔ℎ such that the chance of us being wrong is less than 𝛾 (e.g.,

0.1% or 0.001%)."

Mathematically, our verification guarantee is probabilistic:

Pr(𝐿𝑙𝑜𝑤 ≤ 𝐿∗ ≤ 𝐿ℎ𝑖𝑔ℎ) ≥ 1 − 𝛾

If 𝐿ℎ𝑖𝑔ℎ ⋅ 𝜖 < 𝑀(𝑥0), the network is verified with confidence 1 − 𝛾. This approach trades the

intractable certainty of deterministic methods for the tractable, high-confidence guarantees

of statistical methods.

10.2.2 The Cumulative Distribution Function (CDF)

To implement the PAC framework, we analyse the statistical behaviour of the gradient norms.

Let 𝑋 be a random variable representing the input chosen by our sampling strategy and let

𝑌 = 𝑔(𝑋) =∥ 𝐽𝑓(𝑋) ∥ be the gradient norm at that input.

The central object of our study is the Cumulative Distribution Function (CDF), denoted as

𝐹(𝑦). The CDF describes the probability that a random sample will have a gradient norm less

than or equal to a value 𝑦:

𝐹(𝑦) = Pr(𝑌 ≤ 𝑦)

For example, if 𝐹(50) = 0.95, it means that 95% of the sampled gradients are less than or

equal to 50. The value of 𝑦 where 𝐹(𝑦) = 1 is the theoretical maximum 𝐿∗. Our goal is to

estimate the behavior of 𝐹(𝑦) as it approaches 1.

Since we do not know the true CDF 𝐹(𝑦), we approximate it using the Empirical CDF, 𝐹̂𝑁(𝑦),

constructed from 𝑁 observed samples. The empirical CDF is a step function that jumps by

1/𝑁 at each observed data point. As 𝑁 → ∞, the Law of Large Numbers guarantees that

𝐹̂𝑁(𝑦) converges to 𝐹(𝑦).

10.2.3 The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality

While 𝐹̂𝑁(𝑦) converges to the truth, for finite 𝑁 there is an error. We need to bound this error

to maintain our safety guarantee. We utilize the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality, a powerful theorem in non-parametric statistics.

10.2.3.1 Concept: The Confidence Tube

The DKW inequality allows us to build a "confidence tube" (or confidence band) around our

empirical data. Imagine plotting the empirical CDF step function on a graph. The DKW

inequality draws two boundary curves—one above and one below—creating a corridor.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 98

The theorem guarantees that the invisible, true CDF 𝐹(𝑦) lies entirely within this corridor with
probability at least 1 − 𝛾. It provides a strict, global bound on the distance between the
observed data and the ground truth.

10.2.3.2 Mathematical Formulation

Given 𝑁 independent and identically distributed (i.i.d.) samples, the DKW inequality states:

Pr (sup
𝑦

|𝐹̂𝑁(𝑦) − 𝐹(𝑦)| > 𝛼) ≤ 2𝑒−2𝑁𝛼2

By setting the right side to our desired confidence level 𝛾 and solving for the bandwidth 𝛼,

we get:

𝛼 = √
ln(2/𝛾)

2𝑁

We then define the lower and upper bounds of the confidence tube as:

𝐹𝐿(𝑦) = max(0, 𝐹̂𝑁(𝑦) − 𝛼)

𝐹𝑈(𝑦) = min(1, 𝐹̂𝑁(𝑦) + 𝛼)

This tube serves as the primary constraint for our verification. Any statistical model we

propose for the tail of the distribution must effectively "live" within this tube to be considered

a plausible explanation of the data.

10.2.4 Parameter Space Search for the Worst-Case Model

A simple statistical approach would be to fit a single "best-fit" curve to the tail data and report

its endpoint. However, there might be many slightly different curves that fit the data almost

equally well but imply very different maximum values.

To adhere to the safety-critical nature of verification, we employ a robust optimization

procedure:

1. We define a family of curves (Generalized Pareto Distributions) that are theoretically

justified to model the tail.

2. We identify the subset of these curves that are "statistically plausible." A curve is

plausible if and only if it lies entirely within the DKW confidence tube (𝐹𝐿 ≤ 𝐺 ≤ 𝐹𝑈).

3. From this plausible set, we find the single curve that is the most pessimistic—i.e., the

one with the largest upper endpoint.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 99

This yields 𝐿ℎ𝑖𝑔ℎ, the worst-case Lipschitz constant consistent with our data and our

confidence level 𝛾. A practical illustration is shown in Figure 64.

10.3 Targeted Sampling: The Adam-Sobol Method

The mathematical guarantees of the PAC framework (specifically the DKW inequality) rely on

the assumption that the samples are representative of the underlying distribution. In the

context of neural network verification, this is a significant hurdle.

The input space 𝐵𝜖(𝑥0) is a high-dimensional hyperball. As the dimension 𝑑 increases, the

volume of the space explodes exponentially (the Curse of Dimensionality). The regions where

the gradient norm is maximized—the "peaks" of the landscape—are typically extremely small

and sparse relative to the total volume.

If we were to use simple uniform random sampling, the probability of landing near a peak

would be vanishingly small. We would mostly observe gradients from the "flat" low-value

regions. Consequently, our DKW tube would accurately model the body of the distribution

but would contain no information about the tail, leading to a gross underestimation of 𝐿∗.

To solve this, we require a sampling strategy that is biased towards high values. We developed

a specialized, multi-stage strategy named Adam-Sobol.

10.3.1 Modularity of the Sampling Engine

It is crucial to note that this specific sampling method is not a fixed constraint of the
proposed framework. The core contribution is the PAC-Interval analysis (Chapter 2), which
acts as a statistical backend agnostic to the data source. We employ Adam-Sobol here because

Figure 64: The observed exceedances (blue line), fitted GPD (green line) and maximum plausible
fit (purple line). The goal of the algorithm is to find the GPD fit with the largest endpoint that

fits entirely in the confidence tube.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 100

it performs well empirically. However, the framework is modular: if a superior sampling
strategy—such as one based on generative models, flow-matching, or more advanced
adversarial attacks—can populate the distribution tail more densely, it can replace Adam-
Sobol without altering the statistical core of the verification.

10.3.2 Stage 1: Global Peak Discovery (Adam Attack)

The first challenge is to locate the general "basins of attraction" where the gradient norms

are high. To do this, we treat the sampling problem as an optimization problem. We want to

find input vectors 𝑥 that maximize the scalar function 𝑔(𝑥) =∥ 𝐽𝑓(𝑥) ∥.

We employ an adversarial attack strategy based on the Adam optimizer. Adam is a gradient-

based optimization algorithm widely used in training neural networks. Here, instead of

updating network weights to minimize loss, we update the input vector 𝑥 to maximize the

gradient norm.

• Initialization: We define 𝑊 parallel particles, each initialized randomly within the

input ball 𝐵𝜖(𝑥0).

• Ascent: For each particle, we calculate the gradient of our objective function with

respect to the input, ∇𝑥𝑔(𝑥). We then move the particle in the direction of this

gradient.

• Restarts: Optimizers can get stuck in local optima (smaller peaks). By running many

restarts in parallel, we increase the coverage of the search space.

This stage results in a set of samples 𝑆𝐴𝑑𝑎𝑚 clustered around the local maxima of the function.

10.3.3 Stage 2: Local Distributional Refinement (K-Box Sobol)

While the Adam attack is excellent at finding single high points, it is not a sampler in the

statistical sense; it creates a biased cluster of points at the very tips of the peaks. To perform

Extreme Value Theory analysis, we need to understand the shape of the peak—how the

values fall off as we move away from the maximum. We need to sample the "exceedances"

(values above a threshold).

To achieve this, we refine the output of the Adam stage:

1. Selection: We take the top 𝐾 distinct candidates from 𝑆𝐴𝑑𝑎𝑚. These represent the 𝐾
most promising regions found.

2. Bounding (The K-Box): Around each candidate peak 𝑥𝑘, we define a small hypercube
(a "box") 𝐵𝑘 constrained within the original 𝜖-ball.

3. Sobol Sampling: Within each of these small boxes, we generate a high-density set of
samples. Crucially, we do not use pseudo-random numbers. Instead, we use Sobol
sequences.

10.3.3.1 Why Sobol Sequences?

Sobol sequences are a type of Quasi-Monte Carlo (QMC) method. Unlike pseudo-random

numbers, which are independent and can randomly clump together leaving gaps in the space,

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 101

Sobol sequences are deterministic and designed to be "low discrepancy." They are self-

avoiding, meaning they spread out as evenly as possible to fill the available space.

By using Sobol sequences within the K-Boxes, we obtain a high-fidelity, uniform scan of the

geometry around the peaks. This provides the rich distributional data—the shape of the tail—

necessary for rigorous GPD fitting. The final dataset 𝑆𝑓𝑖𝑛𝑎𝑙 is the union of these local scans.

It is important to note that algorithms for generating Sobol sequences are well defined only

up to a certain (albeit very large) dimension. In problems where the size of the input

dimension is larger than 21201, we have to employ Latin Hypercube Sampling, which is a

different method to generate samples that are "not too clustered".

10.4 Estimation Engine: Peaks-over-Threshold (POT)

The theoretical foundation of the POT method is the Pickands-Balkema-de Haan theorem.

This theorem is to extreme values what the Central Limit Theorem is to averages.

The Central Limit Theorem states that if you sum up many random variables, the result

converges to a Gaussian (Normal) distribution, regardless of the original distribution.

Similarly, the Pickands-Balkema-de Haan theorem states that if you look at the distribution of

values that exceed a sufficiently high threshold 𝑢, that conditional distribution converges to

the Generalized Pareto Distribution (GPD).

The CDF of the GPD is given by:

𝐺𝜉,𝜎(𝑦) = 1 − (1 +
𝜉𝑦

𝜎
)

−1/𝜉

where 𝜎 is a scale parameter and 𝜉 is the shape parameter.

10.4.1.1 The Shape Parameter and the Reverse Weibull

The shape parameter 𝜉 determines the behavior of the tail. There are three regimes:

1. Fréchet (𝜉 > 0): Heavy-tailed distributions (e.g., wealth distribution). These have no
upper limit and decay polynomially.

2. Gumbel (𝜉 = 0): Light-tailed distributions (e.g., normal distribution). These have no
upper limit but decay exponentially.

3. Reverse Weibull (𝜉 < 0): Short-tailed distributions. These have a mathematically
finite upper endpoint.

For neural network verification, we strictly restrict our search to the Reverse Weibull domain

(𝜉 < 0). This is not an arbitrary choice but a physical constraint. A neural network with finite

weights, operating on a compact input domain 𝐵𝜖(𝑥0), defines a continuous function. By the

Extreme Value Theorem of calculus, a continuous function on a compact set is bounded.

Therefore, the distribution of gradients must have a finite endpoint.

Our goal is to estimate this finite endpoint, given by:

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 102

𝑦𝑚𝑎𝑥 = 𝑢 +
𝜎

|𝜉|

This 𝑦𝑚𝑎𝑥 is our estimator for 𝐿ℎ𝑖𝑔ℎ.

10.4.2 Automated Threshold Selection: Balancing Bias and Variance

The application of POT requires selecting a threshold 𝑢. This choice is subtle and represents

a fundamental Bias-Variance Trade-off.

• Threshold Too Low (High Bias): If we set 𝑢 too low, we include data points from the

"body" of the distribution. These points do not follow the GPD (which is an asymptotic

limit for extremes). Including them violates the assumptions of the theorem, biasing

our estimates of 𝜉 and 𝜎.

• Threshold Too High (High Variance): If we set 𝑢 extremely high, we satisfy the

theorem’s assumptions perfectly, but we are left with very few data points (only the

very tip of the tail). With small sample sizes, statistical estimation becomes unstable,

leading to massive variance and wide confidence intervals.

We automate this selection using the Mean Residual Life Plot (MRLP). The "Mean Residual

Life" is the expected amount by which a value will exceed the threshold, given that it exceeds

it.

𝑒(𝑢) = 𝐸[𝑌 − 𝑢|𝑌 > 𝑢]

A unique property of the GPD is that the mean residual life is a linear function of the threshold

𝑢.

Our Algorithm:

1. We compute the empirical mean residual life for a range of candidate thresholds.

2. We fit a Weighted Least Squares (WLS) line to this plot.

3. We perform a sequential hypothesis test (using 𝜒2 statistics) to find the lowest
threshold 𝑢𝑜𝑝𝑡 where the linearity hypothesis cannot be rejected.

This identifies the "sweet spot": the lowest threshold (maximizing sample size) where the

distribution is sufficiently "extreme" (minimizing bias). An illustrative example using

synthetically generated data is shown in Figure 65, where the algorithmically selected

threshold is very close to the true threshold of the synthetic data.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 103

Figure 65: Top: Illustration of synthetic data lying above the detected and true threshold.
Bottom: Mean Residual Life (MRL) plot for synthetic data; the algorithm seeks to find the

smallest value at which the MRL begins to showcase a linear behaviour. This synthetic data is
composed of random uniform sampling and a GPD distribution imposed on the top range of

data, hence there is a true threshold which we use as comparison.

10.4.3 Constraint-Based Verification Bound

Once 𝑢𝑜𝑝𝑡 is determined, we construct the final verification bound. As discussed in the PAC

section, we do not simply take the maximum likelihood parameters. We search the (𝜉, 𝜎)

space for the GPD that maximizes 𝑦𝑚𝑎𝑥 while remaining inside the DKW confidence tube.

𝐿ℎ𝑖𝑔ℎ = max
𝜉,𝜎

(𝑢𝑜𝑝𝑡 +
𝜎

|𝜉|
)  s.t. 𝐹𝐿(𝑦) ≤ 𝐺𝜉,𝜎(𝑦) ≤ 𝐹𝑈(𝑦)

10.5 Experimental Results

We validated the Adam-Sobol + LipPOT pipeline on the SMALLMNIST5 network. This network,

while small enough to be analysed by exact solvers, presents a sufficiently complex landscape

to test the efficacy of our statistical approach.

10.5.1 Performance on Small Domain

In this regime, the domain is small enough that the Mixed Integer Programming solver

(LipMIP) can converge to the exact global maximum within a reasonable timeframe. This

provides a "Ground Truth" against which we can evaluate our method.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 104

Table 11: Comparison on SMALLMNIST5 (Local 0.01 Domain, L_∞ Norm)

Algorithm Upper Bound Lower Bound Time (s) Outcome

LipPOT (Ours) 80.92 80.06 94.18 Tight Interval

auto_LIRPA 1308.26 NaN 0.67 Loose

LipMIP 84.30 NaN 704.18 Exact Global Max

10.5.1.1 Analysis of Underestimation

Table 11 reveals a critical insight into the nature of our method. LipMIP finds the exact

maximum to be 84.30. Our method, LipPOT, reports a high-confidence upper bound of 80.92.

Crucially, LipPOT underestimates the true constant. The upper bound (80.92) is slightly lower

than the true maximum (84.30). This discrepancy (approx. 4%) is the "smoking gun" of

statistical verification. It indicates that despite our specialized Adam-Sobol sampling, the very

highest peak in the landscape was extremely narrow and was missed by the sampler. The EVT

model correctly fitted the tail of the observed peaks, but it cannot infer the existence of a

singular, unobserved spike that behaves differently from the rest of the tail. This confirms

that our method provides a probabilistic certificate, not a deterministic guarantee.

In this particular instance, the reason for the underestimation was because the network had

a discontinuity contained within the input region. However, compared to the analytical

method (auto_LIRPA), which overestimated the bound by over 1500% (1308.26), LipPOT

provides a far more distinct and useful signal of the network’s behaviour, albeit with a known

statistical risk.

10.5.2 Performance on Large Domain

We tested the largest domain from our experimental set (𝜖 = 0.13) to demonstrate

robustness under extreme expansion. In this regime, the search space is exponentially larger.

Table 12: Comparison on SMALLMNIST5 (Local 0.13 Domain, L_∞ Norm)

Algorithm Upper Bound Lower Bound Time (s) Outcome

LipPOT (Ours) 102.80 101.98 40.46 Stable

auto_LIRPA 6143.19 NaN 0.80 Exploded

LipMIP 5484.33 NaN 1833.00 Timeout

10.5.2.1 Scalability and Stability

Table 12 demonstrates the failure modes of deterministic methods:

• LipMIP (Timeout): The exact solver runs for 30 minutes (1833s) and fails to converge.
It returns an upper bound of 5484.33, which is likely just a loose bound from the
branch-and-bound tree, not a verified tight bound.

• auto_LIRPA (Explosion): The analytical bound propagation suffers from the wrapping
effect, returning a value (6143.19) that is useless for verification purposes.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 105

• LipPOT (Stable): Our method remains computationally efficient (40s) and returns a
tight, stable interval [101.98,102.80].

While the result of 102.80 allows for a verification decision where other methods fail, we must

interpret it in light of the underestimation seen in Table 11. It is probable that the true

maximum is slightly higher than 102.80, but remarkably unlikely to be anywhere near the

5000+ range reported by the baselines. LipPOT effectively filters out the loose

overestimations to reveal the true scale of the Lipschitz constant.

10.5.3 Limitations: Sources of Underestimation

The results highlight that LipPOT provides a statistical certification, distinct from

deterministic verification. There are two primary theoretical risks where the method may

underestimate the true constant:

1. Sampling Failure (Statistical Risk): As evidenced by the 𝜖 = 0.01 experiment, if the
sampler misses the global peak entirely, the EVT model will be fit to the local peaks it
did observe. The resulting 𝐿ℎ𝑖𝑔ℎ will be a valid upper bound for the observed

distribution, but invalid for the unobserved global anomaly. This risk is controlled by
the quality of the sampling engine but can never be reduced to zero.

2. Non-Local Lipschitz Behavior (Geometric Risk): Our approach assumes that the
Lipschitz constant is well-characterized by the maximum local gradient norm max ∥
𝐽𝑓(𝑥) ∥. For neural networks with ReLU activations, the function is continuous but non-

smooth. The global Lipschitz constant is defined as sup𝑥≠𝑦
∥𝑓(𝑥)−𝑓(𝑦)∥

∥𝑥−𝑦∥
. In most cases,

this equals the maximum gradient norm. However, theoretically, the Lipschitz constant
could be defined by a "short-circuit" between two distant points across a decision
boundary or a sharp valley, which would not be reflected in any local Jacobian. Since
our method relies on gradient norms, it cannot detect non-local Lipschitz violations.

10.6 Conclusion

In this chapter, we have presented a comprehensive statistical framework for the verification

of neural networks. By shifting the verification paradigm from intractable deterministic

guarantees to high-confidence PAC Intervals, we have developed a method that scales to

problems where exact solvers fail.

Our contribution is twofold. First, we established the DKW-Constrained POT method, a

rigorous statistical engine that translates tail samples into a conservative upper bound for the

Lipschitz constant. We showed how the Generalized Pareto Distribution, constrained by the

Reverse Weibull assumption, provides a physically motivated model for the finite limits of

neural network gradients.

Second, we addressed the scarcity of tail data with the Adam-Sobol sampling strategy. We

demonstrated that simple random sampling is insufficient in high dimensions and that a

targeted adversarial attack coupled with low-discrepancy Sobol refinement is necessary to

populate the tail of the distribution.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 106

The experimental results validate this approach as a pragmatic trade-off. While we sacrifice

the absolute certainty of exact methods—accepting a small, quantifiable risk of

underestimation—we gain the ability to generate tight, meaningful bounds in seconds where

other methods take hours or fail completely. This suggests that statistical verification, when

grounded in rigorous Extreme Value Theory, offers a viable path forward for certifying the

robustness of increasingly complex deep learning systems.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 107

 Verification of EVENFLOW Use Cases

11.1 Verification of Industry 4.0 use case

Autonomous robots are poised to become a foundational component of next-generation

factory automation, yet their dependable operation in highly dynamic industrial

environments remains a major challenge. A critical limitation lies in ensuring that the neural

networks governing perception, prediction, and control behave reliably under all possible

operating conditions. To address this formal verification techniques are applied to neural

systems deployed on autonomous mobile robots (AMRs), with the goal of providing provable

safety guarantees.

AMRs use deep neural networks to interpret sensor data, detect obstacles, recognise objects,

and make navigation decisions. However, these models are inherently opaque and can

behave unpredictably when exposed to noisy, adversarial, or rare environmental conditions.

In industrial settings—where robots must operate among workers, other robots, and fast-

changing surroundings—such unpredictability may result in unsafe stops, near-misses, or

collisions, disrupting production and posing significant safety risks. Traditional testing and

empirical evaluation cannot feasibly cover the enormous space of possible inputs generated

by high-frequency sensors.

Formal verification provides a principled solution by mathematically analysing neural

networks to ensure that their outputs remain safe under all input variations within a specified

range. These methods can reason over entire sets of sensor readings, certify robustness to

perturbations, and verify that safety-critical decisions (e.g., obstacle detection, emergency

braking, or collision avoidance) hold across all relevant scenarios. For factory-deployed AMRs

with constrained computational resources, verification must also account for the large

volumes of sensor data and the need for lightweight, efficient neural models.

Emerging work combines advanced verification algorithms, symbolic reasoning, and scalable

neural approximations to validate AMR behaviours before deployment. By leveraging large

datasets, simulations, and domain-specific safety constraints, researchers aim to produce

certifiably robust autonomous systems that can anticipate problematic situations while

guaranteeing safe responses. Integrating formal verification into the development pipeline

promises not only to increase the reliability and safety of AMRs but also to enhance

manufacturing productivity and trust in AI-enabled automation.

11.1.1 Neurosymbolic model for robot path planning and collision avoidance

To facilitate tractable formal verification, we employ a deliberately compact yet sufficiently

expressive convolutional neural network (CNN) to serve as the perception component of the

neurosymbolic collision-avoidance system. The model processes raw visual observations from

an autonomous robot platform and predicts whether the robot’s current trajectory is on a

collision course with another robot in the environment. The dataset used for this study was

provided by the German Research Center for Artificial Intelligence (DFKI). It consists of

synchronized left- and right-camera video streams recorded from two mobile robots

operating in a shared indoor space. Each image captures the robot’s first-person viewpoint,

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 108

and potential collision events can be inferred when the second robot appears within the

camera’s field of view.

The original camera frames have a resolution of 1280 × 720 pixels. To reduce computational

overhead and improve verification scalability, all images are down sampled to 160 ×

90 before being fed into the neural network. The resulting input tensor has shape

3 × 160 × 90, corresponding to RGB channels and reduced spatial dimensions. The output of

the neural network is classified into 20 bins representing different spatial configurations and

motion patterns associated with the two robots, enabling symbolic reasoning modules to

determine whether their trajectories are likely to intersect.

Figure 66 shows the overall neuro-symbolic architecture. The CNN comprises a sequence of

convolutional layers with ReLU activations and periodic max-pooling, progressively reducing

spatial resolution while increasing feature depth. After ten convolutional blocks, the feature

map is flattened into a 384-dimensional vector and passed through a two-layer classifier

(384→20→num_classes).

Figure 66: Neurosymbolic model for robot collision avoidance using the DFKI dataset.

11.1.2 Verification of the Neurosymbolic system for Industry 4.0

In this section, we report the formal verification results obtained for the neuro-symbolic

collision-avoidance model developed for the DFKI robotic perception use case. The underlying

neural architecture was trained using a 5-fold cross-validation strategy to ensure robustness

and mitigate overfitting. For each fold, an independently trained model was subjected to

verification, enabling us to assess the consistency and reliability of the verification outcomes

across five distinct data splits. This evaluation methodology provides a comprehensive view

of the model’s behaviour under varying training distributions and supports a statistically

grounded assessment of its safety properties.

To analyse robustness, we compute certified guarantees under a range of 𝜖-bounded

perturbations applied to the input images. These perturbations simulate realistic sensor noise

and environmental variability that may arise during robot operation. Verification is performed

using a custom verification toolkit built on top of the auto_LiRPA framework, which enables

sound relaxation-based bound propagation for convolutional neural networks. The toolkit

supports the computation of lower and upper bounds on network outputs under adversarially

bounded perturbations, thereby allowing us to determine whether safety-critical

classification decisions—such as detecting potential robot trajectory collisions—remain

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 109

invariant within specified perturbation sets. IBP is used to verify the network across various

noise perturbations.

The resulting certified robustness metrics for all five cross-validation splits (Split 1 ... 5) are

summarized in Table 13 showing the proportion of test samples for which safety predictions

remain formally guaranteed across different perturbation magnitudes.

Table 13: Verification results using IBP across 5 splits for various perturbation ranges.

Split

Epsilons

1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-10

Split 1 75.73% 75.73% 72.52% 24.05% 0.0063% 0.00% 75.73%

Split 2 79.03% 79.01% 68.36% 0.10% 0.00% 0.00% 79.03%

Split 3 76.55% 76.53% 67.58% 0.31% 0.00% 0.00% 76.55%

Split 4 76.21% 76.21% 64.09% 0.49% 0.00% 0.00% 76.21%

Split 5 78.48% 78.47% 72.92% 1.08% 0.00% 0.00% 78.48%

Figure 67: Robust accuracy of the NeSy model at various noise perturbations.

To further enhance the verification performance of the proposed neuro-symbolic model,

future work will focus on tightening the verification bounds through the integration of more

advanced and expressive certification techniques. In particular, we plan to employ hybrid

bound-propagation methods such as CROWN+IBP, which combine linear relaxation with

interval reasoning to obtain significantly tighter output bounds while maintaining

computational tractability. Such methods have been shown to reduce over-approximation

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 110

error and are expected to yield stronger certified robustness guarantees for high-dimensional

perceptual models.

In parallel, we intend to investigate training strategies that explicitly promote robustness

during model optimization. This includes adversarial training, where the model is exposed to

worst-case perturbations during training to improve empirical robustness, as well as certified

training, which incorporates verification-aware objectives that encourage the network to

produce representations more amenable to formal certification. Together, these approaches

aim to systematically strengthen the model’s resilience to input perturbations, ultimately

improving both its empirical performance and its provable safety properties.

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 111

 Status of the EVENFLOW Verification Toolkit
The EVENFLOW verification toolkit is available as a public repository at -

https://github.com/EVENFLOW-project-EU/nesy-veri.

Figure 68: The verification toolkit at GitHub.

The verification toolkit for the Industry 4.0 robot navigation use case with Neuro-Symbolic

models built on the DFKI dataset is available at - https://github.com/EVENFLOW-project-

EU/dfki-robots.

Figure 69: The verification toolkit for the Industry 4.0 robot navigation use case at GitHub.

https://github.com/EVENFLOW-project-EU/nesy-veri
https://github.com/EVENFLOW-project-EU/dfki-robots
https://github.com/EVENFLOW-project-EU/dfki-robots

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 112

 References

[REF-01] George Klioumis, Nikos Giatrakos: Data-driven Synchronization Protocols for
Data-parallel Neural Learning over Streaming Data. IEEE Big Data 2024: 988-
997

[REF-02] Antonios Kontaxakis, Nikos Giatrakos, Dimitris Sacharidis, Antonios
Deligiannakis: And synopses for all: A synopses data engine for extreme scale
analytics-as-a-service. Inf. Syst. 116: 102221 (2023)

[REF-03] Errikos Streviniotis, George Klioumis, Nikos Giatrakos: SuBiTO: Synopsis-based
Training Optimization for Continuous Real-Time Neural Learning over Big
Streaming Data. AAAI 2025: 29697-29699

[REF-04] Eric Brochu, Vlad M. Cora, and Nando de Freitas. 2010. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning. arXiv:1012.2599 [cs.LG]

[REF-05] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv:1807.02811
[stat.ML]

[REF-06] Reddy, K.; and Shah, M. 2013. Recognizing 50 human action categories of web
videos. Machine Vision and Applications, 24

[REF-07] Nick Duffield & Carsten Lund & Mikkel Thorup. “Priority sampling for
estimation of arbitrary subset sums”. In: Journal of the ACM (JACM) 54 (6
2007), pp. 1–39.

[REF-08] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, Bor-Yiing Su: Scaling
Distributed Machine Learning with the Parameter Server. OSDI 2014: 583-598

[REF-09] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigating
communication bottlenecks in parameter servers,” in IEEE INFOCOM 2019

[REF-10] Ourania Ntouni, Dimitrios Banelas, Nikos Giatrakos: NeuroFlinkCEP:
Neurosymbolic Complex Event Recognition Optimized across IoT Platforms.
Proc. VLDB Endow. 18(12): 5355-5358 (2025)

[REF-11] Errikos Streviniotis, Dimitrios Banelas, Nikos Giatrakos, Antonios Deligiannakis:
DAG*: A Novel A*-Alike Algorithm for Optimal Workflow Execution Across IoT
Platforms. ICDE 2025: 807-820

[REF-12] Nikos Giatrakos: SSTRESED: Scalable Semantic Trajectory Extraction for Simple
Event Detection over Streaming Movement Data (Extended Abstract). TIME
2023: 15:1-15:4

[REF-13] Zhixian Yan, Nikos Giatrakos, Vangelis Katsikaros, Nikos Pelekis, Yannis
Theodoridis: SeTraStream: Semantic-Aware Trajectory Construction over
Streaming Movement Data. SSTD 2011: 367-385

[REF-14] Errikos Streviniotis, Nikos Giatrakos, Yannis Kotidis, Thaleia Ntiniakou, Miguel
Ponce de Leon: Optimizing Resource Allocation for Tumor Simulations over
HPC Infrastructures. DSAA 2023: 1-10

[REF-15] Errikos Streviniotis, Nikos Giatrakos, Yannis Kotidis, Thaleia Ntiniakou, Miguel
Ponce de Leon: RATS: A resource allocator for optimizing the execution of
tumor simulations over HPC infrastructures. Inf. Syst. 132: 102538 (2025)

[REF-16] J. Koning, T. Patki, T.R. Scogland, B. Springmeyer, M. Taufer, Flux: Overcoming
scheduling challenges for exascale workflows, Future Gener. Comput. Syst. 110

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 113

(2020) 202–213

[REF-17] D. Rafiei and A. Mendelzon. 1997. Similarity-based queries for time series data.
In Proceedings of the 1997 ACM SIGMOD international conference on
Management of data (SIGMOD '97). https://doi.org/10.1145/253260.253264

[REF-18] I. Daubechies, “The wavelet transform, time-frequency localization and signal
analysis,” IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 961–1005, Sep. 1990, doi:
10.1109/18.57199.

[REF-19] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans.
Comput., vol. C–23, no. 1, pp. 90–93, Jan. 1974, doi: 10.1109/T-C.1974.223784.

[REF-20] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases,” Knowl.
Inf. Syst., vol. 3, no. 3, pp. 263–286, Aug. 2001, doi: 10.1007/PL00011669

[REF-21] Nikos Giatrakos, Yannis Kotidis, Antonios Deligiannakis, Vasilis Vassalos, Yannis
Theodoridis: TACO: tunable approximate computation of outliers in wireless
sensor networks. SIGMOD Conference 2010: 279-290

[REF-22] Nikos Giatrakos, Antonios Deligiannakis, Minos N. Garofalakis, Yannis Kotidis:
Omnibus outlier detection in sensor networks using windowed locality
sensitive hashing. Future Gener. Comput. Syst. 110: 587-609 (2020)

[REF-23] Antonios Skevis, George Klioumis, Nikos Giatrakos: A Novel Reverse Random
Hyperplane Projection Scheme and Its Effect on Mining Sensor Streams. IEEE
Big Data 2024: 793-798

[REF-24] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” in SenSys, 2003.

[REF-25] Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A. and Misener, R. (2020)
“Efficient Verification of ReLU-Based Neural Networks via Dependency
Analysis”, Proceedings of the AAAI Conference on Artificial Intelligence, 34(04),
pp. 3291-3299. doi: 10.1609/aaai.v34i04.5729.

[REF-26] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer, “Policy
compression for aircraft collision avoidance systems”, in 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC), IEEE, 2016, pp. 1–10.

[REF-27] Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5), pp.359-366.

[REF-28] Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari,
Andrea Passerini, and Stefano Teso. Bears make neuro-symbolic models aware
of their reasoning shortcuts. arXiv preprint arXiv:2402.12240, 2024.

[REF-29] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet
Kohli. On the effectiveness of interval bound propagation for training verifiably
robust models. CoRR, abs/1810.12715, 2018. URL
http://arxiv.org/abs/1810.12715.

[REF-30] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks. In Rupak
Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science, pages
97–117. Springer, 2017. doi: 10.1007/
978-3-319-63387-9\5. URL https://doi.org/10.1007/978-3-319-63387-9_5.

https://doi.org/10.1145/253260.253264
http://arxiv.org/abs/1810.12715
https://doi.org/10.1007/978-3-319-63387-9_5

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 114

[REF-31] Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu. The fifth
international verification of neural networks competition (vnn-comp 2024):
Summary and results, 2024. URL https://arxiv.org/abs/2412.19985.

[REF-32] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji´c, et al.
The marabou framework for verification and analysis of deep neural networks.
In Computer Aided Verification: 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31, pages 443–452.
Springer, 2019.

[REF-33] Kaidi Xu, Zhouxing Shi, Huan Zhang, Minlie Huang, Kai-Wei Chang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis on
general computational graphs. CoRR, abs/2002.12920, 2020. URL
https://arxiv.org/abs/2002.12920.

[REF-34] Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification
via adaptive refinement and adversarial search. In ECAI 2020, pages 2513–
2520. IOS Press, 2020.

[REF-35] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester,
and Luc De Raedt. Deepproblog: Neural probabilistic logic programming.
Advances in neural information processing systems, 31, 2018.

[REF-36] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
Efficient neural network robustness certification with general activation
functions, 2018. URL https://arxiv.org/abs/1811.00866.

[REF-37] Christopher Brix, Stanley Bak, Taylor T. Johnson, and Haoze Wu. The fifth
international verification of neural networks competition (vnn-comp 2024):
Summary and results, 2024. URL https://arxiv.org/abs/2412.19985.

[REF-38] Eleonora Giunchiglia, Mihaela C˘at˘alina Stoian, Salman Khan, Fabio Cuzzolin,
and Thomas Lukasiewicz. Road-r: the autonomous driving dataset with logical
requirements. Machine Learning, 112(9):3261–3291, 2023.

[REF-39] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Relja Arandjelovi´c, Timothy A. Mann, and Pushmeet
Kohli. On the effectiveness of interval bound propagation for training verifiably
robust models. ArXiv, abs/1810.12715, 2018. URL
https://api.semanticscholar.org/CorpusID:53112003.

[REF-40] Jerry Lambert, Amedeo Ceruti, and Hartmut Spliethoff. Benchmark of mixed-
integer linear programming formulations for district heating network design.
Energy, 308:132885, 2024

[REF-41] In Gyu Lee, Qianqian Zhang, Sang Won Yoon, and Daehan Won. A mixed integer
linear programming support vector machine for cost-effective feature
selection. Knowledge-based systems, 203:106145, 2020.

[REF-42] Yun Hui Lin, Yuan Wang, Dongdong He, and Loo Hay Lee. Last-mile delivery:
Optimal locker location under multinomial logit choice model. Transportation
Research Part E: Logistics and Transportation Review, 142:102059, 2020.

[REF-43] Debangshu Banerjee and Gagandeep Singh. Relational dnn verification with
cross executional bound refinement. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

[REF-44] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-

https://arxiv.org/abs/2412.19985
https://arxiv.org/abs/2002.12920
https://arxiv.org/abs/1811.00866
https://arxiv.org/abs/2412.19985
https://api.semanticscholar.org/CorpusID:53112003

D5.2 – Final Version of Verification and Scalability Techniques

Horizon Europe Agreement No 101070430

Dissemination level: PU - Public, fully open Page 115

to-end 3d detection, tracking and motion forecasting with a single
convolutional net. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 3569–
3577. Computer Vision Foundation / IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00376.
URL http://openaccess.thecvf.com/content_cvpr_2018/
html/Luo_Fast_and_Furious_CVPR_2018_paper.html.

[REF-45] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

[REF-46] Akshay Agarwal, Mayank Vatsa, Richa Singh, and Nalini K. Ratha. Noise is inside
me! generating adversarial perturbations with noise derived from natural
filters. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2020.

[REF-47] Nabeel Hingun, Chawin Sitawarin, Jerry Li, and David Wagner. Reap: A large-
scale realistic adversarial patch benchmark. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 4640–4651,
October 2023.

[REF-48] Florian Tramer and Dan Boneh. Adversarial training and robustness for
multiple perturbations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper_files/paper/2019/
file/5d4ae76f053f8f2516ad12961ef7fe97-Paper.pdf.

[REF-49] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset
of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402,
2012. URL http://arxiv.org/abs/1212.0402.

[REF-50] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for
2d and 3d biomedical image classification. CoRR, abs/2110.14795, 2021. URL
https://arxiv.org/abs/2110.14795.

[REF-51] AR Udacity. Udacity self-driving car dataset, 2017.

[REF-52] Scaling provable adversarial defenses. In Proceedings of the 32nd Conference
on Neural Information Processing Systems (NeurIPS18), 2018.

http://openaccess.thecvf.com/content_cvpr_2018/html/Luo_Fast_and_Furious_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Luo_Fast_and_Furious_CVPR_2018_paper.html
https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.neurips.cc/paper_files/paper/2019/file/5d4ae76f053f8f2516ad12961ef7fe97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5d4ae76f053f8f2516ad12961ef7fe97-Paper.pdf
http://arxiv.org/abs/1212.0402
https://arxiv.org/abs/2110.14795

	Executive Summary
	Table of Contents
	Table of Figures
	List of Tables
	Definitions, Acronyms and Abbreviations
	1 Introduction
	1.1 Project Information
	1.2 Document Scope
	1.3 Document Structure

	2 Overview of Progress till M18
	2.1 Recap on Scalability Aspects in EVENFLOW
	2.2 Recap on Verification Aspects in EVENFLOW

	3 Scalable Neural Learning and Inference over Data Streams
	3.1 Leveraging Synopses for Training Optimization – The SuBiTO Framework
	3.1.1 The SuBiTO Architecture
	3.1.2 The SuBiTO Dashboard

	3.2 A NeSy SuBiTO Proof-of-Concept
	3.3 Enriching the Algorithmic Foundations of Synopses-based Training Optimization
	3.3.1 Experimental Evaluation on SuBiTO algorithms

	3.4 Parallel Synopses Maintenance Revisited
	3.5 Data-driven Synchronization and the EVENFLOW Protocol Suite
	3.5.1 The Basic EVENFLOW Synchronization Protocol
	3.5.2 The Fast EVENFLOW Synchronization Protocol
	3.5.3 Handling Sliding Windows

	3.6 Distribuito SuBiTO: Synopses, Parallelism & Smart Sync All in One
	3.6.1 Experimental Evaluation of Distribuito SuBiTO
	3.6.1.1 Synopses Scalability
	3.6.1.2 Training Scalability
	3.6.1.3 Inference Scalability

	4 Scalable Neurosymbolic Complex Event Recognition
	4.1.1 NeuroFlinkCEP Architecture
	4.1.2 From Logical CER workflows to Physical CER over IoT Executions

	5 Status of the EVENFLOW Scalability Toolkit
	6 Scaling EVENFLOW Use Cases
	6.1 The SSTRESSED Framework for the Industry 4.0 Use Case
	6.1.1 SSTRESED Experimental Evaluation

	6.2 The RATS+ Framework for the Personalized Medicine Use Case
	6.2.1 Overview on the RATS Framework
	6.2.2 RATS+ Exploiting Transfer Learning
	6.2.2.1 RATS+ Experimental Highlights

	6.3 Synopses and Smart Sync for the Infrastructure Lifecycle Assessment Use Case
	6.3.1 The Reverse Random Hyperplane Projection Scheme
	6.3.1.1 RRHP Experimental Evaluation

	6.3.2 Uncertainty-aware Synchronization Protocols
	6.3.2.1 UGM Experimental Evaluation

	7 EVENFLOW Verification Approach
	7.1 Formal Verification of Neural Networks
	7.2 Scalable approach towards Probabilistic Neuro-Symbolic Verification
	7.2.1 Probabilistic Neuro-Symbolic Verification
	7.2.1.1 Relaxation-Based Approach

	7.3 Experimental Evaluation
	7.3.1 Multi-Digit MNIST Addition
	7.3.1.1 Dataset and Experimental Setup
	7.3.1.2 Scalability of the approaches and verification results

	7.3.2 Autonomous driving - ROAD-R
	7.3.2.1 Dataset and experimental setup

	7.4 Complex Event Verification for Temporal Neuro-Symbolic Models
	7.4.1 Verification Methodologies
	7.4.2 Evaluation Scenario: Temporal Complex Event Recognition
	7.4.3 Experimental Evaluation of Temporal Verification
	7.4.4 Analysis of Results

	8 The SCANNV Approach for Parallel Verification
	8.1 Input Splitting Black-box Optimization and Transfer Learning
	8.2 ReLU-Based “Grey-Box” Optimisation
	8.3 SCANVV Experimental Evaluation
	8.3.1 Performance of BO-Based Input Splitting Optimisation
	8.3.2 Impact of ReLU-Based Optimisation and Scheduling

	9 Verification of Spatio-Temporal Systems
	9.1 Spatio-Temporal Bound Propagation Method
	9.1.1 Modelling Spatio-Temporal Constraints
	9.1.1.1 Affine layer
	9.1.1.2 MILP Formulation

	9.1.2 Spatio-Temporal Bound Propagation (STBP)

	9.2 Datasets and Models
	9.3 Experiments

	10 Probabilistic Verification of Neural Networks via PAC-Interval Estimation
	10.1 The Verification Criterion
	10.1.1 The Estimation Challenge

	10.2 Theoretical Framework: The PAC Interval
	10.2.1 Understanding the PAC Framework
	10.2.2 The Cumulative Distribution Function (CDF)
	10.2.3 The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality
	10.2.3.1 Concept: The Confidence Tube
	10.2.3.2 Mathematical Formulation

	10.2.4 Parameter Space Search for the Worst-Case Model

	10.3 Targeted Sampling: The Adam-Sobol Method
	10.3.1 Modularity of the Sampling Engine
	10.3.2 Stage 1: Global Peak Discovery (Adam Attack)
	10.3.3 Stage 2: Local Distributional Refinement (K-Box Sobol)
	10.3.3.1 Why Sobol Sequences?

	10.4 Estimation Engine: Peaks-over-Threshold (POT)
	10.4.1.1 The Shape Parameter and the Reverse Weibull
	10.4.2 Automated Threshold Selection: Balancing Bias and Variance
	10.4.3 Constraint-Based Verification Bound

	10.5 Experimental Results
	10.5.1 Performance on Small Domain
	10.5.1.1 Analysis of Underestimation

	10.5.2 Performance on Large Domain
	10.5.2.1 Scalability and Stability

	10.5.3 Limitations: Sources of Underestimation

	10.6 Conclusion

	11 Verification of EVENFLOW Use Cases
	11.1 Verification of Industry 4.0 use case
	11.1.1 Neurosymbolic model for robot path planning and collision avoidance
	11.1.2 Verification of the Neurosymbolic system for Industry 4.0

	12 Status of the EVENFLOW Verification Toolkit
	13 References

