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Executive Summary

EVENFLOW is conducting world-class research in neuro-symbolic learning models and
applications. In this direction, the project is researching neuro-symbolic learning methods,
while integrating them into use cases that demonstrate the added-value of the neuro-
symbolic Al paradigm. Moreover, the project aims to develop a platform that will meet
various types of robustness and scalability requirements for the development, deployment
and operation of neuro-symbolic learning applications end-to-end i.e., from data acquisition
and pre-processing to the creation of pipelines involving integrated formal learning and deep
learning components. The EVENFLOW platform will promote a structured approach to the
development and deployment of neuro-symbolic learning applications. Instead of relying on
an ad-hoc integration of neuro-symbolic learning components that are different for each use
case, the platform will provide generalized infrastructures that ease the structuring,
development, integration and deployment of end-to-to-end neuro-symbolic learning and
prediction pipelines.

This deliverable details the architectural design of the EVENFLOW platform and its
specifications regarding the development, deployment, and operation of integrated neuro-
symbolic learning workflows and applications. The deliverable provides an integrated and
completed description of the platform architecture, based on the 4+1 views methodologies
for describing software architectures i.e., based on multiple views that include a logical, a
process, an implementation, a physical deployment and a use cases viewpoint of the
integrated platform.

This first platform deliverable provides a comprehensive description of the logical view of the
platform’s architecture, which focuses on the functionalities of the various components that
comprise neuro-symbolic learning applications. It provides the logical structure of a neuro-
symbolic learning application, along with concrete logical architectures for the three
EVENFLOW use cases. Moreover, the deliverable provides early insights on the information
flows between the different components of the EVENFLOW platform (i.e., process view
consideration), along with information about the main implementation technologies that will
be used to implement the platform. Also, the deliverable introduces a high-level reference
model for the EVENFLOW functionalities, which are clustered into explainable Al, hybrid
learning and reasoning, as well as verification and scalability functionalities. This high-level
reference model aims at facilitating stakeholders’ communications regarding architectural
issues, with an emphasis on communications about the functionalities of the logical modules
of the platform.

This deliverable, D6.3, has a sibling sensitive one, D6.1, but as D6.1 contains no sensitive
information, the contents of the two deliverables are the same.
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Definitions, Acronyms and Abbreviations

Acronym/ Title
Abbreviation

Al Artificial Intelligence

CEF Complex Event Forecasting

GDPR General Data Protection Regulation

LSTM Long short-term memory

ML Machine Learning

RNN Recurrent Neural Network

XAl Explainable Al

Term Definition

FAIR data FAIR data are data which meet principles of findability, accessibility,

interoperability, and reusability (FAIR)
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1 Introduction

1.1 Project Information

EVENFLOW is developing hybrid learning techniques for complex event forecasting, which
combine deep learning with logic-based learning and reasoning into neuro-symbolic
forecasting models. The envisioned methods combine (i) neural representation learning
techniques, capable of constructing event-based features from streams of perception-level
data with (ii) powerful symbolic learning and reasoning tools, that utilize such features to
synthesize high-level, interpretable patterns of critical situations to be forecast.

Crucial in the EVENFLOW approach is the online nature of the learning methods, which makes
them applicable to evolving data flows and allows to utilize rich domain knowledge that is
becoming available progressively. To deal with the brittleness of neural predictors and the
high volume/velocity of temporal data flows, the EVENFLOW techniques rely on novel, formal
verification techniques for machine learning, in addition to a suite of scalability algorithms for
federated training and incremental model construction. The learnt forecasters will be
interpretable and scalable, allowing for fully explainable insights, delivered in a timely fashion
and enabling proactive decision making.

EVENFLOW is evaluated on three challenging use cases related to (1) oncological forecasting
in precision medicine, (2) safe and efficient behaviour of autonomous transportation robots
in smart factories and (3) reliable life cycle assessment of critical infrastructure monitoring.

Expected impact:

e New scientific horizons in integrating machine learning and machine reasoning,
neural, statistical and symbolic Al

e Breakthroughs in verification, interpretability and scalability of neuro-symbolic
learning systems

e Interpretable, verifiable and scalable ML-based proactive analytics and decision-
making for humans-in-the-loop and autonomous systems alike

e Robust, resilient solutions in critical sectors of science and industry

e Accurate and timely forecasting in vertical sectors (healthcare, Industry 4.0, critical
infrastructure monitoring)

e Novel FAIR datasets for scientific research

e Novelresources and approaches for verifiable, interpretable, scalable and knowledge-
aware machine learning

Table 1: The EVENFLOW consortium.

Number! Name Country Short name
1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA
1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU

1CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner.

Dissemination level: PU - Public, fully open Page 7
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Number! Name Country Short name
2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH  Greece NCSR
"DEMOKRITOS"
3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS Greece ARC

STIS TECHNOLOGIES TIS PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS

4 BARCELONA SUPERCOMPUTING CENTER- Spain BSC
CENTRO NACIONAL DE SUPERCOMPUTACION
5 DEUTSCHES FORSCHUNGSZENTRUM FUR Germany DFKI
KUNSTLICHE INTELLIGENZ GMBH
6 EKSO SRL Italy EKSO
7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY  United ICL
AND MEDICINE Kingdom

1.2 Document Scope

D6.1 and D6.3 provide the sensitive (SEN) and the public (PU) versions of the same
deliverable. However, as no sensitive information was included in D6.1, the contents of D6.1
and D6.3 are the same.

This first platform deliverable provides a comprehensive description of the logical view of the
platform’s architecture, which focuses on the functionalities of the various components that
comprise neuro-symbolic learning applications. It provides the logical structure of a neuro-
symbolic learning application, along with concrete logical architectures for the three
EVENFLOW use cases. Moreover, the deliverable provides early insights on the information
flows between the different components of the EVENFLOW platform (i.e., process view
consideration), along with information about the main implementation technologies that will
be used to implement the platform. Also, the deliverable introduces a high-level reference
model for the EVENFLOW functionalities, which are clustered into explainable Al, hybrid
learning and reasoning, as well as verification and scalability functionalities. This high-level
reference model is destined to facilitate stakeholders’ communications regarding
architectural issues, with an emphasis on communications about the functionalities of the
logical modules of the platform.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.

Chapter 2 presents a summary of the background and requirements driving the architecture.

Chapter 3 presents the high-level EVENFLOW architecture, together with the major important
views of it (both static and dynamic views included)

Chapter 4 presents the connections between architecture, scenarios and use-cases, for each
of the three major use-cases of the project.

Chapter 5 is the concluding chapter that outlines the conclusions of this deliverable.

Dissemination level: PU - Public, fully open Page 8
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2 Background and Driving Requirements

2.1 Reference Architecture Models for Artificial Intelligence

Reference architectures in Al are invaluable blueprints that guide the development of
intricate Al systems, aligning them strategically with business needs while outlining critical
components and their interplays. They encompass data processing, Al models, orchestration,
and the core infrastructure components. Famous models such as the IBM Cloud Pak for Data,
Google Cloud's Al Hub, and Microsoft's Azure Al employ these principles. The data layer
generally comprises data sources, storage, and data management methodologies. On the Al
modelling side, machine learning algorithms, deep learning networks, or reinforcement
learning models can be considered. For orchestration, the components often included are
those for model training, validation, deployment, and monitoring. The infrastructure layer
provides the backbone, with hardware, cloud services, and networking, offering the needed
computational capabilities. In sum, reference architectures, though they possess a degree of
generality, are crucial as they provide a roadmap for the efficient design of Al systems,
minimize design errors, ensure scalability and interoperability, and encourage the reuse of
architectural elements.

2.2 Requirements for Integrated Systems

Requirements for integrated systems usually specify the APIs of the various sub-systems that
are to be connected to the entire integrated system, so that other sub-system integrators
know what to expect from each sub-system, and how to use it. API specifications can be given
in the form of REST endpoints (in loosely connected web-service fashion), or they can be as
tight as full specifications of the data structures stored in a centralized data repository that
can be an RDBMS or a distributed message bus, or a distributed NoSQL document database,
etc.

The requirements gathered for this project in particular, are collected in a single Excel file
stored in the project’s common share space. See requirements RO01-R012 in the exact URL
for this requirements Excel file: EVENFLOW integrated system requirements.x|sx.

2.3 Regulatory Requirements

The development, deployment and operation of neuro-symbolic learning systems must
comply with applicable European laws and regulations. Specifically, the relevant
requirements must be met as follows:

e GDPR Compliance: EVENFLOW systems are data-intensive and as such, must comply
with the mandatory GDPR (General Data Protection Regulation). Hence, they must
adhere to the GDPR principles and provide support for its mandates such as the
purpose limitations and the right to be forgotten. Note that several EVENFLOW
systems may use neuro-symbolic learning in scenarios with the human in the loop and
use cases involving sensitive data. GDPR requirements must be accounted for during
the systems’ development and operation. However, the fulfiiment of these

Dissemination level: PU - Public, fully open Page 9
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requirements is only indirectly linked with the core research topics of the project,
which concern Al development.

e Al Act: EVENFLOW undertakes Al research, which must be in-line with the mandates
of the European Al regulation proposal i.e., the Al Act [REF-03]. The Al Act takes a risk
based approach to the classification and compliance of Al systems. Depending on the
risk classification of an Al system (i.e., of a neuro symbolic learning system in the case
of EVENFLOW) different requirements must be met. For instance, in the case of
minimal-risk systems (e.g., systems that display information without any essential
safety of abuse concerns) deployers do not have any essential restrictions. Compliance
to Al code of conduct for them may be recommended, yet it is not mandatory. On the
other hand, high risk systems must comply with several requirements that are spelled
out in the Al Act. Some of these requirements are depicted in Figure 1 and include
robustness, accuracy, human oversight, explainability/transparency, logging and
traceability, the deployment of strong cybersecurity measures and more. The
EVENFLOW research is directly related to several of these requirements. Specifically,
the project’s systems can be used to boost Al Act compliance for high-risk Al
deployments. This is for example the case with the following regulatory requirements:

o Transparency: EVENFLOW Explainable Al systems can boost compliance to
transparency requirements.

o Robustness and Accuracy: EVENFOW Hybrid Learning and Reasoning systems
can boost the robustness and accuracy of Al systems especially in selected
scenarios (e.g., hybrid use cases where adequate quality data are lacking).

o Logging and Traceability: The EVENFLOW platform shall provide audit trail
management and generation functionalities to support data logging and
traceability.

Logging and .
Traceability Documentation

High-Quality
Training Data Transparency
Cybersecurity / Accuracy
AI Act - l
Human Requirements
e armens B o

Systems

Figure 1: Al Act for High-Risk Systems.
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In practice, the EVENFLOW use cases will fulfil applicable regulatory requirements. The latter
will be fulfilled based on core functionalities of the EVENFLOW systems (e.g., Explainable Al
functionalities) and based on use case specific functionalities that will be implemented in the
scope of the use cases implementation.

Dissemination level: PU - Public, fully open Page 11
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3 EVENFLOW Architecture

3.1 High level Reference Model

Figure 2 illustrates a high-level reference model for Neuro-Symbolic Al. It is provided as a high-
level reference model that classifies the main functionalities that are offered by the project’s
platform. Primarily, this high-level reference model aims at facilitating communications
between various stakeholders of the EVENFLOW compliant neuro-symbolic learning system.
It presents the main functions offered by the project’s platform in terms of neuro-symbolic
learning, along with their interactions. Most importantly, it classifies the EVENFLOW
functionalities in their main categories. This enables stakeholders to position EVENFLOW
functionalities within a proper cluster of neuro-symbolic Al related functions. Specifically,
EVENFLOW offers three different types of functionalities, including:

e Explainable Al: This category comprises the project’s XAl functionalities, including
forecasting explainability and explainability of neural networks. Explainability may be
also supported through Glass Box models that provide inherent transparency
regarding how they produce their Al outcomes. The XAl techniques may be used by
methods and systems of the other two categories of the reference architecture.

e Hybrid Learning and Reasoning: This includes the project’s hybrid learning and
reasoning functionalities, including neural learning, on-line symbolic learning,
complex event forecasting and reasoning assisted programming functionalities. These
functionalities reflect the project’s neuro-symbolic Al methods, which may interact
with the XAl as well as with the verification and scalability functionalities as depicted
in the figure.

e Verification and Scalability: EVENFLOW provides a set of verification and scalability
functionalities, which are mostly developed in WP5 of the project. They are clustered
in this category of the reference architecture model and include exact verification
methods, abstract-based verification, as well as techniques for attributing various
types of scalability on neural learning.

Explainable AT Hybrid Learning and Reasoning Verification and Scalability

Neural Learning

Exact Verification Methods

Forecasting Explainability

On-Line Neuro Symbolic Learning

“ Abstract based Verification

Neural Networks Explainability | I
Complex Event Forecasting
—

- Scalable Neural Learning
Glass Box AI Models

Reasoning Assisted Programming

Open Analytics (ML/AI) Toolkit

Distributed Data Streaming Middleware

Figure 2: EVENFLOW's High-level Reference Architecture for Neuro-symbolic Al.
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The execution of the above-listed functionalities is powered by an Al platform and a
distributed streaming middleware platform. The former enables the execution of Al
techniques (including XAl functions), while the latter facilitates the collection, ingestion and
processing of data to the various functions.

The high-level functionalities of the reference architecture models are further detailed in the
logical view of the EVENFLOW platform in the following sections. In particular, the logical view
of the architecture elaborates on the functional modules of the architecture that enable the
collection and management of the data for the execution of the EVENFLOW neuro-symbolic
learning functionalities.

3.2 Logical View

The overall architecture is shown in the following logical view below in Figure 3.

Search Engine for Development
EvenFlow Resources____|§ ) Environment User
Feedback

]

oc
£ 98
ET
EQC
c a0
L]
o
8's
o

a

Symbolic Learning and Reasoning

Complex Event Pattern Revision

Complex Event Pattern Synthesis Forecast Interpreter

Models

L

o
=]
S
o=
]
54
[0}

=

Library of ML Models 5

- Explorative Data Data - Data :

Model Training Analysis Preprocessing S
_ -

Open Analytics & ML Tools S
P

1 [ =

Collected (Field) Data Domain Knowledge & Learnt Patterns 4

Big Data Management (Data Lake, Datawarehouse, Databases)

Data
Analytics

i

Management

Distributed Streaming Middleware

Streaming Data Source #1 Sirzzmiing REE Saires 1Y

Figure 3: EVENFLOW Architecture Logical View.

Data Source #K

In the following, we discuss the major components of the architecture, as depicted in Figure
3.

3.2.1 Component 1: Data Management

This component consists essentially of a high-performance set of distributed streaming
middleware, together with accompanying high-performing data bases.

The streaming middleware is required to include the following components:

e Apache Kafka as distributed message bus

Dissemination level: PU - Public, fully open Page 13



E\/HNI:L-@.W D6.3 - Architecture Design and Integrated System
Specification (PU version)
Horizon Europe Agreement No 101070430

e Appropriate ETL scripts for interacting with various data sources
The streaming middleware may also include the following components:

e Apache Spark distributed in-memory processing engine
e Apache Flink distributed in-memory processing engine

The databases layer is required to include the following component:

e InfluxDB server v.2.0 time-series database

3.2.2 Component 2: Data Analytics

The data analytics component comprises a set of Machine Learning tools (some with
Explainability capabilities), and a set of dashboards (analytics, business intelligence features).
It is expected that some of the tools will be Open-Source algorithm implementations (e.g. the
wittgenstein python package that implements the Ripper algorithm) while other tools will be
custom-written Neural Network implementations using TensorFlow and/or the Pytorch
framework for Deep Learning extended with scalability, among other, characteristics. Even
though it is not a strict requirement, it is expected that a good number of these
implementations will be in Jupyter Notebook scripts to ease adoption of project outcomes as
individual components besides, as an integrated platform.

3.2.3 Component 3: Neuro-symbolic Learning

The main toolkit in this component will be the “Symbolic Learning & Reasoning” component,
that is also expected to be the most time-consuming, and therefore performance-demanding
component in the entire project. This toolkit will contain the following major sub-
components:

e Neural Learning, including convolutional, LSTM, RNN, Deep and other types of layers,
utilizing back-propagation for automatic differentiation of the loss function, and first-
order gradient descent algorithms such as Stochastic Gradient Descent or
Adam/Groundhog etc. for loss function optimization. Moreover, this also includes (a)
online neural learning over a number of workers/learners following a
distributed/federated learning paradigm and (b) approximate, synopses-based neural
learning for scalability purposes.

e Online Neuro-symbolic learning component that matches neural network learning
capabilities with classical Al symbolic reasoning approaches; in this process, a major
computational component is the “grounding” of world-variables, or in other words,
figuring out all combinations of variable value assignments that are feasible.

e Complex Event Forecasting - CEF component that uses the previous two components
for complex event detection, and later prognosis and forecasting).

o Complex Event Pattern Synthesis sub-component of CEF

e Reasoning Assisted Programming component that allows complex logic programming
involving rules to be enhanced by deep learning high-performing components.

e eXplainable Al components that can reason about their own decision-making, albeit
in an underlying statistical framework.

Dissemination level: PU - Public, fully open Page 14
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3.2.4 Component 4: Interaction Layer

The interaction layer is concerned with the APIs and GUIs that will be made available to the
end-user of the project results (in our cases, Al researchers and domain experts in general,
seeking better tools to complete highly complex scientific/engineering tasks.) The main sub-
components of this layer as depicted in Figure 3 are the following:

e |dentity & Access Management that will be based on the Keycloak IDM Open-Source
solution.

e Development environment that will be based on PyTorch, TensorFlow and JupyterHub
(without excluding other IDEs for different developers).

e User Interaction and Feedback module that will provide some degree of Human-
induced Reinforcement Learning capabilities to the system.

e Search Engine for EVENFLOW resources, regulated by some rules stored on any
repository for data access policies.

3.2.5 Component 5: Formal Verification Techniques

Formal verification techniques leading to feasible NP-hard optimization problems (verifiable,
on average, in less than exponential time) are the last cross-cutting layer and concern within
the project. Its output will be stored in the data management layer’s domain knowledge and
learnt patterns data-store.

3.3 Process View

In Figure 4, we show the Data Flow Diagram corresponding to the view depicting the neuro-
symbolic process of complex event pattern recognition. The whole process consists of 3 major
processes (level-1 processes), labelled “Complex Event Pattern Authoring”, “Parameter
Learning”, and finally, “Forecasting”. The first process that kick-starts the entire logic is that
of authoring complex event patterns (a manual process), which provides as output patterns
that need to have their parameters optimized, which is done in process 2, “Parameter
Learning” in a classical neural computation. The probabilistic model that results is then fed to
the standard forecasting process for real-time inference. Results are stored in the
“Forecasting Results” data store shown at the bottom of the figure.
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Figure 4: Data Flow Diagram showing the Complex Event Pattern Recognition General
Process.

Figure 5 shows the Data Flow Diagram for the verification module. The main processes are
labelled “Verification” and “Robust Training”: these inter-operating models receive as input
from the user the property to be verified, and either a pre-trained model or the model
architecture to train for verifiability according to the input specification. The outputs of the
module include a decision on the property (satisfied, not satisfied, or undecided), a
counterexample if the property is not satisfied and, if required, a trained model. Further
details are provided in Section 4.5.

/
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roperty Specification

/

Model Architecture

Robust Trainer

Figure 5: Data Flow Diagram showing the Verification Process.
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3.4 Implementation View

We propose the following implementation technologies for each component:

e Component 1 Data Management: As already mentioned, the standard data

management platforms to be used are:
o The Apache Kafka distributed message bus (together with the Apache
ZooKeeper management tool)
o Aninstance of the InfluxDB v.2 time-series database
o If RDBMS technology is needed, we will also install and use a PostgresQL
relational database system.
o If computational requirements must be met on the EVENFLOW cluster, at least
one (or both) of the following middleware will also be installed and supported:
= Apache Spark
= Apache Flink

e Component 2 Data Analytics: As already mentioned, new algorithms will be
developed, tested and tried using the Google TensorFlow, PyTorch, and Jupyter
notebook libraries and platforms. In addition, analytics can be “brought on” to the
project from IDE tools such as Orange3 and/or KNIME.

e Component 3 Neuro-symbolic Learning: In this major component of the project,
standard Python libraries including numpy, scipy, sklearn, tslearn, pandas, pandas.ai,
PyTorch, TensorFlow etc. will be wused for algorithm development and
implementation. Further Python packages including GurobiPy or PySCIP can/may be
used for interfacing to high-performance optimization codes. Most other toolkits and
libraries for combinatorial optimization such as OR-Tools (Google) etc. also feature
user-friendly Python API bindings.

e Component 4 Presentation and Interaction Layer: Traditionally, JavaScript or its
variants is used for front-end development. Implementing various REST APIs and
endpoints can be done using the Django or Flask frameworks for Python, and Spring
Boot for Java developers.

e Component 5 Formal Verification Techniques: Interfacing with state-of-the-art
optimizers is best done through the API libraries provided by each vendor/provider,
for each language they support. For example, GUROBI (being the top commercial
solver today) has bindings to every major programming language, including Basic.NET,
C#.NET, C/C++, Java, FORTRAN, Python, Julia etc. It also interfaces directly with
optimization/computer algebra systems (CAS) such as GAMS, AIML, etc. SCIP on the
other hand, being free and Open-Source, provides interfaces for C/C++ (the language
it’s written in) and Python. It also provides its own modelling language, called ZIMPL
for specifying mathematical programs at a level comparable to GAMS. It is expected
that the main implementation language will be Python or C/C++. More accurately,
state-of-the-art (SOTA) neural network verifiers are typically written in Python,
exploiting efficient backends such as PyTorch for hardware acceleration. Furthermore,
they typically avoid dependencies on black-box optimizers.
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3.5 Deployment View

The current state of the deployment view, as far as the distributed data management
component is concerned, is shown in Figure 6.

Kubernetes (1.25.6): 4
VM Cluster

Containerd (1.6.19) Kafka: 4 VM Cluster
Influx DB 2 time-series database: 1 Helm-package managed

“ 1 zookeeper server process
4 4 broker processes
Calico (3.25.0) Flux Scripting Language (NoSQL)
— -
- Pad(age Manager
elegram Plugin

Longhom Distributed Block Storage N

Nginx (web server exposes duster

tools to the outside world)

Figure 6: Distributed Data Management Deployment View.

The distributed data management layer currently consists of the following major core
servers/functionalities:

e Kubernetes (1.25.6) 4 VM cluster
e Influx DB server single process
o Kafka 4VM cluster including ZooKeeper management software
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4 EVENFLOW Scenarios and Use Cases

4.1 Logical Architecture of Industry 4.0 Use Case

4.1.1 Simulation “environment modelling for prediction”

The NVIDIA Isaac Sim simulation tool was used to create a meaningful prediction data set.
This allowed a realistic replication of the physical environment in different scenarios.

First, a dataset was created for complex event prediction of motion patterns for other robots.
In the further course, prediction for other moving objects and humans will also be done.

4.1.2 MPC for trajectory generation

Model Predictive Control (MPC) is deployed to generate optimal velocity commands within a
given prediction horizon, along the three Euclidian axis. The solution is dependent on the
actual robot measurements (i.e., actual position, velocity...) and information provided by
Costmap, which essentially contains feasible paths. The optimal velocity commands are
translated into desired robot wheel velocities, a task for which the low-level PID
(Proportional-Integral-Derivative) controller is responsible. In a nutshell, MPC block takes into
consideration all constraints, such as physical constraints of the Robotino or the ones coming
from Costmap, and then finds the optimal trajectories.

The overall nonlinear programming problem is modelled using CasADi framework, available
in Python, Matlab and C++. Solvers used are IPOPT (Interior Point Optimization) and
occasionally some open-source sequential quadratic programming solvers (e.g., QRQP).
Moreover, the open-source linear solver used are the ones from HSL (Harwell Subroutine
Library) such as MA27. For a portion of the experimental results, the free-academic linear
solver MA57 is used.

4.1.3 Costmap "Dynamic Path Generation"

The costmap is an essential component for navigation in mobile robotics. It allows the robot
to take sensor data from the environment and convert it into a 2D or 3D raster. In this grid,
the cost is inflated and determined based on occupancy and the inflation radius set by the
user. This enables the robot to generate motion paths within the occupancy grid.

For our implementation, we use the ROS2 navigation stack, which is considered state of the
art in robotics. This stack provides a robust and proven basis for navigating the robot in
different environments. The stack consists of different layers that process information about
the environment in different ways. One of the layers we developed is the "Dynamic Obstacle
Layer with Semantic Recognition". This layer detects dynamic obstacles in real time and uses
semantic information to classify the obstacles according to their type. This allows specific
safety distances for different obstacles to be taken into account. In addition, the current
speed vector is calculated and the actual lane is blocked, which serves as a basis for the
integration of the Forecasting Trajectories of dynamic obstacles.
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Another layer is added to take into account the predicted trajectories of other participants,
such as robots and humans. This information helps the robot to navigate predictively and plan
an optimal, cost-effective and time-saving route to the goal (see Figure 7).

The goal is not only to avoid dynamic obstacles, but also to incorporate the movement
patterns of other people and objects into the navigation planning, thus increasing the safety,
efficiency, and security of the robot.

ROS2

Environment
Noise variables

Costmap

{

_Control_|
Comands

F [%,y.6]

Feasible
Trajectories

Robot

Sensor Data

EVENFLOW

Dataset for | o . |
Forecasted Complex Event Training Simulation
Events Forecast < y

Sensor Data for
prediction

Figure 7: Logical Architecture of the Industry 4.0 Use Case.

4.2 Logical Architecture of Personalized Medicine Use Case

4.2.1 Generation of synthetic molecular trajectories between cancer stages

The first component of the use case architecture involves a generative model known as the
beta-Variational AutoEncoder (beta-VAE) [REF-04]. This model is trained on molecular data
from different stages of a specific cancer of interest, such as breast cancer stages | to lll,
obtained from the TCGA database?. The purpose of this component is to generate synthetic
instances or data points that are interpolated between the endpoints of interest. The
interpolation is performed in the latent space using various approaches. The resulting
synthetic dataset consists of molecular profiles, specifically gene expression values,
corresponding to the pseudo-time points between the given cancer stages.

4.2.2 Mapping gene to pathways

The second component of the use case architecture involves mapping the genes associated
with the synthetic molecular profiles to cellular pathways. This operation is essential to
reduce the high cardinality of the original dataset and identify key elements representing

2 https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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general cellular processes in which the genes are known to be active. The mapping between
genes and pathways is accomplished using the Reactome database3, which provides a
comprehensive collection of biological pathways and their associated gene participants.

4.2.3 Forecasting molecular trajectories

The third component of the use case architecture is the forecasting machinery. This
component adopts a neuro-symbolic approach to predict the stage of a new patient based on
their molecular profiles and the most probable molecular events that are likely to occur
before progressing to the next stage of the cancer. The forecasting machinery combines
neural network-based algorithms with symbolic reasoning techniques to make accurate
predictions and provide valuable insights for clinical decision-making (see Figure 8).

Real Generative
molecular profiles component
(cancer stages) {betaVAE)

k4
Synthetic
molecular profiles Mapping coponent
(psuedotime {genes to pathways)
cancer stages)

Pathways enriched
in molecular profiles

v

MNeuro-symbolic
component

New real
molecular profile
(unknown cancer stage)

Level of
advancement
of cancer stage

Figure 8: Logical Architecture of the Personalized Medicine Use-Case.

4.3 Logical Architecture of Infrastructure Life Cycle Assessment Use
Case

The Infrastructure Life Cycle Assessment Use Case comprises a testbed of water leakage in
pipes simulations done not on computer hardware but rather on specialized pipes networks
that aims to mimic the behaviour of leakages in real underground water pipes transferring
water to all buildings in a city. A number of vibration sensors are installed in strategic locations
along the main pipe, and a number of scenarios are actually carried out, attempting to
emulate different leakage conditions. The leakages themselves are implemented as taps with
certain diameter that can be open or closed at any time. In any given scenario, a period of
“warming up” (incoming water to the pipe) is followed by the opening and/or closing of a
certain tap(s) along the main pipe; during the whole scenario, the installed vibration sensors
record vibrations at a very high frequency (around 6000 measurements per second.) The

3 https://reactome.org/
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objective is to devise a leakage detector that can detect within seconds the existence of a
leakage in the real water pipe network, and in addition can accurately estimate the location
of the leakage for maintenance crews to know where to look.

Each sensor transmits wirelessly its data to a centralized PC where the collection and storing
of the data takes place. This data is then to be transferred in (near) real time to a
classifier/regressor that EVENFLOW will develop that will raise an alert with the location of
an estimated rupture in the water pipe, if such a decision is made (see Figure 9).

Figure 9: Logical Architecture of the (EKSO) Public Utilities Maintenance Use Case.

The major components for this Use-Case therefore involve the following:

1.

Data Collection & Storage: this component is likely to be implemented in terms of the
Kafka message bus or the Influx DB, as data are clearly multi-variate time-series.
Pre-processing component: the high frequency of the data is likely to require some
kind of aggregation functionality. This can be achieved either with special-purpose
custom-built scripts (ETL scripts) or directly in the neural network architecture as a
series of convolutional layers followed by some pooling operator (max-pooling, min-
pooling, average-pooling or any combination.)

Training Component: Both XAl as well as scalable distributed Neural Networks
(including direct or memory-based or attention-based) can both be used for this task.
Decision making Component: the component will be responsible for using the results
of the Training Component and turning them into an estimation of the location of a
leakage, together with the probability of there being a significant enough leakage.

It is important to note that the developed mechanism must be robust and accurate enough
so that it never confuses the opening of a residential tap (e.g., someone taking a shower, or
watering their garden) with the creation of an actual leakage.
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4.4 Logical Architecture of Synopsis/Evolving ML Solutions

4.4.1 Synopses Data Engine —as —a — Service (SDEaaS) Component

SDEaaS* [REF-01] is built on top of Apache Flink and implements a novel synopses-as-a-service
paradigm. That is, the SDE runs as a constantly running job (Figure 10) in one or more,
potentially geo-dispersed, computer clusters accepting on the fly requests for maintaining
data stream summaries (approximately 20 different data stream summaries are supported).
In that, it achieves (i) concurrently maintaining thousands of synopses, of various kinds, for
thousands of streams, on demand, (ii) reusing synopses that are common across various
concurrent training pipelines, (iii) providing data summarization facilities even for cross-
neural learning platforms, (iv) pluggability of new synopses on-the-fly, (v) increased potential
for training optimization (discussed shortly). SDEaaS provides scalable training of neural
models by enabling 3 types of scalability: (i) enhanced horizontal scalability, i.e., not only
scaling out the computation to a number of processing units available in a computer cluster,
but also harnessing the processing load assigned to each by operating on carefully-crafted
data summaries, (ii) vertical scalability, i.e., scaling the computation to very high numbers of
processed streams and (iii) federated scalability i.e., scaling across geo-distributed clusters
and clouds by controlling the communication required to develop global training models.

§g kafka

Output
Topic

CoFlatMap

HashData

Register

Synopsis
\ ynoe / federator
Fleter
Request
FlatMap To geo-
dispersed §2 Kkafka
Union Topic Union
Topic
—Data Path —Requests Path —Mergeable
Synopsis
Estimation

Figure 10: Preliminary Version of SDEaaS Internal Architecture over Apache Flink.

4.4.2 Synopses-based Training Optimization Component

This component uses the SDEaaS and the various types of scalability it provides, to tune and
optimize scalable, synopsis-based learning on any given neural training task. More precisely,
it aims at determining (i) the kind of synopsis that should be used, (ii) the amount of data
reduction that should be imposed on the raw data streams, (iii) the number of epochs that
should be used during the training process, using data stream summaries instead of the raw
streams. The outcome of this component is the optimal setup for (i) - (iii) to properly balance
the training time vs accuracy trade-off for a scalable neural model training procedure.

4 https://sdeaas.github.io/
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4.4.3 Data-driven Distributed Training Component

This component boosts the scalability of neural training by acting complementarily to the
Synopses-based Training Optimization Component. It follows a Parameter Server (PS) training
paradigm 28[REF-02], distributing the training process of a given neural model over a number
of worker machines available in corporate data centres or the cloud. More precisely, each
worker trains an identical copy of the neural model but does so on a separate (disjoint)
portion of the incoming streams (Figure 11). The local models developed at each worker are
synchronized, from time to time, to a global model. Besides the traditional
synchronous/asynchronous synchronization mechanisms that are supported by the PS
paradigm, in EVENFLOW we develop advanced, data-driven synchronization protocols that
require a synchronization step only when a concept drift is likely to have occurred. Therefore,
the accuracy vs training time vs communication/latency trade-offs of the training process can
be controllably tuned for scalability and model evolution (drift) detection purposes.

Global
Model

, —
Parameter Server W = W - ﬂAW

0000000
o// 1N\
Local DD DD DD
we U0 100 OO

Local Stream Local Stream
@ Machine 1 @ Machinen

Figure 11: Basic Representation of the Parameter Server — based Training Paradigm.

4.4.4 Interplay of Components in EVENFLOW Scalability Toolkit

Figure 12 illustrates the interplay of the various components of EVENFLOW Scalability Toolkit.
The SDEaaS use is initially internal to the Synopses-based Training Optimization Component
as it provides and maintains that supported data stream summarization techniques to be
tested for accuracy vs training time performance. Based on the result of the optimization,
which dictates the best possible triplet of <types of synopses, data reduction ratio, number
of training epochs>, SDEaaS is tuned and employed in the production pipeline. On the right-
hand side of the figure, each worker machine maintains the determined synopses on the local
streams it receives and locally trains a copy of the neural model devised by the application.
The local models built by each worker are synchronized based on either traditional [REF-02]or
novel synchronization protocols, developed in the scope of EVENFLOW, into a global model.
The trained global model is employed to label simple derived events used by the neuro-
symbolic component of EVENFLOW. The described pipeline can be executed continuously or
in predefined intervals.
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Figure 12: Architectural Viewpoint of EVENFLOW Scalability Toolkit.

4.5 Logical Architecture of Verification Solutions

Verification solutions include two main modules: (i) a formal verification toolbox that checks
whether a property provably holds on a pre-trained network—henceforth, the “verifier” (ii) a
scheme that trains the network so as for the required property to provably hold, post-
training—henceforth, “robust training”.

4.5.1 Required inputs

Both modules will require the following inputs:

e A property specification, expressed as an input domain (the set of allowed inputs: for
instance, for adversarial examples, the set of allowed perturbations) and an output
condition (all the outputs from the input domain should satisfy the condition: for
instance, they should all be correctly classified). In order to maximise support from
toolboxes, input domains should be convex sets that allow for efficient optimization,
and output conditions should be Boolean formulas over inequalities.

e The model, which can be pre-trained if input to the verifier, or randomly initialized, if
input to the verified training module. Ideally, the architecture itself is designed to
maximize verifiability: as small as possible, with the least number of non-linearities.

4.5.2 Verifier module

Given the inputs above, the verifier outputs either “satisfied”, “violated” or “undecided”. If the
answer is “violated”, the verifier provides a concrete counterexample violating the property.

The verifier first attempts to violate the property by searching for counterexamples (typically,
through local optimization methods). If no counterexample is found, the verifier creates an
abstraction of the model (typically, through a convex relaxation) and attempts verification on
it. If verification of the abstraction fails, the verifier refines the abstraction by iteratively
dividing the original problem into a series of sub-problems, on which it attempts verification
through abstractions and looks for counterexamples, until it is timed out (case in which it
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outputs “undecided”), or a definite answer is provided. Sub-problems can be solved in
parallel. The verifier implementation will be tailored to the specifics of the EVENFLOW-
specific inputs (the model types and the property specifications).

4.5.3 Robust training module

Given the required inputs as defined above, the robust training module outputs a version of
the model that satisfies the specified property on a relatively large share of the training
examples and generalizes to unseen examples.

Depending on the property specification, standard-trained networks may either display easy-
to-find counterexamples to the property or be hard to verify (inducing the verified to hit the
exponential worst-case). This module internally employs abstractions and potentially
counterexamples from the verifier module at training time. Adequate verification is also
employed to ensure the property holds on unseen examples. As for the verifier component,
the robust training model will be specifically designed for the EVENFLOW use-cases.
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5 Conclusions and Future Outlook

EVENFLOW is carrying out cutting edge research in different areas of neuro-symbolic learning,
including explainable Al and formal verification methods. The project’s research output
includes novel neuro-symbolic learning techniques, along with their applications in real-life
applications. Along with these research outcomes, the project is also researching and
developing a platform that will integrate the different research outcomes of the project
towards easing access to integrate neuro-symbolic learning models and applications. The
project’s platform is destined to facilitate the development and integration of end-to-end
neuro-symbolic Al applications, including data access, data pre-processing, data analytics,
machine learning, formal verification, and visualization modules, among other elements of
EVENFLOW applications. As such, the EVENFLOW platform will facilitate the integration of the
project’s use cases as part of WP6 of the project.

This deliverable has provided an initial outline of the architecture and logical design of the
platform, in-line with the 4+1 view methodology for describing architectures of software
systems. The 4+1 views methodology allows EVENFLOW to deliver the architecture design in
a modular fashion. In the scope of the present deliverable, the logical view of the EVENFLOW
has been introduced, which focuses on the functionalities of the platform and includes the
structuring principles that will drive the integration of the different modules of the platform.
At the logical level, the EVENFLOW platform comprises conventional modules that typically
used to development ML pipelines, along with novel modules that enable the development
and integration of neuro-symbolic learning modules. Apart from detailing the logical view of
the architecture, the deliverable has provided early insights on other views of the EVENFLOW
platform architecture such as the implementation and deployment views that will be driving
the development and operation of the platform at later stages of the project. Moreover, the
deliverable presents an initial set of interactions and information flows between the different
components of the platform, as part of early versions of the process view(s) of the platform.

Overall, the present deliverable provides a sound basis for advancing the platform
development and use case integration activities of the project. The latter will boost the
development of additional views of the architecture, as well as the improvement of already
presented views. The next versions of the deliverable will gradually lead to a complete and
detailed description of the architecture of the EVENFLOW platform, as well as to the final
specifications of the integration EVENFLOW systems and applications.
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