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Executive Summary  
This deliverable is the public version of deliverable D6.2, and both are exactly the same since 

no sensitive information was identified. 

This deliverable presents the final architecture and integration outcomes of the EVENFLOW 

project, focusing on the realization, deployment, and validation of an integrated neuro-

symbolic framework for robust learning and reasoning over complex event streams. 

EVENFLOW addresses the challenge of forecasting and explaining critical events in evolving, 

high-volume time-series data by combining neural representation learning with symbolic 

reasoning, formal verification, and scalable data management technologies. 

Work Package 6 consolidates the architectural vision initially proposed earlier in the project 

into a concrete, deployable system that integrates heterogeneous tools developed across the 

consortium. The final EVENFLOW architecture adopts a modular, layered design that supports 

end-to-end data flows from raw perception streams to interpretable, verifiable forecasts. It 

enables interoperability between neural, symbolic, and verification components while 

accommodating the scalability and robustness requirements of real-world applications. 

At the core of the architecture is a distributed data management backbone based on Apache 

Kafka and Kubernetes, deployed at NCSR facilities. This infrastructure supports high-

throughput ingestion, buffering, and dissemination of streaming data across use cases and 

tools, while enabling secure access control and orchestration through standard cloud-native 

technologies. On top of this backbone, EVENFLOW integrates a diverse set of analytics and 

learning components, ranging from deep neural networks and neuro-symbolic automata to 

synopsis-based training optimization, scalable complex event recognition, and formal 

verification frameworks. 

A key architectural contribution of EVENFLOW lies in the seamless integration of neuro-

symbolic learning mechanisms. Several tools demonstrate how neural perception models can 

be coupled with symbolic structures—such as automata, logical rules, and event patterns—

under probabilistic and differentiable semantics. In particular, the project shows that 

symbolic components, including automata guard conditions and temporal constraints, can be 

learned jointly with neural parameters using gradient-based optimization. This enables end-

to-end training pipelines that retain interpretability while maintaining competitive predictive 

performance. 

The integrated architecture is validated through a set of representative scenarios spanning 

multiple domains. These include scalable neuro-symbolic learning over streaming data, 

deadlock forecasting in robotic motion planning for Industry 4.0, leakage detection and 

sensor optimization in water infrastructure monitoring, synthetic trajectory generation and 

biomarker discovery in personalized medicine, and formal robustness verification of safety-

critical perception models. Each scenario demonstrates a distinct integration path across the 

architectural layers, highlighting the interoperability of EVENFLOW components and their 

applicability to heterogeneous data modalities and operational settings. 
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Beyond forecasting accuracy, EVENFLOW places strong emphasis on robustness, 

explainability, and trustworthiness. Verification tools developed within the project enable 

certified robustness analysis of neural and neuro-symbolic models under bounded input 

perturbations, while rule-learning and symbolic reasoning components provide interpretable 

representations of learned behaviours. These capabilities address key regulatory and ethical 

requirements for AI systems operating in safety-critical and high-impact domains. 

In summary, this deliverable documents the final EVENFLOW integrated scenarios, its 

architectural realization, and its validation across multiple scenarios. It demonstrates that 

neuro-symbolic approaches can be effectively engineered, deployed, and scaled in realistic 

settings, offering a viable path toward robust, interpretable, and verifiable AI systems for 

complex event forecasting. 
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Definitions, Acronyms and Abbreviations 
 

Acronym/ 
Abbreviation 

Title 

AI Artificial Intelligence 

CEF Complex Event Forecasting 

GDPR General Data Protection Regulation 

LSTM Long short-term memory 

ML Machine Learning 

RNN Recurrent Neural Network 

XAI Explainable AI 

 

Term Definition 

FAIR data FAIR data are data which meet principles of findability, accessibility, 
interoperability, and reusability (FAIR) 
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 Introduction 

1.1 Project Information 

EVENFLOW develops hybrid learning techniques for complex event forecasting, which 

combine deep learning with logic-based learning and reasoning into neuro-symbolic 

forecasting models. This approach combines neural representation learning techniques that 

construct event-driven features from streams of perception-level data with powerful 

symbolic learning and reasoning tools, which utilize such features to synthesize high-level, 

interpretable patterns for forecasting critical events. 

To deal with the brittleness of neural predictors and the high volume/velocity of temporal 

data flows, the EVENFLOW techniques rely on novel, formal verification techniques for 

machine learning, in addition to a suite of scalability algorithms for training based on data 

synopsis, federated training and incremental model construction. The learnt forecasters will 

be interpretable and scalable, allowing for explainable and robust insights, delivered in a 

timely fashion and enabling proactive decision making. 

EVENFLOW is evaluated on three use cases related to (1) oncological forecasting in 

healthcare, (2) safe and efficient behaviour of autonomous transportation robots in smart 

factories and (3) reliable life cycle assessment of critical infrastructure. 

Table 1: The EVENFLOW consortium. 

Number1 Name Country Short name 

1 (CO) NETCOMPANY-INTRASOFT Belgium INTRA 

1.1 (AE) NETCOMPANY-INTRASOFT SA Luxemburg INTRA-LU 

2 NATIONAL CENTER FOR SCIENTIFIC RESEARCH 
"DEMOKRITOS" 

Greece NCSR 

3 ATHINA-EREVNITIKO KENTRO KAINOTOMIAS 
STIS TECHNOLOGIES TIS PLIROFORIAS, TON 
EPIKOINONION KAI TIS GNOSIS 

Greece ARC 

4 BARCELONA SUPERCOMPUTING CENTER-
CENTRO NACIONAL DE SUPERCOMPUTACION 

Spain BSC 

5 DEUTSCHES FORSCHUNGSZENTRUM FUR 
KUNSTLICHE INTELLIGENZ GMBH 

Germany DFKI 

6 EKSO SRL Italy EKSO 

7 (AP) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY 
AND MEDICINE 

United 
Kingdom 

ICL 

 

 

1 CO: Coordinator. AE: Affiliated Entity. AP: Associated Partner. 
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1.2 Document Scope 

The scope of this document includes the requirements fulfilment matrix, presentation of the 

updated final EVENFLOW architecture, and a detailed description of the integration scenarios 

established in the project to demonstrate the project results.  

D6.4 is the public version of D6.2 and identical to it, as it was confirmed by the consortium 

that D6.2 contains no sensitive information. 

1.3 Document Structure 

This document is comprised of the following chapters: 

Chapter 1 presents an introduction to the project and the document. 

Chapter 2 presents the updated final EVENFLOW architecture. 

Chapter 3 presents the EVENFLOW integrated scenarios. 

Chapter 4 presents the conclusions. 
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 Final EVENFLOW Architecture 

2.1 Requirements for Integrated Systems 

The EVENFLOW requirements were collected in an Excel file, EVENFLOW integrated system 

requirements.xlsx. The final architecture detailed in the next section, and the sub-systems 

and architectural components implemented, together, fulfil all the 12 major high-level 

requirements (R001-R012) set forth in the above-mentioned Excel spreadsheet. 

2.2 Final EVENFLOW Architecture 

The final architecture, based on the original logical view of the EVENFLOW architecture 

proposed in D6.1 “Architecture Design and Integrated System Specification (SEN version),” is 

shown in Figure 1 below. 

 

Figure 1: Final EVENFLOW Architecture Logical View. 

In Figure 1 we show the extra components that have been developed in the context of 

EVENFLOW since the initial specification of the EVENFLOW architecture. These components 

are as follows: 

1. Robot Motion Simulator & Data Generator: tool that simulates the motion of robots 

in a controlled environment and generates image datasets of what the cameras 

attached to the robots see as they move in their environment. Also outputs deadlocks 

when recognized. 

2. SuBiTO: is an intelligent framework designed to optimize the trade-offs between 

training time and accuracy in real-time machine learning applications over Big 

Streaming Data. It tackles the challenges faced by Neural Networks (NNs) deployed in 

https://netcompany.sharepoint.com/:x:/r/sites/EVENFLOW/Delte%20dokumenter/WP6%20-%20Software%20Integration%20in%20the%20EVENFLOW%20Platfor/T6.1%20-%20Architecture%20Definition%20and%20Requirements%20Analysis/EVENFLOW%20integrated%20system%20requirements.xlsx?d=wc80f4277c6564ee4a062be864c844c81&csf=1&web=1&e=6XYye5
https://netcompany.sharepoint.com/:x:/r/sites/EVENFLOW/Delte%20dokumenter/WP6%20-%20Software%20Integration%20in%20the%20EVENFLOW%20Platfor/T6.1%20-%20Architecture%20Definition%20and%20Requirements%20Analysis/EVENFLOW%20integrated%20system%20requirements.xlsx?d=wc80f4277c6564ee4a062be864c844c81&csf=1&web=1&e=6XYye5
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high-speed, high-volume environments by continuously adjusting model parameters 

to ensure efficiency with minimal downtime. 

3. RATS+: a set of scripts for the optimal scheduling of tumor simulations under various 

treatment options, suitable for use with scalable frameworks for parallel/distributed 

clusters/HPC. 

4. SDEaaS: Synopses Data Engine as a Service combines the virtues of parallel processing 

and stream summarization towards delivering interactive analytics at extreme scale. 

It is built on top of Apache Flink/Dask and implements a novel synopsis-as-a-service 

(SDEaaS) paradigm. 

5. NeuroFlinkCEP: a framework that integrates neural and symbolic Complex Event 

Recognition (CER) over a state-of-the-art Big Data platform, also optimizing 

neurosymbolic CER upon operating over IoT settings. NeuroFlinkCEP receives 

expressed patterns as extended regular expressions and automatically transforms 

them to FlinkCEP jobs per device. 

6. NesyA: Neuro-symbolic Automata. Symbolic automata that combine the power of 

automata for temporal reasoning with that of propositional logic for static reasoning 

are a suitable formalism for expressing knowledge in temporal domains. Symbolic 

automata can be integrated with neural-based perception, under probabilistic 

semantics towards an end-to-end differentiable model. NeSyA (Neuro Symbolic 

Automata) is shown to either scale or perform more accurately than previous NeSy 

systems in a real-world event recognition task. 

7. VAE: a tool for creating pseudo-temporal trajectories of the progression of tumor in a 

patient. 

8. Nesy-veri: Neuro-symbolic Verification. We compile the symbolic part into a 

computational graph, stack it on top of the neural network, port the combined thing 

into ONNX, and use of-the-shelf verifiers to propagate bounds through the neural and 

symbolic parts in one go. 

9. SCANNV: Scalable Neural Network Verification (SCANNV) approach, a set of 

techniques that can reduce the execution time of parallel neural network (NN) 

verification by optimising (i) how an input property is split into subproblems that can 

be verified in parallel and (ii) how these subproblems are scheduled for execution. 

2.3 Final EVENFLOW Architecture Implementation and Deployment 

View 

The implementation of the EVENFLOW architecture is based on the following Deployment 

View, showing how a number of data management services, based on the Kafka messaging 

architecture, has been installed at NCSR premises: 
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Figure 2: EVENFLOW Data Management components Final Deployment View. 

The installation of the components shown in Figure 2 was done with the help of the Strimzi 

operator: Strimzi provides a way to run an Apache Kafka cluster on Kubernetes in various 

deployment configurations, making it particularly easy to handle KeyCloak authentication & 

authorization services, as it includes the tool in its bundle. The following software is up and 

running at the NCSR servers: 

1. Kubernetes cluster 

2. Containerd 

3. Runc 

4. Helm 

5. Longhorn 

6. Nginx 

7. Zookeeper 

8. Kafka broker services 

The above components were deployed at INTRA and NCSR machines by M18 of the project, 

as part of the initial work reported in D6.1 “Architecture Design and Integrated System 

Specification (SEN version)”. 

The Strimzi operator was installed at NCSR machines after M18 in order to facilitate the 

deployment of both the Kubernetes modules as well as the KeyCloak 

authentication/authorization service, together with the appropriate user credentials 

configurations. 

9. KeyCloak 

The connectors are the set of command-line scripts developed by INTRA for use by any 

partner who wishes to use them (e.g. DFKI) in order to create/modify/delete topics in the 

Kafka cluster running on NSCR machines, and read/write into these topics. The set of such 

scripts along with the appropriate credentials were given to interested partners (as modified 

appropriately Strimzi operator scripts). The development process followed an incremental 
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approach whereby initial standard Kafka shell scripts were distributed for use with the Kafka 

cluster installed at INTRA-supplied servers (see D6.1 “Architecture Design and Integrated 

System Specification (SEN version)”), and later improved to work with KeyCloak 

authentication/authorization functions provided in the new Strimzi-based installation of the 

Kafka cluster installed at NCSR machines. Tests were made through the DFKI ROS simulation 

runs to ensure the read/write of messages to the EVENFLOW Kafka message bus. 
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 Final EVENFLOW Integrated Scenarios 
In this chapter, we present the final integrated scenarios that we use in EVENFLOW to 

demonstrate the usefulness and applicability of our developed tools, and their 

interoperability. For each scenario, we first present a schematic that corresponds to a DFD 

level 0 diagram, or equivalently a Use-Case Context Diagram) that shows the main tools 

involved in the scenario, and their data flows. We then proceed to present specific details 

about the scenario. 

The first integrated scenario involves the cooperation of the NeSy tools (developed by NSRC) 

with the scalability toolkits developed by ARC. The data used in this demonstration scenario 

are variants of the NIST/MNIST open-access dataset of digitized hand-written digits. For more 

information, see D5.1 “Interim Version of Verification and Scalability Techniques” and D4.2 

“Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques.” 

The second integrated scenario involves using the NeSy toolkit (NesyA, Wayeb -see D3.3 

“Final Use Case Evaluation”) to forecast robot path movement and robot “deadlock 

detection” using the DFKI image dataset (see D3.3 “Final Use Case Evaluation”).  

Data are stored in the Kafka installation deployed in the NCSR servers for the EVENFLOW data 

architecture needs. 

The third scenario revolves around water infrastructure Use-Case (again, see D3.3 “Final Use 

Case Evaluation”) A number of tools have been developed and tested against the datasets 

provided by EKSO. Specifically, INTRA has developed several predictive ML tools based on 

Neural Networks (combination of RNN and CNN) as well as based on rule-learning algorithms 

that have produced a number of important results for both the 2nd and 3rd datasets provided 

by EKSO. NCSR has also worked with CNN-based forecasting tools to develop NN-based tools 

for detecting leakages in the 2nd dataset provided by EKSO. The relevant datasets are available 

on the Kafka message bus deployed at the NCSR servers. 

The fourth scenario is about the bio-informatics Use-Case (BSC) and is concerned with the 

creation of synthetic trajectories that “simulate” the transition of early-stage cancer patients 

to late-stages (see D3.3 “Final Use Case Evaluation”) Besides the synthetic generation of path 

trajectories, a number of tools were developed to identify transcriptomic biomarkers 

indicative of the progress of a tumor. 

The fifth scenario showcases the verification capabilities of the EVENFLOW tools, with the 

help of the image dataset developed in the Industry 4.0 Use Case. See D5.2 “Final Version of 

Verification and Scalability Techniques.” 

Other minor scenarios are described in Section 3.6. 

The particular ways in which data flows between various tools in each scenario is detailed in 

Table 2 below. 
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Table 2: Data Flows Between Tools. 

Scenario Name / # Tool Name Tool Input Tool Output 

EKSO / 3.3 QARMA Time-series data 
stored in RDBMS 

Rules stored in 
RDBMS  

EKSO / 3.3 QARMA-classifier 1. Time-series 
data stored 
in CSV file 

2. Rules stored 
in RDBMS 

Leakage Detection 
Decision (Yes/No) 

EKSO / 3.3 LSTM 1. Time-series 
data stored 
in CSV file 

Leakage Detection 
Decision (Tap#) 

BSC/KIRC and MB Synthetic Data 
Generation Pipeline 

Gene expression 
data of real patients 
affected by renal 
carcinoma (KIRC) or 
medulloblastoma 
(MB) 

Synthetic gene 
expression data. 
Either trajectories 
(KIRC) or static 
augmentation (MB) 

BSC/KIRC Static and dynamic 
classifier 

1. Gene 
expression 
data of real 
patients and 
synthetic 
patients. 

2. Metadata on 
the cancer 
stage of real 
patients. 

 

Classification of 
synthetic timepoints 
in cancer trajectories. 

BSC/KIRC Dynamic Gene Set 
Enrichment Analysis 

1. Synthetic 
gene 
expression 
trajectories. 

2. Reactome 
pathways 

Enrichment score of 
each interpolated 
time point and 
pathway. 

ARC SDEaaS Training Data 
Streams 

Summaries (mainly 
stratified samples) of 
training data streams 

ARC SuBiTO Summaries of 
Training Data 
Streams, Unlabelled 
Data Streams 

Up-to-date trained 
neural/neurosymbolic 
Model, Prediction 
Streams 

ARC NeuroFlinkCEP Neural Model, 
Logical Workflow, 
Device Registry, 

Recognized Complex 
Event Streams 

https://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP:REACTOME
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Scenario Name / # Tool Name Tool Input Tool Output 

Statistics, Perceptual 
Streams  

ICL Nesy-veri Trained Neural 
Network, 
Dataloader, Epsilon 
noise perturbations,  
verification method 
(IBP / CROWN+IBP) 

Robust accuracy of 
the verified models, 
lower and upper 
bounds of the neural 
network outputs 
under adversarial 
noise perturbations 

 

3.1 Scalable NeSy 

3.1.1 General Description 

This particular scenario works only with the MNIST dataset (http://yann.lecun.com/) and 

involves using both the scalability tools from ARC (in particular, the SuBiTO toolkit) as well as 

the Neuro-symbolic toolkits (NesyA) developed by NCSR. The general data flow is shown in 

the figure below. 

 

Figure 3: Data flow in integrated scenario #1. 

For more information, see D5.1 “Interim Version of Verification and Scalability Techniques” 

and D4.2 “Final Version of Online Neuro-Symbolic Learning & Reasoning Techniques.” 

The partners involved include ARC, NCSR and INTRA. The scenario will demonstrate the use 

of scalable synopses developed in the SuBiTO toolkit feeding the NeSy tools developed by 

NCSR (NesyA – neurosymbolic automata) to recognize specific digit sequences as specified by 

the rules of the automata at the end of the NesyA tool. INTRA coordinates the development 

of this scenario. 

There are no related Use-Cases with this scenario, but it is important for demonstrating the 

collaboration of two of the major tools developed in EVENFLOW. 

http://yann.lecun.com/
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3.1.2 Scenario Details 

 

Figure 4: Overview of the NeSy-SuBiTO Scenario. 

An overview of the NeSy-SuBiTO scenario is presented in Figure 4. In this scenario, an 

automaton is used as a “teacher" for a Convolutional Neural Net (CNN), which learns to 

predict MNIST digits from MNIST image sequences that satisfy or not the pattern specified by 

the automaton. Therefore, training is performed in an indirect fashion, without explicit labels 

at the image level, but with “downstream" labels, at the sequence level only. SuBiTO's 

optimizer is used to optimally adjust, at training time, the amount of additional training 

required, given the hybrid neuro-symbolic (CNN+automaton) model’s current predictive 

performance and the characteristics of the training data. Further details are provided in 

Section 3.2 of D5.2 “Final Version of Verification and Scalability Techniques.” 

3.2 DFKI Scenario 

3.2.1 General Description 

This scenario demonstrates how neuro-symbolic tools (NesyA) can forecast and predict 

specific conditions in robot motion planning and execution, most importantly deadlock (which 

is the condition that occurs when a robot detects an obstacle -most likely another robot- in 

its immediate trajectory of motion.) For more information see D3.3 “Final Use Case 

Evaluation”. This workflow is aligned with the Industry 4.0 Use Case. 

The data flow of this integrated scenario #2 is shown in the figure below: 
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Figure 5: Data flow in integrated scenario #2. 

The partners involved are DFKI (data providers), INTRA (message bus integrator), and of 

course NCSR (neuro-symbolic-based forecaster development). 

Data reside in the Kafka message bus deployed for this purpose at NCSR servers, and are 

image data generated by the DFKI robotic environment simulator (Robot Motion Simulator 

and Data Generator in Section 2.2). 

These data feed the NesyA toolset which outputs (after training) an appropriate forecaster 

that learns to forecast the imminent creation of a deadlock involving moving robots. 

3.2.2 Scenario Details 

 

Figure 6: Overview of the DFKI deadlock forecasting scenario. 

The DFKI forecasting scenario combines image and time series robot data, perception neural 

networks with symbolic deadlock patterns, as well as event forecasting tools, to deliver timely 

deadlock forecasts that can be used for re-planning and intimately reducing operational 

downtimes. An architectural overview of the approach and the involved components is 
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presented in Figure 6, while further details and evaluation results are provided in Deliverable 

D3.3.  

3.3 EKSO Scenario 

3.3.1 General Description 

This scenario shows how rule-learning systems as well as specialized neural architectures can 

learn to detect leakages in water pipes infrastructures, and even optimize the placement of 

(cheap) sensors in such pipes. For more information see D3.3 “Final Use Case Evaluation”. 

The data flow in this scenario is as shown in the figure below. The time-series data reside in 

the Kafka message bus deployed at NCSR servers. 

 

Figure 7: Dataflow in integrated scenario #3. 

Also, use LSTM-approach and automata-based to detect patterns and leakages on 1st EKSO 

dataset (NCSR). 

The partners involved are: EKSO (data provider, 3 distinct real-world datasets, not 

simulations), INTRA (data analyses and rule-learning system provider), and NCSR (neural-

based approaches) 

The scenario implements the Infrastructure Maintenance Use Case of the EVENFLOW project. 

3.3.2 Scenario Details 

The rule-based approach detects correlations between sensors via the QARMA rule-

extraction algorithm family (INTRA) on the 3rd EKSO dataset. It also learns rules that apply 

when using only the most distant (from the leakage source) sensor, showcasing that even 
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with a single sensor placed approximately 100m from the leakage source, we can detect 

leakage with accuracy above 95%! This result indicates that instead of placing sensors every 

10m as done in the scenario developed by EKSO in Burgas municipality, it is sufficient to place 

sensors 100m apart (a 10x improvement in sensor placement requirements) and still be able 

to achieve a 95% accuracy with data corresponding to 10sec. By applying further aggregation 

heuristics over a 10 min. period, the detection accuracy can be shown to rise to 100%. 

For the 3rd and final EKSO dataset, a total of approximately 20.000 rules were derived, all of 

them showing how every sensor value correlates with the reading value of every other sensor 

in the dataset, justifying to a high degree the fact that even the most distant sensor is 

sufficient to detect leakages (see figure below). 

 

Figure 8: Results of using QARMA for analysing the 3rd and final EKSO dataset. Every sensor 
can appear as a pre-condition for the value reading of every other sensor in this dataset. The 

screenshot shows a GUI developed for the QARMA family of algorithms, visualizing the derives 
rules in the bottom part of the screen. 

3.4 BSC Scenario 

3.4.1 General Description 

The scenario intends to demonstrate the purpose of the Personalized Medicine use case 

which is to utilize EVENFLOW technology to forecast events related to critical stages in tumor 

evolution in oncological, virtual patient applications. A first major outcome of this use case 

has been the development of a Variational Auto-Encoder (VAE) that allowed the development 

of “virtual”, synthetic trajectories that follow the evolution of breast cancer, based on a 

number of real patients’ data. Following the “pairing” or “matching” of endpoints (patient 

data points that indicate early or late stages in the evolution of the disease from a molecular 

biology point of view using gene expression data) a neuro-temporal approach using LSTM 
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technology allowed for the identification of certain genes that appear to be highly correlated 

with disease progression. 

Disentangled latent spaces were extracted from the learnt VAE models. Such spaces map 

covarying, unobserved (latent) factors in the data generation process (e.g. the gene 

expression profiles of a cohort of patients) to specific observed parameters (generative 

factors) of the model that generates the data, (e.g. dysregulation of a set of genes). 

The major partners in this scenario are BSC (data point provider, VAE developer) and NCSR 

(path generation, detection of biomarkers for disease progression). For more information, see 

D3.3 “Final Use Case Evaluation.” 

3.4.2 Scenario Details 

Building on the synthetic trajectory generation pipeline described above, BSC explored data-

driven strategies for pairing patient representations across disease stages in high-dimensional 

molecular feature spaces. By operating in latent representations learned from gene 

expression profiles, the approach enables the construction of smooth disease progression 

trajectories that interpolate between early and late cancer stages while preserving 

biologically meaningful structure. These trajectories allow downstream temporal analysis 

techniques to be applied in settings where longitudinal patient data are scarce or incomplete. 

The generated synthetic paths were subsequently used to study the temporal activation of 

molecular signatures and pathway-level dynamics, supporting the identification of candidate 

biomarkers associated with disease progression. Although primarily evaluated in an offline, 

exploratory setting, this approach illustrates how synthetic trajectory generation can 

complement neuro-symbolic forecasting and reasoning pipelines by enriching training and 

analysis data in personalized medicine scenarios. 

3.5 Verification Scenario 

3.5.1 General Description 

The Verification scenario revolves around the verification of particular neural networks 

accepting raw data (in this case, image data). We used data from the DFKI synthetic image 

data produced by the DFKI Robot Simulation and Data Generator toolkit.  

NeSy tools were used to assist verification methods to produce better bounds and 

subsequently NN verification results. 

The data flow for this scenario is shown in the figure shown below. 
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Figure 9: Data flow in integrated scenario #5. 

The relevant partners are DFKI (data provider), NCSR (neuro-symbolic toolkit provider), and 

ICL (verification toolkit provider). For more information, See D5.2 “Final Version of 

Verification and Scalability Techniques.” 

3.5.2 Scenario Details 

The verification scenario is applied to the industry 4.0 neuro-symbolic collision-avoidance 

model developed for the DFKI robotic perception use case. The neural component of the 

system was trained using a 5-fold cross-validation protocol, ensuring that each fold produced 

an independently optimized model. This approach enables a robust evaluation of safety 

guarantees by examining verification performance across diverse training distributions. 

Verifying all five splits provides insights into the stability, generalization, and reliability of the 

model’s safety-critical behaviour. 

 

 

Figure 10: Verification pipeline for Neuro-symbolic system using CNN architecture. 
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Robustness evaluation was conducted by computing certified guarantees under multiple ϵ-

bounded perturbation magnitudes applied to input camera images. These perturbations 

emulate realistic noise patterns and environmental variations observed during robot 

navigation, such as lighting changes or minor sensor distortions. Verification was performed 

using a framework that we devised extending auto_LiRPA and interval bound propagation 

(IBP) to generate sound lower and upper bounds on model outputs. These certified bounds 

allow us to determine whether the model’s collision-prediction decisions remain unchanged 

within specified perturbation regions, thereby evaluating its formal robustness. 

The resulting certified robustness values were aggregated across all five cross-validation folds, 

enabling a systematic comparison of verification performance and highlighting the degree to 

which the neuro-symbolic system maintains robustness under input perturbations. 

3.6 Other Scenarios 

Most partners have developed small independent scenarios to demonstrate (or simply 

showcase) the tools they have developed in the EVENFLOW project. These scenarios are 

explained in the deliverables of the respective Work Packages. 
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 Discussion & Conclusions 
The final architecture and integration work presented in this deliverable confirm the technical 

feasibility and practical relevance of the EVENFLOW approach to neuro-symbolic complex 

event forecasting. Through the systematic integration of neural learning, symbolic reasoning, 

scalable data processing, and formal verification, EVENFLOW demonstrates that hybrid AI 

systems can move beyond conceptual prototypes toward deployable, end-to-end solutions. 

One of the main conclusions of the project is that neuro-symbolic models can be trained and 

executed effectively in streaming and evolving environments, provided that appropriate 

architectural abstractions and integration mechanisms are in place. The modular design of 

the EVENFLOW architecture proved essential in accommodating heterogeneous tools 

developed by different partners, allowing them to interoperate through well-defined data 

flows and deployment patterns. The use of a shared messaging backbone and containerized 

deployment facilitated experimentation, scalability, and reuse across scenarios. 

From a methodological perspective, EVENFLOW shows that symbolic structures—such as 

automata, logical rules, and event patterns—can be tightly coupled with neural components 

without sacrificing learnability or scalability. The successful application of gradient-based 

optimization to hybrid neural-symbolic models, including the learning of symbolic guard 

conditions, represents a significant step toward unifying data-driven and knowledge-driven 

approaches. At the same time, the project highlights the importance of complementary 

techniques, such as synopsis-based training optimization and distributed learning, to manage 

the computational demands of such models. 

Another important outcome concerns robustness and trustworthiness. The integration of 

formal verification techniques into the learning and evaluation pipeline enables the 

assessment of certified guarantees for safety-critical predictions. This is particularly relevant 

for applications such as autonomous systems and infrastructure monitoring, where predictive 

accuracy alone is insufficient. The verification scenarios illustrate how neuro-symbolic 

representations can support tighter bounds and more informative robustness analyses 

compared to purely neural models. 

Despite these achievements, the project also identified several limitations and open 

challenges. Integration complexity remains non-trivial, especially when combining tools with 

different assumptions about data formats, execution models, and learning workflows. While 

the architecture supports interoperability at the system level, deeper semantic integration 

between components often requires additional engineering effort. Moreover, although 

several tools have demonstrated scalability in controlled settings, further work is needed to 

evaluate their performance and stability under sustained real-world operational loads. 

Looking forward, several future research and development directions emerge from 

EVENFLOW. From a scientific perspective, there is clear potential to extend neuro-symbolic 

learning to richer forms of temporal and probabilistic reasoning, as well as to explore tighter 

integration between learning and verification during training rather than post-hoc analysis. 

Advancing methods for continual and lifelong learning in neuro-symbolic systems remains 

another important avenue, particularly for long-running deployments with evolving data 



  D6.4 – Final Version of the Integrated EVENFLOW Prototype 

(PU version) 
Horizon Europe Agreement No 101070430   

 
Dissemination level: PU - Public, fully open Page  25 

 

 

distributions. From an engineering standpoint, future work could focus on further 

standardization of interfaces and workflows, enabling easier composition and reuse of neuro-

symbolic components across projects and domains. Strengthening support for automated 

deployment, monitoring, and lifecycle management would facilitate the transition from 

research prototypes to production-ready systems. In addition, closer alignment with 

emerging regulatory frameworks for trustworthy AI could help position neuro-symbolic 

architectures as a practical response to forthcoming compliance requirements. In particular, 

the alignment with the EU AI Act (Regulation (EU) 2024/1689) and the Ethics Guidelines for 

Trustworthy AI (High-Level Expert Group on AI, European Commission, 2019) could 

strengthen the case for neuro-symbolic architectures as a compliance-oriented design choice 

rather than a purely academic alternative. In this sense, EVENFLOW demonstrates that by 

embedding explicit reasoning, traceability, and human-interpretable decision paths into 

learning systems, neuro-symbolic approaches directly support regulatory expectations 

around explainability, accountability, and oversight, particularly for high-risk applications. As 

regulatory pressure increases, these architectures may offer a pragmatic way to 

operationalize legal and ethical requirements without sacrificing adaptive performance. 

In conclusion, EVENFLOW provides strong evidence that neuro-symbolic AI is not only a 

promising research paradigm but also a viable architectural choice for complex event 

forecasting in real-world settings. The project has laid a solid foundation for future work that 

builds on its architectural principles, tools, and lessons learned, paving the way toward more 

robust, interpretable, and trustworthy AI systems. 
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