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Executive Summary

This deliverable is the public version of deliverable D6.2, and both are exactly the same since
no sensitive information was identified.

This deliverable presents the final architecture and integration outcomes of the EVENFLOW
project, focusing on the realization, deployment, and validation of an integrated neuro-
symbolic framework for robust learning and reasoning over complex event streams.
EVENFLOW addresses the challenge of forecasting and explaining critical events in evolving,
high-volume time-series data by combining neural representation learning with symbolic
reasoning, formal verification, and scalable data management technologies.

Work Package 6 consolidates the architectural vision initially proposed earlier in the project
into a concrete, deployable system that integrates heterogeneous tools developed across the
consortium. The final EVENFLOW architecture adopts a modular, layered design that supports
end-to-end data flows from raw perception streams to interpretable, verifiable forecasts. It
enables interoperability between neural, symbolic, and verification components while
accommodating the scalability and robustness requirements of real-world applications.

At the core of the architecture is a distributed data management backbone based on Apache
Kafka and Kubernetes, deployed at NCSR facilities. This infrastructure supports high-
throughput ingestion, buffering, and dissemination of streaming data across use cases and
tools, while enabling secure access control and orchestration through standard cloud-native
technologies. On top of this backbone, EVENFLOW integrates a diverse set of analytics and
learning components, ranging from deep neural networks and neuro-symbolic automata to
synopsis-based training optimization, scalable complex event recognition, and formal
verification frameworks.

A key architectural contribution of EVENFLOW lies in the seamless integration of neuro-
symbolic learning mechanisms. Several tools demonstrate how neural perception models can
be coupled with symbolic structures—such as automata, logical rules, and event patterns—
under probabilistic and differentiable semantics. In particular, the project shows that
symbolic components, including automata guard conditions and temporal constraints, can be
learned jointly with neural parameters using gradient-based optimization. This enables end-
to-end training pipelines that retain interpretability while maintaining competitive predictive
performance.

The integrated architecture is validated through a set of representative scenarios spanning
multiple domains. These include scalable neuro-symbolic learning over streaming data,
deadlock forecasting in robotic motion planning for Industry 4.0, leakage detection and
sensor optimization in water infrastructure monitoring, synthetic trajectory generation and
biomarker discovery in personalized medicine, and formal robustness verification of safety-
critical perception models. Each scenario demonstrates a distinct integration path across the
architectural layers, highlighting the interoperability of EVENFLOW components and their
applicability to heterogeneous data modalities and operational settings.
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Beyond forecasting accuracy, EVENFLOW places strong emphasis on robustness,
explainability, and trustworthiness. Verification tools developed within the project enable
certified robustness analysis of neural and neuro-symbolic models under bounded input
perturbations, while rule-learning and symbolic reasoning components provide interpretable
representations of learned behaviours. These capabilities address key regulatory and ethical
requirements for Al systems operating in safety-critical and high-impact domains.

In summary, this deliverable documents the final EVENFLOW integrated scenarios, its
architectural realization, and its validation across multiple scenarios. It demonstrates that
neuro-symbolic approaches can be effectively engineered, deployed, and scaled in realistic
settings, offering a viable path toward robust, interpretable, and verifiable Al systems for
complex event forecasting.

Dissemination level: PU - Public, fully open Page 3



E\/ElNI:L-@.W D6.4 - Final Version of the Integrated EVENFLOW Prototype
o

(PU version)
Horizon Europe Agreement No 101070430

Deliverable leader: loannis Christou (INTRA)

Alesio Lomuscio (ICL), Nikos Katzouris (NCSR), Nikos Giatrakos (ARC),

Contributors: Davide Cirillo (BSC)

Reviewers: Davide Cirillo (BSC), Nikos Giatrakos (ARC)

Approved by: Athanasios Poulakidas, Vasiliki- Eleni Provopoulou (INTRA)

Document History

Version Date Contributor(s) Description
0.1 2025-12-24 INTRA Initial version, based on D6.2 (the SEN
version)
1.0 2025-12-29 |INTRA Version to be submitted after final QA

Dissemination level: PU - Public, fully open Page 4



E\/ElNI:L-@.W D6.4 - Final Version of the Integrated EVENFLOW Prototype
o

(PU version)
Horizon Europe Agreement No 101070430

Table of Contents

EXECUTIVE SUMIMIAIY .. s 2
Table Of CONTENTS ... st sae e e n e aeeenees 5
LI o1 (Sl o) T (0T L PRSP 6
LIST O TABIES .ttt et e et e st e e e bt e e s bt e e saneeesaneenaas 6
Definitions, Acronyms and AbBDreviations ..........c.ceeeeiuiieeeciiiie e 7
R [0} e To [¥ [ o ] o I OO PROPRRPPI 8
1.1 Project INfOrmMation ... e s 8
1.2 [DToTo{U] g aT=To L N Yolo] o= NP PP P PO PPPPPRPPRRRN 9
1.3 DOCUMENT STFUCTUIE ..oviiiiiiiiiiiiiiiiiiei e e 9

2 Final EVENFLOW Archit@CTUIe .....coouiiiiieeeee ettt 10
2.1 Requirements for Integrated SYStemMS......ccvviiieiciiii i 10
2.2 Final EVENFLOW Archit@Cture .....ccocuviiiiiiiiiiieiciee et 10
2.3 Final EVENFLOW Architecture Implementation and Deployment View ................. 11

3 Final EVENFLOW Integrated SCENAIIOS .....cccvviieeiiiiieeeieieee e esreee et e e rre e e e siaee e s e 14
3.1 SCAIADIE NESY ettt e e e e e e e e e e e e e e ennnes 16
3.1.1 General DeSCriPtioN ... 16
3.1.2 SCENANIO DETAIS....eiiieiieeeeee e 17

3.2 DFKI SCENATIIO ..eviiiiiiitiiieiite e s srre e e s 17
3.2.1 General DeSCriPtioN ... 17
3.2.2 SCENANIO DTS, ...eeeieiieeeeeee e 18

3.3 EKSO SCENAMIO ..vviiiiiiiiiiiiiiic 19
331 General DeSCriPtioN ... e 19
3.3.2 SCENANIO DETAIIS. ...eeiieiieee e 19

3.4 BSC SCONANIO.c..utiiiiiiiiiiitii e 20
34.1 General DeSCriptioNn ... e e 20
3.4.2 SCENANIO DTS ..o 21

3.5  Verification SCENAIIO ..c..ueiiieiieeeee e e 21
35.1 General DeSCriptioNn ... e e 21
3.5.2 SCENANIO DTS ..o 22

3.6 Other SCENAIIOS. ...e ettt e e e e 23

4 DisCUSSION & CONCIUSIONS....c..viiiiieiieniie ettt s sanees 24

Dissemination level: PU - Public, fully open Page 5



E\/ElNI:L-g;\.W D6.4 - Final Version of the Integrated EVENFLOW Prototype
=

(PU version)
Horizon Europe Agreement No 101070430

Table of Figures

Figure 1: Final EVENFLOW Architecture Logical VIEW. ......ccccuveiiiiiiiiiiiiiiie e 10
Figure 2: EVENFLOW Data Management components Final Deployment View. .................... 12
Figure 3: Data flow in integrated scenario #1. .......cccccovviieiiiiee e 16
Figure 4: Overview of the NeSy-SUBITO SCENAIIO......ccuuieeeeiieeeeccieee e e e et e e eaaee e 17
Figure 5: Data flow in integrated sCeNario #2. .......cccccueviiieiiiee e 18
Figure 6: Overview of the DFKI deadlock forecasting scenario. ......cccceccveeeevviiieeiiiciieeecsiieeennn 18
Figure 7: Dataflow in integrated scenario #3. ... 19

Figure 8: Results of using QARMA for analysing the 3™ and final EKSO dataset. Every sensor
can appear as a pre-condition for the value reading of every other sensor in this dataset. The
screenshot shows a GUI developed for the QARMA family of algorithms, visualizing the

derives rules in the bottom part of the SCreen...........oooiiiii e 20
Figure 9: Data flow in integrated sCeNArio #5. .......ccccciiiiiiiiiiie e 22
Figure 10: Verification pipeline for Neuro-symbolic system using CNN architecture............. 22

List of Tables

Table 1: The EVENFLOW CONSOTTIUM . couuuiiiiiieieeeiieeeeetiee e ettt e eeetteseestsnessestsnssssesnessssesnessssennnns 8
Table 2: Data FIOWS BETWEEN TOOIS. ..ovvurueeeeeiiiieiiiiiieee e eeeeetvetiieeeseeeeeteessaneseeeseeesssnnnnnsseseeens 15

Dissemination level: PU - Public, fully open Page 6



E\/ElNI:L-g;\.W D6.4 - Final Version of the Integrated EVENFLOW Prototype
%

(PU version)
Horizon Europe Agreement No 101070430

Definitions, Acronyms and Abbreviations

Acronym/ Title
Abbreviation

Al Artificial Intelligence

CEF Complex Event Forecasting

GDPR General Data Protection Regulation

LSTM Long short-term memory

ML Machine Learning

RNN Recurrent Neural Network

XAl Explainable Al

Term Definition

FAIR data FAIR data are data which meet principles of findability, accessibility,

interoperability, and reusability (FAIR)
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1 Introduction

1.1 Project Information

EVENFLOW develops hybrid learning techniques for complex event forecasting, which
combine deep learning with logic-based learning and reasoning into neuro-symbolic
forecasting models. This approach combines neural representation learning techniques that
construct event-driven features from streams of perception-level data with powerful
symbolic learning and reasoning tools, which utilize such features to synthesize high-level,
interpretable patterns for forecasting critical events.

To deal with the brittleness of neural predictors and the high volume/velocity of temporal
data flows, the EVENFLOW techniques rely on novel, formal verification techniques for
machine learning, in addition to a suite of scalability algorithms for training based on data
synopsis, federated training and incremental model construction. The learnt forecasters will
be interpretable and scalable, allowing for explainable and robust insights, delivered in a
timely fashion and enabling proactive decision making.

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting in
healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart
factories and (3) reliable life cycle assessment of critical infrastructure.

Table 1: The EVENFLOW consortium.

Number! Name Country Short name
1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA
1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU
2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH  Greece NCSR
"DEMOKRITOS"
3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS Greece ARC

STIS TECHNOLOGIES TIS PLIROFORIAS, TON
EPIKOINONION KAI TIS GNOSIS

4 BARCELONA SUPERCOMPUTING CENTER- Spain BSC
CENTRO NACIONAL DE SUPERCOMPUTACION
5 DEUTSCHES FORSCHUNGSZENTRUM FUR Germany DFKI
KUNSTLICHE INTELLIGENZ GMBH
6 EKSO SRL Italy EKSO
7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY  United ICL
AND MEDICINE Kingdom

'CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner.
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1.2 Document Scope
The scope of this document includes the requirements fulfilment matrix, presentation of the

updated final EVENFLOW architecture, and a detailed description of the integration scenarios
established in the project to demonstrate the project results.

D6.4 is the public version of D6.2 and identical to it, as it was confirmed by the consortium
that D6.2 contains no sensitive information.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.
Chapter 2 presents the updated final EVENFLOW architecture.
Chapter 3 presents the EVENFLOW integrated scenarios.

Chapter 4 presents the conclusions.

Dissemination level: PU - Public, fully open Page 9



EVHNFL@W D6.4 - Final Version of the Integrated EVENFLOW Prototype
(PU version)
Horizon Europe Agreement No 101070430

2 Final EVENFLOW Architecture

2.1 Requirements for Integrated Systems

The EVENFLOW requirements were collected in an Excel file, EVENFLOW integrated system
requirements.xIsx. The final architecture detailed in the next section, and the sub-systems
and architectural components implemented, together, fulfil all the 12 major high-level
requirements (R0O01-R012) set forth in the above-mentioned Excel spreadsheet.

2.2 Final EVENFLOW Architecture

The final architecture, based on the original logical view of the EVENFLOW architecture
proposed in D6.1 “Architecture Design and Integrated System Specification (SEN version),” is
shown in Figure 1 below.
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Figure 1: Final EVENFLOW Architecture Logical View.

In Figure 1 we show the extra components that have been developed in the context of
EVENFLOW since the initial specification of the EVENFLOW architecture. These components
are as follows:

1. Robot Motion Simulator & Data Generator: tool that simulates the motion of robots
in a controlled environment and generates image datasets of what the cameras
attached to the robots see as they move in their environment. Also outputs deadlocks
when recognized.

2. SuBiTO: is an intelligent framework designed to optimize the trade-offs between
training time and accuracy in real-time machine learning applications over Big
Streaming Data. It tackles the challenges faced by Neural Networks (NNs) deployed in

Dissemination level: PU - Public, fully open Page 10
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high-speed, high-volume environments by continuously adjusting model parameters
to ensure efficiency with minimal downtime.

3. RATS+: a set of scripts for the optimal scheduling of tumor simulations under various
treatment options, suitable for use with scalable frameworks for parallel/distributed
clusters/HPC.

4. SDEaaS: Synopses Data Engine as a Service combines the virtues of parallel processing
and stream summarization towards delivering interactive analytics at extreme scale.
It is built on top of Apache Flink/Dask and implements a novel synopsis-as-a-service
(SDEaaS) paradigm.

5. NeuroFlinkCEP: a framework that integrates neural and symbolic Complex Event
Recognition (CER) over a state-of-the-art Big Data platform, also optimizing
neurosymbolic CER upon operating over loT settings. NeuroFlinkCEP receives
expressed patterns as extended regular expressions and automatically transforms
them to FlinkCEP jobs per device.

6. NesyA: Neuro-symbolic Automata. Symbolic automata that combine the power of
automata for temporal reasoning with that of propositional logic for static reasoning
are a suitable formalism for expressing knowledge in temporal domains. Symbolic
automata can be integrated with neural-based perception, under probabilistic
semantics towards an end-to-end differentiable model. NeSyA (Neuro Symbolic
Automata) is shown to either scale or perform more accurately than previous NeSy
systems in a real-world event recognition task.

7. VAE: a tool for creating pseudo-temporal trajectories of the progression of tumorin a
patient.

8. Nesy-veri: Neuro-symbolic Verification. We compile the symbolic part into a
computational graph, stack it on top of the neural network, port the combined thing
into ONNX, and use of-the-shelf verifiers to propagate bounds through the neural and
symbolic parts in one go.

9. SCANNV: Scalable Neural Network Verification (SCANNV) approach, a set of
techniques that can reduce the execution time of parallel neural network (NN)
verification by optimising (i) how an input property is split into subproblems that can
be verified in parallel and (ii) how these subproblems are scheduled for execution.

2.3 Final EVENFLOW Architecture Implementation and Deployment
View
The implementation of the EVENFLOW architecture is based on the following Deployment

View, showing how a number of data management services, based on the Kafka messaging
architecture, has been installed at NCSR premises:

Dissemination level: PU - Public, fully open Page 11
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Figure 2: EVENFLOW Data Management components Final Deployment View.

The installation of the components shown in Figure 2 was done with the help of the Strimzi
operator: Strimzi provides a way to run an Apache Kafka cluster on Kubernetes in various
deployment configurations, making it particularly easy to handle KeyCloak authentication &
authorization services, as it includes the tool in its bundle. The following software is up and
running at the NCSR servers:

Kubernetes cluster
Containerd

Runc

Helm

Longhorn

Nginx

Zookeeper

Kafka broker services

O NN REWNR

The above components were deployed at INTRA and NCSR machines by M18 of the project,
as part of the initial work reported in D6.1 “Architecture Design and Integrated System
Specification (SEN version)”.

The Strimzi operator was installed at NCSR machines after M18 in order to facilitate the
deployment of both the Kubernetes modules as well as the KeyCloak
authentication/authorization service, together with the appropriate user credentials
configurations.

9. KeyCloak

The connectors are the set of command-line scripts developed by INTRA for use by any
partner who wishes to use them (e.g. DFKI) in order to create/modify/delete topics in the
Kafka cluster running on NSCR machines, and read/write into these topics. The set of such
scripts along with the appropriate credentials were given to interested partners (as modified
appropriately Strimzi operator scripts). The development process followed an incremental
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approach whereby initial standard Kafka shell scripts were distributed for use with the Kafka
cluster installed at INTRA-supplied servers (see D6.1 “Architecture Design and Integrated
System Specification (SEN version)”), and later improved to work with KeyCloak
authentication/authorization functions provided in the new Strimzi-based installation of the
Kafka cluster installed at NCSR machines. Tests were made through the DFKI ROS simulation
runs to ensure the read/write of messages to the EVENFLOW Kafka message bus.
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3 Final EVENFLOW Integrated Scenarios

In this chapter, we present the final integrated scenarios that we use in EVENFLOW to
demonstrate the usefulness and applicability of our developed tools, and their
interoperability. For each scenario, we first present a schematic that corresponds to a DFD
level 0 diagram, or equivalently a Use-Case Context Diagram) that shows the main tools
involved in the scenario, and their data flows. We then proceed to present specific details
about the scenario.

The first integrated scenario involves the cooperation of the NeSy tools (developed by NSRC)
with the scalability toolkits developed by ARC. The data used in this demonstration scenario
are variants of the NIST/MNIST open-access dataset of digitized hand-written digits. For more
information, see D5.1 “Interim Version of Verification and Scalability Techniques” and D4.2
“Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques.”

The second integrated scenario involves using the NeSy toolkit (NesyA, Wayeb -see D3.3
“Final Use Case Evaluation”) to forecast robot path movement and robot “deadlock
detection” using the DFKI image dataset (see D3.3 “Final Use Case Evaluation”).

Data are stored in the Kafka installation deployed in the NCSR servers for the EVENFLOW data
architecture needs.

The third scenario revolves around water infrastructure Use-Case (again, see D3.3 “Final Use
Case Evaluation”) A number of tools have been developed and tested against the datasets
provided by EKSO. Specifically, INTRA has developed several predictive ML tools based on
Neural Networks (combination of RNN and CNN) as well as based on rule-learning algorithms
that have produced a number of important results for both the 2"¥ and 3" datasets provided
by EKSO. NCSR has also worked with CNN-based forecasting tools to develop NN-based tools
for detecting leakages in the 2" dataset provided by EKSO. The relevant datasets are available
on the Kafka message bus deployed at the NCSR servers.

The fourth scenario is about the bio-informatics Use-Case (BSC) and is concerned with the
creation of synthetic trajectories that “simulate” the transition of early-stage cancer patients
to late-stages (see D3.3 “Final Use Case Evaluation”) Besides the synthetic generation of path
trajectories, a number of tools were developed to identify transcriptomic biomarkers
indicative of the progress of a tumor.

The fifth scenario showcases the verification capabilities of the EVENFLOW tools, with the
help of the image dataset developed in the Industry 4.0 Use Case. See D5.2 “Final Version of
Verification and Scalability Techniques.”

Other minor scenarios are described in Section 3.6.

The particular ways in which data flows between various tools in each scenario is detailed in
Table 2 below.
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Table 2: Data Flows Between Tools.

(PU version)

Scenario Name / # \ Tool Name Tool Input Tool Output
EKSO /3.3 QARMA Time-series data | Rules stored in
stored in RDBMS RDBMS
EKSO /3.3 QARMA-classifier 1. Time-series Leakage Detection
data stored | Decision (Yes/No)
in CSV file
2. Rules stored
in RDBMS
EKSO /3.3 LSTM 1. Time-series Leakage Detection
data stored | Decision (Tap#)
in CSV file
BSC/KIRC and MB Synthetic Data | Gene expression | Synthetic gene
Generation Pipeline | data of real patients | expression data.
affected by renal | Either trajectories
carcinoma (KIRC) or | (KIRC) or static

medulloblastoma

augmentation (MB)

(MB)
BSC/KIRC Static and dynamic 1. Gene Classification of
classifier expression synthetic timepoints
data of real | in cancer trajectories.
patients and
synthetic
patients.
2. Metadata on
the  cancer
stage of real
patients.
BSC/KIRC Dynamic Gene Set 1. Synthetic Enrichment score of
Enrichment Analysis gene each interpolated
expression time point and
trajectories. | pathway.
2. Reactome
pathways
ARC SDEaaS Training Data | Summaries  (mainly
Streams stratified samples) of
training data streams
ARC SuBIiTO Summaries of | Up-to-date  trained
Training Data | neural/neurosymbolic
Streams, Unlabelled | Model, Prediction
Data Streams Streams
ARC NeuroFlinkCEP Neural Model, | Recognized Complex
Logical Workflow, | Event Streams
Device Registry,

Dissemination level: PU - Public, fully open
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Scenario Name / # \ Tool Name Tool Input Tool Output
Statistics, Perceptual
Streams

ICL Nesy-veri Trained Neural | Robust accuracy of
Network, the verified models,

Dataloader, Epsilon | lower and upper
noise perturbations, | bounds of the neural
verification method | network outputs
(IBP / CROWN+IBP) | under adversarial
noise perturbations

3.1 Scalable NeSy

3.1.1 General Description

This particular scenario works only with the MNIST dataset (http://yann.lecun.com/) and
involves using both the scalability tools from ARC (in particular, the SuBiTO toolkit) as well as
the Neuro-symbolic toolkits (NesyA) developed by NCSR. The general data flow is shown in
the figure below.

Dutpu‘t

SUBITO NeSy Predietions

Figure 3: Data flow in integrated scenario #1.

For more information, see D5.1 “Interim Version of Verification and Scalability Techniques”
and D4.2 “Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques.”

The partners involved include ARC, NCSR and INTRA. The scenario will demonstrate the use
of scalable synopses developed in the SuBiTO toolkit feeding the NeSy tools developed by
NCSR (NesyA — neurosymbolic automata) to recognize specific digit sequences as specified by
the rules of the automata at the end of the NesyA tool. INTRA coordinates the development
of this scenario.

There are no related Use-Cases with this scenario, but it is important for demonstrating the
collaboration of two of the major tools developed in EVENFLOW.
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3.1.2 Scenario Details

Input stream ASP Program (rules)
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I
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Figure 4: Overview of the NeSy-SuBiTO Scenario.

An overview of the NeSy-SuBiTO scenario is presented in Figure 4. In this scenario, an
automaton is used as a “teacher" for a Convolutional Neural Net (CNN), which learns to
predict MNIST digits from MNIST image sequences that satisfy or not the pattern specified by
the automaton. Therefore, training is performed in an indirect fashion, without explicit labels
at the image level, but with “downstream" labels, at the sequence level only. SuBiTO's
optimizer is used to optimally adjust, at training time, the amount of additional training
required, given the hybrid neuro-symbolic (CNN+automaton) model’s current predictive
performance and the characteristics of the training data. Further details are provided in
Section 3.2 of D5.2 “Final Version of Verification and Scalability Techniques.”

3.2 DFKI Scenario

3.2.1 General Description

This scenario demonstrates how neuro-symbolic tools (NesyA) can forecast and predict
specific conditions in robot motion planning and execution, most importantly deadlock (which
is the condition that occurs when a robot detects an obstacle -most likely another robot- in
its immediate trajectory of motion.) For more information see D3.3 “Final Use Case
Evaluation”. This workflow is aligned with the Industry 4.0 Use Case.

The data flow of this integrated scenario #2 is shown in the figure below:
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Figure 5: Data flow in integrated scenario #2.
The partners involved are DFKI (data providers), INTRA (message bus integrator), and of
course NCSR (neuro-symbolic-based forecaster development).

Data reside in the Kafka message bus deployed for this purpose at NCSR servers, and are
image data generated by the DFKI robotic environment simulator (Robot Motion Simulator
and Data Generator in Section 2.2).

These data feed the NesyA toolset which outputs (after training) an appropriate forecaster
that learns to forecast the imminent creation of a deadlock involving moving robots.

3.2.2 Scenario Details

Symbolic
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Figure 6: Overview of the DFKI deadlock forecasting scenario.
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The DFKI forecasting scenario combines image and time series robot data, perception neural
networks with symbolic deadlock patterns, as well as event forecasting tools, to deliver timely
deadlock forecasts that can be used for re-planning and intimately reducing operational
downtimes. An architectural overview of the approach and the involved components is
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presented in Figure 6, while further details and evaluation results are provided in Deliverable
D3.3.

3.3 EKSO Scenario

3.3.1 General Description

This scenario shows how rule-learning systems as well as specialized neural architectures can
learn to detect leakages in water pipes infrastructures, and even optimize the placement of
(cheap) sensors in such pipes. For more information see D3.3 “Final Use Case Evaluation”.

The data flow in this scenario is as shown in the figure below. The time-series data reside in
the Kafka message bus deployed at NCSR servers.

Leakages
Detection

Leakase
Detector

QARMA

Sensor

Correlated
Sensors

Correlation
Anc\h!s'.s

Input

Data

(time-

series)

Leakages
Detection

Figure 7: Dataflow in integrated scenario #3.

Also, use LSTM-approach and automata-based to detect patterns and leakages on 1st EKSO
dataset (NCSR).

The partners involved are: EKSO (data provider, 3 distinct real-world datasets, not
simulations), INTRA (data analyses and rule-learning system provider), and NCSR (neural-
based approaches)

The scenario implements the Infrastructure Maintenance Use Case of the EVENFLOW project.

3.3.2 Scenario Details

The rule-based approach detects correlations between sensors via the QARMA rule-
extraction algorithm family (INTRA) on the 3rd EKSO dataset. It also learns rules that apply
when using only the most distant (from the leakage source) sensor, showcasing that even
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with a single sensor placed approximately 100m from the leakage source, we can detect
leakage with accuracy above 95%! This result indicates that instead of placing sensors every
10m as done in the scenario developed by EKSO in Burgas municipality, it is sufficient to place
sensors 100m apart (a 10x improvement in sensor placement requirements) and still be able
to achieve a 95% accuracy with data corresponding to 10sec. By applying further aggregation
heuristics over a 10 min. period, the detection accuracy can be shown to rise to 100%.

For the 3" and final EKSO dataset, a total of approximately 20.000 rules were derived, all of
them showing how every sensor value correlates with the reading value of every other sensor
in the dataset, justifying to a high degree the fact that even the most distant sensor is
sufficient to detect leakages (see figure below).

EBEEEELEEEEEEEEEEEER

EEEE

B
T ] 7

Figure 8: Results of using QARMA for analysing the 3™ and final EKSO dataset. Every sensor
can appear as a pre-condition for the value reading of every other sensor in this dataset. The
screenshot shows a GUI developed for the QARMA family of algorithms, visualizing the derives
rules in the bottom part of the screen.

3.4 BSC Scenario

3.4.1 General Description

The scenario intends to demonstrate the purpose of the Personalized Medicine use case
which is to utilize EVENFLOW technology to forecast events related to critical stages in tumor
evolution in oncological, virtual patient applications. A first major outcome of this use case
has been the development of a Variational Auto-Encoder (VAE) that allowed the development
of “virtual”, synthetic trajectories that follow the evolution of breast cancer, based on a
number of real patients’ data. Following the “pairing” or “matching” of endpoints (patient
data points that indicate early or late stages in the evolution of the disease from a molecular
biology point of view using gene expression data) a neuro-temporal approach using LSTM
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technology allowed for the identification of certain genes that appear to be highly correlated
with disease progression.

Disentangled latent spaces were extracted from the learnt VAE models. Such spaces map
covarying, unobserved (latent) factors in the data generation process (e.g. the gene
expression profiles of a cohort of patients) to specific observed parameters (generative
factors) of the model that generates the data, (e.g. dysregulation of a set of genes).

The major partners in this scenario are BSC (data point provider, VAE developer) and NCSR
(path generation, detection of biomarkers for disease progression). For more information, see
D3.3 “Final Use Case Evaluation.”

3.4.2 Scenario Details

Building on the synthetic trajectory generation pipeline described above, BSC explored data-
driven strategies for pairing patient representations across disease stages in high-dimensional
molecular feature spaces. By operating in latent representations learned from gene
expression profiles, the approach enables the construction of smooth disease progression
trajectories that interpolate between early and late cancer stages while preserving
biologically meaningful structure. These trajectories allow downstream temporal analysis
techniques to be applied in settings where longitudinal patient data are scarce or incomplete.
The generated synthetic paths were subsequently used to study the temporal activation of
molecular signatures and pathway-level dynamics, supporting the identification of candidate
biomarkers associated with disease progression. Although primarily evaluated in an offline,
exploratory setting, this approach illustrates how synthetic trajectory generation can
complement neuro-symbolic forecasting and reasoning pipelines by enriching training and
analysis data in personalized medicine scenarios.

3.5 Verification Scenario

3.5.1 General Description

The Verification scenario revolves around the verification of particular neural networks
accepting raw data (in this case, image data). We used data from the DFKI synthetic image
data produced by the DFKI Robot Simulation and Data Generator toolkit.

NeSy tools were used to assist verification methods to produce better bounds and
subsequently NN verification results.

The data flow for this scenario is shown in the figure shown below.
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Figure 9: Data flow in integrated scenario #5.

The relevant partners are DFKI (data provider), NCSR (neuro-symbolic toolkit provider), and
ICL (verification toolkit provider). For more information, See D5.2 “Final Version of
Verification and Scalability Techniques.”

3.5.2 Scenario Details

The verification scenario is applied to the industry 4.0 neuro-symbolic collision-avoidance
model developed for the DFKI robotic perception use case. The neural component of the
system was trained using a 5-fold cross-validation protocol, ensuring that each fold produced
an independently optimized model. This approach enables a robust evaluation of safety
guarantees by examining verification performance across diverse training distributions.
Verifying all five splits provides insights into the stability, generalization, and reliability of the
model’s safety-critical behaviour.

©
Input O Symbolic collision
image [ ® © > reasoning > or
© module no collision
leftcamera/ NN pipeline

right camera

Figure 10: Verification pipeline for Neuro-symbolic system using CNN architecture.
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Robustness evaluation was conducted by computing certified guarantees under multiple e-
bounded perturbation magnitudes applied to input camera images. These perturbations
emulate realistic noise patterns and environmental variations observed during robot
navigation, such as lighting changes or minor sensor distortions. Verification was performed
using a framework that we devised extending auto_LiRPA and interval bound propagation
(IBP) to generate sound lower and upper bounds on model outputs. These certified bounds
allow us to determine whether the model’s collision-prediction decisions remain unchanged
within specified perturbation regions, thereby evaluating its formal robustness.

The resulting certified robustness values were aggregated across all five cross-validation folds,
enabling a systematic comparison of verification performance and highlighting the degree to
which the neuro-symbolic system maintains robustness under input perturbations.

3.6 Other Scenarios

Most partners have developed small independent scenarios to demonstrate (or simply
showcase) the tools they have developed in the EVENFLOW project. These scenarios are
explained in the deliverables of the respective Work Packages.
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4 Discussion & Conclusions

The final architecture and integration work presented in this deliverable confirm the technical
feasibility and practical relevance of the EVENFLOW approach to neuro-symbolic complex
event forecasting. Through the systematic integration of neural learning, symbolic reasoning,
scalable data processing, and formal verification, EVENFLOW demonstrates that hybrid Al
systems can move beyond conceptual prototypes toward deployable, end-to-end solutions.

One of the main conclusions of the project is that neuro-symbolic models can be trained and
executed effectively in streaming and evolving environments, provided that appropriate
architectural abstractions and integration mechanisms are in place. The modular design of
the EVENFLOW architecture proved essential in accommodating heterogeneous tools
developed by different partners, allowing them to interoperate through well-defined data
flows and deployment patterns. The use of a shared messaging backbone and containerized
deployment facilitated experimentation, scalability, and reuse across scenarios.

From a methodological perspective, EVENFLOW shows that symbolic structures—such as
automata, logical rules, and event patterns—can be tightly coupled with neural components
without sacrificing learnability or scalability. The successful application of gradient-based
optimization to hybrid neural-symbolic models, including the learning of symbolic guard
conditions, represents a significant step toward unifying data-driven and knowledge-driven
approaches. At the same time, the project highlights the importance of complementary
techniques, such as synopsis-based training optimization and distributed learning, to manage
the computational demands of such models.

Another important outcome concerns robustness and trustworthiness. The integration of
formal verification techniques into the learning and evaluation pipeline enables the
assessment of certified guarantees for safety-critical predictions. This is particularly relevant
for applications such as autonomous systems and infrastructure monitoring, where predictive
accuracy alone is insufficient. The verification scenarios illustrate how neuro-symbolic
representations can support tighter bounds and more informative robustness analyses
compared to purely neural models.

Despite these achievements, the project also identified several limitations and open
challenges. Integration complexity remains non-trivial, especially when combining tools with
different assumptions about data formats, execution models, and learning workflows. While
the architecture supports interoperability at the system level, deeper semantic integration
between components often requires additional engineering effort. Moreover, although
several tools have demonstrated scalability in controlled settings, further work is needed to
evaluate their performance and stability under sustained real-world operational loads.

Looking forward, several future research and development directions emerge from
EVENFLOW. From a scientific perspective, there is clear potential to extend neuro-symbolic
learning to richer forms of temporal and probabilistic reasoning, as well as to explore tighter
integration between learning and verification during training rather than post-hoc analysis.
Advancing methods for continual and lifelong learning in neuro-symbolic systems remains
another important avenue, particularly for long-running deployments with evolving data
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distributions. From an engineering standpoint, future work could focus on further
standardization of interfaces and workflows, enabling easier composition and reuse of neuro-
symbolic components across projects and domains. Strengthening support for automated
deployment, monitoring, and lifecycle management would facilitate the transition from
research prototypes to production-ready systems. In addition, closer alignment with
emerging regulatory frameworks for trustworthy Al could help position neuro-symbolic
architectures as a practical response to forthcoming compliance requirements. In particular,
the alignment with the EU Al Act (Regulation (EU) 2024/1689) and the Ethics Guidelines for
Trustworthy Al (High-Level Expert Group on Al, European Commission, 2019) could
strengthen the case for neuro-symbolic architectures as a compliance-oriented design choice
rather than a purely academic alternative. In this sense, EVENFLOW demonstrates that by
embedding explicit reasoning, traceability, and human-interpretable decision paths into
learning systems, neuro-symbolic approaches directly support regulatory expectations
around explainability, accountability, and oversight, particularly for high-risk applications. As
regulatory pressure increases, these architectures may offer a pragmatic way to
operationalize legal and ethical requirements without sacrificing adaptive performance.

In conclusion, EVENFLOW provides strong evidence that neuro-symbolic Al is not only a
promising research paradigm but also a viable architectural choice for complex event
forecasting in real-world settings. The project has laid a solid foundation for future work that
builds on its architectural principles, tools, and lessons learned, paving the way toward more
robust, interpretable, and trustworthy Al systems.
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