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Executive Summary  
EVENFLOW is conducting world-class research in neuro-symbolic learning models and 

applications. In this direction, the project is researching neuro-symbolic learning methods, 

while integrating them into use cases that demonstrate the added-value of the neuro-

symbolic AI paradigm. Moreover, the project aims to develop a platform that will meet 

various types of robustness and scalability requirements for the development, deployment 

and operation of neuro-symbolic learning applications end-to-end i.e., from data acquisition 

and pre-processing to the creation of pipelines involving integrated formal learning and deep 

learning components. The EVENFLOW platform will promote a structured approach to the 

development and deployment of neuro-symbolic learning applications. Instead of relying on 

an ad-hoc integration of neuro-symbolic learning components that are different for each use 

case, the platform will provide generalized infrastructures that ease the structuring, 

development, integration and deployment of end-to-to-end neuro-symbolic learning and 

prediction pipelines. 

This deliverable details the architectural design of the EVENFLOW platform and its 

specifications regarding the development, deployment, and operation of integrated neuro-

symbolic learning workflows and applications. The deliverable provides an integrated and 

completed description of the platform architecture, based on the 4+1 views methodologies 

for describing software architectures i.e., based on multiple views that include a logical, a 

process, an implementation, a physical deployment and a use cases viewpoint of the 

integrated platform. 

This first platform deliverable provides a comprehensive description of the logical view of the 

platform’s architecture, which focuses on the functionalities of the various components that 

comprise neuro-symbolic learning applications. It provides the logical structure of a neuro-

symbolic learning application, along with concrete logical architectures for the three 

EVENFLOW use cases. Moreover, the deliverable provides early insights on the information 

flows between the different components of the EVENFLOW platform (i.e., process view 

consideration), along with information about the main implementation technologies that will 

be used to implement the platform. Also, the deliverable introduces a high-level reference 

model for the EVENFLOW functionalities, which are clustered into explainable AI, hybrid 

learning and reasoning, as well as verification and scalability functionalities. This high-level 

reference model aims at facilitating stakeholders’ communications regarding architectural 

issues, with an emphasis on communications about the functionalities of the logical modules 

of the platform. 

This deliverable, D6.3, has a sibling sensitive one, D6.1, but as D6.1 contains no sensitive 

information, the contents of the two deliverables are the same. 
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Definitions, Acronyms and Abbreviations 
 

Acronym/ 
Abbreviation 

Title 

AI Artificial Intelligence 

CEF Complex Event Forecasting 

GDPR General Data Protection Regulation 

LSTM Long short-term memory 

ML Machine Learning 

RNN Recurrent Neural Network 

XAI Explainable AI 

 

Term Definition 

FAIR data FAIR data are data which meet principles of findability, accessibility, 
interoperability, and reusability (FAIR) 
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 Introduction 

1.1 Project Information 

EVENFLOW is developing hybrid learning techniques for complex event forecasting, which 

combine deep learning with logic-based learning and reasoning into neuro-symbolic 

forecasting models. The envisioned methods combine (i) neural representation learning 

techniques, capable of constructing event-based features from streams of perception-level 

data with (ii) powerful symbolic learning and reasoning tools, that utilize such features to 

synthesize high-level, interpretable patterns of critical situations to be forecast. 

Crucial in the EVENFLOW approach is the online nature of the learning methods, which makes 

them applicable to evolving data flows and allows to utilize rich domain knowledge that is 

becoming available progressively. To deal with the brittleness of neural predictors and the 

high volume/velocity of temporal data flows, the EVENFLOW techniques rely on novel, formal 

verification techniques for machine learning, in addition to a suite of scalability algorithms for 

federated training and incremental model construction. The learnt forecasters will be 

interpretable and scalable, allowing for fully explainable insights, delivered in a timely fashion 

and enabling proactive decision making. 

EVENFLOW is evaluated on three challenging use cases related to (1) oncological forecasting 

in precision medicine, (2) safe and efficient behaviour of autonomous transportation robots 

in smart factories and (3) reliable life cycle assessment of critical infrastructure monitoring. 

Expected impact: 

• New scientific horizons in integrating machine learning and machine reasoning, 

neural, statistical and symbolic AI 

• Breakthroughs in verification, interpretability and scalability of neuro-symbolic 

learning systems 

• Interpretable, verifiable and scalable ML-based proactive analytics and decision-

making for humans-in-the-loop and autonomous systems alike 

• Robust, resilient solutions in critical sectors of science and industry 

• Accurate and timely forecasting in vertical sectors (healthcare, Industry 4.0, critical 

infrastructure monitoring) 

• Novel FAIR datasets for scientific research 

• Novel resources and approaches for verifiable, interpretable, scalable and knowledge-

aware machine learning 

Table 1: The EVENFLOW consortium. 

Number1 Name Country Short name 

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA 

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU 

 

1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner. 
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Number1 Name Country Short name 

2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH 
"DEMOKRITOS" 

Greece NCSR 

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS 
STIS TECHNOLOGIES TIS PLIROFORIAS, TON 
EPIKOINONION KAI TIS GNOSIS 

Greece ARC 

4 BARCELONA SUPERCOMPUTING CENTER-
CENTRO NACIONAL DE SUPERCOMPUTACION 

Spain BSC 

5 DEUTSCHES FORSCHUNGSZENTRUM FUR 
KUNSTLICHE INTELLIGENZ GMBH 

Germany DFKI 

6 EKSO SRL Italy EKSO 

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY 
AND MEDICINE 

United 
Kingdom 

ICL 

 

1.2 Document Scope 

D6.1 and D6.3 provide the sensitive (SEN) and the public (PU) versions of the same 

deliverable. However, as no sensitive information was included in D6.1, the contents of D6.1 

and D6.3 are the same. 

This first platform deliverable provides a comprehensive description of the logical view of the 

platform’s architecture, which focuses on the functionalities of the various components that 

comprise neuro-symbolic learning applications. It provides the logical structure of a neuro-

symbolic learning application, along with concrete logical architectures for the three 

EVENFLOW use cases. Moreover, the deliverable provides early insights on the information 

flows between the different components of the EVENFLOW platform (i.e., process view 

consideration), along with information about the main implementation technologies that will 

be used to implement the platform. Also, the deliverable introduces a high-level reference 

model for the EVENFLOW functionalities, which are clustered into explainable AI, hybrid 

learning and reasoning, as well as verification and scalability functionalities. This high-level 

reference model is destined to facilitate stakeholders’ communications regarding 

architectural issues, with an emphasis on communications about the functionalities of the 

logical modules of the platform. 

1.3 Document Structure 

This document is comprised of the following chapters: 

Chapter 1 presents an introduction to the project and the document. 

Chapter 2 presents a summary of the background and requirements driving the architecture. 

Chapter 3 presents the high-level EVENFLOW architecture, together with the major important 

views of it (both static and dynamic views included) 

Chapter 4 presents the connections between architecture, scenarios and use-cases, for each 

of the three major use-cases of the project. 

Chapter 5 is the concluding chapter that outlines the conclusions of this deliverable. 
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 Background and Driving Requirements 

2.1 Reference Architecture Models for Artificial Intelligence 

Reference architectures in AI are invaluable blueprints that guide the development of 

intricate AI systems, aligning them strategically with business needs while outlining critical 

components and their interplays. They encompass data processing, AI models, orchestration, 

and the core infrastructure components. Famous models such as the IBM Cloud Pak for Data, 

Google Cloud's AI Hub, and Microsoft's Azure AI employ these principles. The data layer 

generally comprises data sources, storage, and data management methodologies. On the AI 

modelling side, machine learning algorithms, deep learning networks, or reinforcement 

learning models can be considered. For orchestration, the components often included are 

those for model training, validation, deployment, and monitoring. The infrastructure layer 

provides the backbone, with hardware, cloud services, and networking, offering the needed 

computational capabilities. In sum, reference architectures, though they possess a degree of 

generality, are crucial as they provide a roadmap for the efficient design of AI systems, 

minimize design errors, ensure scalability and interoperability, and encourage the reuse of 

architectural elements. 

2.2 Requirements for Integrated Systems 

Requirements for integrated systems usually specify the APIs of the various sub-systems that 

are to be connected to the entire integrated system, so that other sub-system integrators 

know what to expect from each sub-system, and how to use it. API specifications can be given 

in the form of REST endpoints (in loosely connected web-service fashion), or they can be as 

tight as full specifications of the data structures stored in a centralized data repository that 

can be an RDBMS or a distributed message bus, or a distributed NoSQL document database, 

etc.  

The requirements gathered for this project in particular, are collected in a single Excel file 

stored in the project’s common share space. See requirements R001-R012 in the exact URL 

for this requirements Excel file: EVENFLOW integrated system requirements.xlsx. 

2.3 Regulatory Requirements 

The development, deployment and operation of neuro-symbolic learning systems must 

comply with applicable European laws and regulations. Specifically, the relevant 

requirements must be met as follows: 

• GDPR Compliance: EVENFLOW systems are data-intensive and as such, must comply 

with the mandatory GDPR (General Data Protection Regulation). Hence, they must 

adhere to the GDPR principles and provide support for its mandates such as the 

purpose limitations and the right to be forgotten. Note that several EVENFLOW 

systems may use neuro-symbolic learning in scenarios with the human in the loop and 

use cases involving sensitive data. GDPR requirements must be accounted for during 

the systems’ development and operation. However, the fulfilment of these 

https://netcompany.sharepoint.com/:x:/r/sites/EVENFLOW/Delte%20dokumenter/WP6%20-%20Software%20Integration%20in%20the%20EVENFLOW%20Platfor/T6.1%20-%20Architecture%20Definition%20and%20Requirements%20Analysis/EVENFLOW%20integrated%20system%20requirements.xlsx?d=wc80f4277c6564ee4a062be864c844c81&csf=1&web=1&e=6XYye5
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requirements is only indirectly linked with the core research topics of the project, 

which concern AI development. 

• AI Act: EVENFLOW undertakes AI research, which must be in-line with the mandates 

of the European AI regulation proposal i.e., the AI Act [REF-03]. The AI Act takes a risk 

based approach to the classification and compliance of AI systems. Depending on the 

risk classification of an AI system (i.e., of a neuro symbolic learning system in the case 

of EVENFLOW) different requirements must be met. For instance, in the case of 

minimal-risk systems (e.g., systems that display information without any essential 

safety of abuse concerns) deployers do not have any essential restrictions. Compliance 

to AI code of conduct for them may be recommended, yet it is not mandatory. On the 

other hand, high risk systems must comply with several requirements that are spelled 

out in the AI Act. Some of these requirements are depicted in Figure 1 and include 

robustness, accuracy, human oversight, explainability/transparency, logging and 

traceability, the deployment of strong cybersecurity measures and more. The 

EVENFLOW research is directly related to several of these requirements. Specifically, 

the project’s systems can be used to boost AI Act compliance for high-risk AI 

deployments. This is for example the case with the following regulatory requirements: 

o Transparency: EVENFLOW Explainable AI systems can boost compliance to 

transparency requirements. 

o Robustness and Accuracy: EVENFOW Hybrid Learning and Reasoning systems 

can boost the robustness and accuracy of AI systems especially in selected 

scenarios (e.g., hybrid use cases where adequate quality data are lacking). 

o Logging and Traceability: The EVENFLOW platform shall provide audit trail 

management and generation functionalities to support data logging and 

traceability. 

 

 

Figure 1: AI Act for High-Risk Systems. 
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In practice, the EVENFLOW use cases will fulfil applicable regulatory requirements. The latter 

will be fulfilled based on core functionalities of the EVENFLOW systems (e.g., Explainable AI 

functionalities) and based on use case specific functionalities that will be implemented in the 

scope of the use cases implementation. 
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 EVENFLOW Architecture 

3.1 High level Reference Model 

Figure 2 illustrates a high-level reference model for Neuro-Symbolic AI. It is provided as a high-

level reference model that classifies the main functionalities that are offered by the project’s 

platform. Primarily, this high-level reference model aims at facilitating communications 

between various stakeholders of the EVENFLOW compliant neuro-symbolic learning system. 

It presents the main functions offered by the project’s platform in terms of neuro-symbolic 

learning, along with their interactions. Most importantly, it classifies the EVENFLOW 

functionalities in their main categories. This enables stakeholders to position EVENFLOW 

functionalities within a proper cluster of neuro-symbolic AI related functions. Specifically, 

EVENFLOW offers three different types of functionalities, including: 

• Explainable AI: This category comprises the project’s XAI functionalities, including 

forecasting explainability and explainability of neural networks. Explainability may be 

also supported through Glass Box models that provide inherent transparency 

regarding how they produce their AI outcomes. The XAI techniques may be used by 

methods and systems of the other two categories of the reference architecture. 

• Hybrid Learning and Reasoning: This includes the project’s hybrid learning and 

reasoning functionalities, including neural learning, on-line symbolic learning, 

complex event forecasting and reasoning assisted programming functionalities. These 

functionalities reflect the project’s neuro-symbolic AI methods, which may interact 

with the XAI as well as with the verification and scalability functionalities as depicted 

in the figure. 

• Verification and Scalability: EVENFLOW provides a set of verification and scalability 

functionalities, which are mostly developed in WP5 of the project. They are clustered 

in this category of the reference architecture model and include exact verification 

methods, abstract-based verification, as well as techniques for attributing various 

types of scalability on neural learning. 

 

 

Figure 2: EVENFLOW's High-level Reference Architecture for Neuro-symbolic AI. 
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The execution of the above-listed functionalities is powered by an AI platform and a 

distributed streaming middleware platform. The former enables the execution of AI 

techniques (including XAI functions), while the latter facilitates the collection, ingestion and 

processing of data to the various functions. 

The high-level functionalities of the reference architecture models are further detailed in the 

logical view of the EVENFLOW platform in the following sections. In particular, the logical view 

of the architecture elaborates on the functional modules of the architecture that enable the 

collection and management of the data for the execution of the EVENFLOW neuro-symbolic 

learning functionalities. 

3.2 Logical View 

The overall architecture is shown in the following logical view below in Figure 3. 

 

Figure 3: EVENFLOW Architecture Logical View. 

In the following, we discuss the major components of the architecture, as depicted in Figure 

3. 

3.2.1 Component 1: Data Management 

This component consists essentially of a high-performance set of distributed streaming 

middleware, together with accompanying high-performing data bases.  

The streaming middleware is required to include the following components: 

• Apache Kafka as distributed message bus 
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• Appropriate ETL scripts for interacting with various data sources 

The streaming middleware may also include the following components: 

• Apache Spark distributed in-memory processing engine 

• Apache Flink distributed in-memory processing engine 

 The databases layer is required to include the following component: 

• InfluxDB server v.2.0 time-series database 

3.2.2 Component 2: Data Analytics 

The data analytics component comprises a set of Machine Learning tools (some with 

Explainability capabilities), and a set of dashboards (analytics, business intelligence features). 

It is expected that some of the tools will be Open-Source algorithm implementations (e.g. the 

wittgenstein python package that implements the Ripper algorithm) while other tools will be 

custom-written Neural Network implementations using TensorFlow and/or the Pytorch 

framework for Deep Learning extended with scalability, among other, characteristics. Even 

though it is not a strict requirement, it is expected that a good number of these 

implementations will be in Jupyter Notebook scripts to ease adoption of project outcomes as 

individual components besides, as an integrated platform. 

3.2.3 Component 3: Neuro-symbolic Learning 

The main toolkit in this component will be the “Symbolic Learning & Reasoning” component, 

that is also expected to be the most time-consuming, and therefore performance-demanding 

component in the entire project. This toolkit will contain the following major sub-

components: 

• Neural Learning, including convolutional, LSTM, RNN, Deep and other types of layers, 

utilizing back-propagation for automatic differentiation of the loss function, and first-

order gradient descent algorithms such as Stochastic Gradient Descent or 

Adam/Groundhog etc. for loss function optimization. Moreover, this also includes (a) 

online neural learning over a number of workers/learners following a 

distributed/federated learning paradigm and (b) approximate, synopses-based neural 

learning for scalability purposes. 

• Online Neuro-symbolic learning component that matches neural network learning 

capabilities with classical AI symbolic reasoning approaches; in this process, a major 

computational component is the “grounding” of world-variables, or in other words, 

figuring out all combinations of variable value assignments that are feasible. 

• Complex Event Forecasting - CEF component that uses the previous two components 

for complex event detection, and later prognosis and forecasting). 

o Complex Event Pattern Synthesis sub-component of CEF 

• Reasoning Assisted Programming component that allows complex logic programming 

involving rules to be enhanced by deep learning high-performing components. 

• eXplainable AI components that can reason about their own decision-making, albeit 

in an underlying statistical framework. 
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3.2.4 Component 4: Interaction Layer 

The interaction layer is concerned with the APIs and GUIs that will be made available to the 

end-user of the project results (in our cases, AI researchers and domain experts in general, 

seeking better tools to complete highly complex scientific/engineering tasks.) The main sub-

components of this layer as depicted in Figure 3 are the following: 

• Identity & Access Management that will be based on the Keycloak IDM Open-Source 

solution. 

• Development environment that will be based on PyTorch, TensorFlow and JupyterHub 

(without excluding other IDEs for different developers). 

• User Interaction and Feedback module that will provide some degree of Human-

induced Reinforcement Learning capabilities to the system. 

• Search Engine for EVENFLOW resources, regulated by some rules stored on any 

repository for data access policies. 

3.2.5 Component 5: Formal Verification Techniques 

Formal verification techniques leading to feasible NP-hard optimization problems (verifiable, 

on average, in less than exponential time) are the last cross-cutting layer and concern within 

the project. Its output will be stored in the data management layer’s domain knowledge and 

learnt patterns data-store. 

3.3 Process View 

In Figure 4, we show the Data Flow Diagram corresponding to the view depicting the neuro-

symbolic process of complex event pattern recognition. The whole process consists of 3 major 

processes (level-1 processes), labelled “Complex Event Pattern Authoring”, “Parameter 

Learning”, and finally, “Forecasting”. The first process that kick-starts the entire logic is that 

of authoring complex event patterns (a manual process), which provides as output patterns 

that need to have their parameters optimized, which is done in process 2, “Parameter 

Learning” in a classical neural computation. The probabilistic model that results is then fed to 

the standard forecasting process for real-time inference. Results are stored in the 

“Forecasting Results” data store shown at the bottom of the figure. 
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Figure 4: Data Flow Diagram showing the Complex Event Pattern Recognition General 
Process. 

Figure 5 shows the Data Flow Diagram for the verification module. The main processes are 

labelled “Verification” and “Robust Training”: these inter-operating models receive as input 

from the user the property to be verified, and either a pre-trained model or the model 

architecture to train for verifiability according to the input specification. The outputs of the 

module include a decision on the property (satisfied, not satisfied, or undecided), a 

counterexample if the property is not satisfied and, if required, a trained model. Further 

details are provided in Section 4.5. 

 

 

Figure 5: Data Flow Diagram showing the Verification Process. 
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3.4 Implementation View 

We propose the following implementation technologies for each component: 

• Component 1 Data Management: As already mentioned, the standard data 

management platforms to be used are: 

o The Apache Kafka distributed message bus (together with the Apache 

ZooKeeper management tool) 

o An instance of the InfluxDB v.2 time-series database 

o If RDBMS technology is needed, we will also install and use a PostgresQL 

relational database system. 

o If computational requirements must be met on the EVENFLOW cluster, at least 

one (or both) of the following middleware will also be installed and supported: 

▪ Apache Spark 

▪ Apache Flink 

• Component 2 Data Analytics: As already mentioned, new algorithms will be 

developed, tested and tried using the Google TensorFlow, PyTorch, and Jupyter 

notebook libraries and platforms. In addition, analytics can be “brought on” to the 

project from IDE tools such as Orange3 and/or KNIME. 

• Component 3 Neuro-symbolic Learning: In this major component of the project, 

standard Python libraries including numpy, scipy, sklearn, tslearn, pandas, pandas.ai, 

PyTorch, TensorFlow etc. will be used for algorithm development and 

implementation. Further Python packages including GurobiPy or PySCIP can/may be 

used for interfacing to high-performance optimization codes. Most other toolkits and 

libraries for combinatorial optimization such as OR-Tools (Google) etc. also feature 

user-friendly Python API bindings. 

• Component 4 Presentation and Interaction Layer: Traditionally, JavaScript or its 

variants is used for front-end development. Implementing various REST APIs and 

endpoints can be done using the Django or Flask frameworks for Python, and Spring 

Boot for Java developers. 

• Component 5 Formal Verification Techniques: Interfacing with state-of-the-art 

optimizers is best done through the API libraries provided by each vendor/provider, 

for each language they support. For example, GUROBI (being the top commercial 

solver today) has bindings to every major programming language, including Basic.NET, 

C#.NET, C/C++, Java, FORTRAN, Python, Julia etc. It also interfaces directly with 

optimization/computer algebra systems (CAS) such as GAMS, AIML, etc. SCIP on the 

other hand, being free and Open-Source, provides interfaces for C/C++ (the language 

it’s written in) and Python. It also provides its own modelling language, called ZIMPL 

for specifying mathematical programs at a level comparable to GAMS. It is expected 

that the main implementation language will be Python or C/C++. More accurately, 

state-of-the-art (SOTA) neural network verifiers are typically written in Python, 

exploiting efficient backends such as PyTorch for hardware acceleration. Furthermore, 

they typically avoid dependencies on black-box optimizers. 
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3.5 Deployment View 

The current state of the deployment view, as far as the distributed data management 

component is concerned, is shown in Figure 6. 

 

Figure 6: Distributed Data Management Deployment View. 

The distributed data management layer currently consists of the following major core 

servers/functionalities: 

• Kubernetes (1.25.6) 4 VM cluster 

• Influx DB server single process 

• Kafka 4VM cluster including ZooKeeper management software 
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 EVENFLOW Scenarios and Use Cases 

4.1 Logical Architecture of Industry 4.0 Use Case 

4.1.1 Simulation “environment modelling for prediction” 

The NVIDIA Isaac Sim simulation tool was used to create a meaningful prediction data set. 

This allowed a realistic replication of the physical environment in different scenarios. 

First, a dataset was created for complex event prediction of motion patterns for other robots. 

In the further course, prediction for other moving objects and humans will also be done. 

4.1.2 MPC for trajectory generation 

Model Predictive Control (MPC) is deployed to generate optimal velocity commands within a 

given prediction horizon, along the three Euclidian axis. The solution is dependent on the 

actual robot measurements (i.e., actual position, velocity...) and information provided by 

Costmap, which essentially contains feasible paths. The optimal velocity commands are 

translated into desired robot wheel velocities, a task for which the low-level PID 

(Proportional-Integral-Derivative) controller is responsible. In a nutshell, MPC block takes into 

consideration all constraints, such as physical constraints of the Robotino or the ones coming 

from Costmap, and then finds the optimal trajectories. 

The overall nonlinear programming problem is modelled using CasADi framework, available 

in Python, Matlab and C++. Solvers used are IPOPT (Interior Point Optimization) and 

occasionally some open-source sequential quadratic programming solvers (e.g., QRQP). 

Moreover, the open-source linear solver used are the ones from HSL (Harwell Subroutine 

Library) such as MA27. For a portion of the experimental results, the free-academic linear 

solver MA57 is used. 

4.1.3 Costmap "Dynamic Path Generation" 

The costmap is an essential component for navigation in mobile robotics. It allows the robot 

to take sensor data from the environment and convert it into a 2D or 3D raster. In this grid, 

the cost is inflated and determined based on occupancy and the inflation radius set by the 

user. This enables the robot to generate motion paths within the occupancy grid. 

For our implementation, we use the ROS2 navigation stack, which is considered state of the 

art in robotics. This stack provides a robust and proven basis for navigating the robot in 

different environments. The stack consists of different layers that process information about 

the environment in different ways. One of the layers we developed is the "Dynamic Obstacle 

Layer with Semantic Recognition". This layer detects dynamic obstacles in real time and uses 

semantic information to classify the obstacles according to their type. This allows specific 

safety distances for different obstacles to be taken into account. In addition, the current 

speed vector is calculated and the actual lane is blocked, which serves as a basis for the 

integration of the Forecasting Trajectories of dynamic obstacles. 
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Another layer is added to take into account the predicted trajectories of other participants, 

such as robots and humans. This information helps the robot to navigate predictively and plan 

an optimal, cost-effective and time-saving route to the goal (see Figure 7).  

The goal is not only to avoid dynamic obstacles, but also to incorporate the movement 

patterns of other people and objects into the navigation planning, thus increasing the safety, 

efficiency, and security of the robot. 

 

 

Figure 7: Logical Architecture of the Industry 4.0 Use Case. 

4.2 Logical Architecture of Personalized Medicine Use Case 

4.2.1 Generation of synthetic molecular trajectories between cancer stages 

The first component of the use case architecture involves a generative model known as the 

beta-Variational AutoEncoder (beta-VAE) [REF-04]. This model is trained on molecular data 

from different stages of a specific cancer of interest, such as breast cancer stages I to III, 

obtained from the TCGA database2. The purpose of this component is to generate synthetic 

instances or data points that are interpolated between the endpoints of interest. The 

interpolation is performed in the latent space using various approaches. The resulting 

synthetic dataset consists of molecular profiles, specifically gene expression values, 

corresponding to the pseudo-time points between the given cancer stages. 

4.2.2 Mapping gene to pathways 

The second component of the use case architecture involves mapping the genes associated 

with the synthetic molecular profiles to cellular pathways. This operation is essential to 

reduce the high cardinality of the original dataset and identify key elements representing 

 

2 https://www.cancer.gov/ccg/research/genome-sequencing/tcga  

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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general cellular processes in which the genes are known to be active. The mapping between 

genes and pathways is accomplished using the Reactome database3, which provides a 

comprehensive collection of biological pathways and their associated gene participants. 

4.2.3 Forecasting molecular trajectories 

The third component of the use case architecture is the forecasting machinery. This 

component adopts a neuro-symbolic approach to predict the stage of a new patient based on 

their molecular profiles and the most probable molecular events that are likely to occur 

before progressing to the next stage of the cancer. The forecasting machinery combines 

neural network-based algorithms with symbolic reasoning techniques to make accurate 

predictions and provide valuable insights for clinical decision-making (see Figure 8). 

 

 

Figure 8: Logical Architecture of the Personalized Medicine Use-Case. 

4.3 Logical Architecture of Infrastructure Life Cycle Assessment Use 

Case 

The Infrastructure Life Cycle Assessment Use Case comprises a testbed of water leakage in 

pipes simulations done not on computer hardware but rather on specialized pipes networks 

that aims to mimic the behaviour of leakages in real underground water pipes transferring 

water to all buildings in a city. A number of vibration sensors are installed in strategic locations 

along the main pipe, and a number of scenarios are actually carried out, attempting to 

emulate different leakage conditions. The leakages themselves are implemented as taps with 

certain diameter that can be open or closed at any time. In any given scenario, a period of 

“warming up” (incoming water to the pipe) is followed by the opening and/or closing of a 

certain tap(s) along the main pipe; during the whole scenario, the installed vibration sensors 

record vibrations at a very high frequency (around 6000 measurements per second.) The 

 

3 https://reactome.org/  

https://reactome.org/
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objective is to devise a leakage detector that can detect within seconds the existence of a 

leakage in the real water pipe network, and in addition can accurately estimate the location 

of the leakage for maintenance crews to know where to look.  

Each sensor transmits wirelessly its data to a centralized PC where the collection and storing 

of the data takes place. This data is then to be transferred in (near) real time to a 

classifier/regressor that EVENFLOW will develop that will raise an alert with the location of 

an estimated rupture in the water pipe, if such a decision is made (see Figure 9).  

 

Figure 9: Logical Architecture of the (EKSO) Public Utilities Maintenance Use Case. 

The major components for this Use-Case therefore involve the following: 

1. Data Collection & Storage: this component is likely to be implemented in terms of the 

Kafka message bus or the Influx DB, as data are clearly multi-variate time-series. 

2. Pre-processing component: the high frequency of the data is likely to require some 

kind of aggregation functionality. This can be achieved either with special-purpose 

custom-built scripts (ETL scripts) or directly in the neural network architecture as a 

series of convolutional layers followed by some pooling operator (max-pooling, min-

pooling, average-pooling or any combination.) 

3. Training Component: Both XAI as well as scalable distributed Neural Networks 

(including direct or memory-based or attention-based) can both be used for this task. 

4. Decision making Component: the component will be responsible for using the results 

of the Training Component and turning them into an estimation of the location of a 

leakage, together with the probability of there being a significant enough leakage.  

It is important to note that the developed mechanism must be robust and accurate enough 

so that it never confuses the opening of a residential tap (e.g., someone taking a shower, or 

watering their garden) with the creation of an actual leakage. 
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4.4 Logical Architecture of Synopsis/Evolving ML Solutions 

4.4.1 Synopses Data Engine – as – a – Service (SDEaaS) Component 

SDEaaS4 [REF-01] is built on top of Apache Flink and implements a novel synopses-as-a-service 

paradigm. That is, the SDE runs as a constantly running job (Figure 10) in one or more, 

potentially geo-dispersed, computer clusters accepting on the fly requests for maintaining 

data stream summaries (approximately 20 different data stream summaries are supported). 

In that, it achieves (i) concurrently maintaining thousands of synopses, of various kinds, for 

thousands of streams, on demand, (ii) reusing synopses that are common across various 

concurrent training pipelines, (iii) providing data summarization facilities even for cross-

neural learning platforms, (iv) pluggability of new synopses on-the-fly, (v) increased potential 

for training optimization (discussed shortly). SDEaaS provides scalable training of neural 

models by enabling 3 types of scalability: (i) enhanced horizontal scalability, i.e., not only 

scaling out the computation to a number of processing units available in a computer cluster, 

but also harnessing the processing load assigned to each by operating on carefully-crafted 

data summaries, (ii) vertical scalability, i.e., scaling the computation to very high numbers of 

processed streams and (iii) federated scalability i.e., scaling across geo-distributed clusters 

and clouds by controlling the communication required to develop global training models. 

 

Figure 10: Preliminary Version of SDEaaS Internal Architecture over Apache Flink. 

4.4.2 Synopses-based Training Optimization Component 

This component uses the SDEaaS and the various types of scalability it provides, to tune and 

optimize scalable, synopsis-based learning on any given neural training task. More precisely, 

it aims at determining (i) the kind of synopsis that should be used, (ii) the amount of data 

reduction that should be imposed on the raw data streams, (iii) the number of epochs that 

should be used during the training process, using data stream summaries instead of the raw 

streams. The outcome of this component is the optimal setup for (i) - (iii) to properly balance 

the training time vs accuracy trade-off for a scalable neural model training procedure.  

 

4 https://sdeaas.github.io/  

https://sdeaas.github.io/
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4.4.3 Data-driven Distributed Training Component 

This component boosts the scalability of neural training by acting complementarily to the 

Synopses-based Training Optimization Component. It follows a Parameter Server (PS) training 

paradigm 28[REF-02], distributing the training process of a given neural model over a number 

of worker machines available in corporate data centres or the cloud. More precisely, each 

worker trains an identical copy of the neural model but does so on a separate (disjoint) 

portion of the incoming streams (Figure 11). The local models developed at each worker are 

synchronized, from time to time, to a global model. Besides the traditional 

synchronous/asynchronous synchronization mechanisms that are supported by the PS 

paradigm, in EVENFLOW we develop advanced, data-driven synchronization protocols that 

require a synchronization step only when a concept drift is likely to have occurred. Therefore, 

the accuracy vs training time vs communication/latency trade-offs of the training process can 

be controllably tuned for scalability and model evolution (drift) detection purposes. 

 

Figure 11: Basic Representation of the Parameter Server – based Training Paradigm. 

4.4.4 Interplay of Components in EVENFLOW Scalability Toolkit 

Figure 12 illustrates the interplay of the various components of EVENFLOW Scalability Toolkit. 

The SDEaaS use is initially internal to the Synopses-based Training Optimization Component 

as it provides and maintains that supported data stream summarization techniques to be 

tested for accuracy vs training time performance. Based on the result of the optimization, 

which dictates the best possible triplet of <types of synopses, data reduction ratio, number 

of training epochs>, SDEaaS is tuned and employed in the production pipeline. On the right-

hand side of the figure, each worker machine maintains the determined synopses on the local 

streams it receives and locally trains a copy of the neural model devised by the application. 

The local models built by each worker are synchronized based on either traditional [REF-02]or 

novel synchronization protocols, developed in the scope of EVENFLOW, into a global model. 

The trained global model is employed to label simple derived events used by the neuro-

symbolic component of EVENFLOW. The described pipeline can be executed continuously or 

in predefined intervals.  
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Figure 12: Architectural Viewpoint of EVENFLOW Scalability Toolkit. 

4.5 Logical Architecture of Verification Solutions 

Verification solutions include two main modules: (i) a formal verification toolbox that checks 

whether a property provably holds on a pre-trained network—henceforth, the “verifier” (ii) a 

scheme that trains the network so as for the required property to provably hold, post-

training—henceforth, “robust training”. 

4.5.1 Required inputs 

Both modules will require the following inputs: 

• A property specification, expressed as an input domain (the set of allowed inputs: for 

instance, for adversarial examples, the set of allowed perturbations) and an output 

condition (all the outputs from the input domain should satisfy the condition: for 

instance, they should all be correctly classified). In order to maximise support from 

toolboxes, input domains should be convex sets that allow for efficient optimization, 

and output conditions should be Boolean formulas over inequalities. 

• The model, which can be pre-trained if input to the verifier, or randomly initialized, if 

input to the verified training module. Ideally, the architecture itself is designed to 

maximize verifiability: as small as possible, with the least number of non-linearities. 

4.5.2 Verifier module 

Given the inputs above, the verifier outputs either “satisfied”, “violated” or “undecided”. If the 

answer is “violated”, the verifier provides a concrete counterexample violating the property. 

The verifier first attempts to violate the property by searching for counterexamples (typically, 

through local optimization methods). If no counterexample is found, the verifier creates an 

abstraction of the model (typically, through a convex relaxation) and attempts verification on 

it. If verification of the abstraction fails, the verifier refines the abstraction by iteratively 

dividing the original problem into a series of sub-problems, on which it attempts verification 

through abstractions and looks for counterexamples, until it is timed out (case in which it 
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outputs “undecided”), or a definite answer is provided. Sub-problems can be solved in 

parallel. The verifier implementation will be tailored to the specifics of the EVENFLOW-

specific inputs (the model types and the property specifications). 

4.5.3 Robust training module 

Given the required inputs as defined above, the robust training module outputs a version of 

the model that satisfies the specified property on a relatively large share of the training 

examples and generalizes to unseen examples. 

Depending on the property specification, standard-trained networks may either display easy-

to-find counterexamples to the property or be hard to verify (inducing the verified to hit the 

exponential worst-case). This module internally employs abstractions and potentially 

counterexamples from the verifier module at training time. Adequate verification is also 

employed to ensure the property holds on unseen examples. As for the verifier component, 

the robust training model will be specifically designed for the EVENFLOW use-cases.  
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 Conclusions and Future Outlook 
EVENFLOW is carrying out cutting edge research in different areas of neuro-symbolic learning, 

including explainable AI and formal verification methods. The project’s research output 

includes novel neuro-symbolic learning techniques, along with their applications in real-life 

applications. Along with these research outcomes, the project is also researching and 

developing a platform that will integrate the different research outcomes of the project 

towards easing access to integrate neuro-symbolic learning models and applications. The 

project’s platform is destined to facilitate the development and integration of end-to-end 

neuro-symbolic AI applications, including data access, data pre-processing, data analytics, 

machine learning, formal verification, and visualization modules, among other elements of 

EVENFLOW applications. As such, the EVENFLOW platform will facilitate the integration of the 

project’s use cases as part of WP6 of the project. 

This deliverable has provided an initial outline of the architecture and logical design of the 

platform, in-line with the 4+1 view methodology for describing architectures of software 

systems. The 4+1 views methodology allows EVENFLOW to deliver the architecture design in 

a modular fashion. In the scope of the present deliverable, the logical view of the EVENFLOW 

has been introduced, which focuses on the functionalities of the platform and includes the 

structuring principles that will drive the integration of the different modules of the platform. 

At the logical level, the EVENFLOW platform comprises conventional modules that typically 

used to development ML pipelines, along with novel modules that enable the development 

and integration of neuro-symbolic learning modules. Apart from detailing the logical view of 

the architecture, the deliverable has provided early insights on other views of the EVENFLOW 

platform architecture such as the implementation and deployment views that will be driving 

the development and operation of the platform at later stages of the project. Moreover, the 

deliverable presents an initial set of interactions and information flows between the different 

components of the platform, as part of early versions of the process view(s) of the platform.  

Overall, the present deliverable provides a sound basis for advancing the platform 

development and use case integration activities of the project. The latter will boost the 

development of additional views of the architecture, as well as the improvement of already 

presented views. The next versions of the deliverable will gradually lead to a complete and 

detailed description of the architecture of the EVENFLOW platform, as well as to the final 

specifications of the integration EVENFLOW systems and applications. 
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