# Generative Al for Childhood and Adult Cancer Research

Barcelona **Supercomputing** Center Centro Nacional de Supercomputación

Cancer is one of the most

causes

worldwide, and its complexity

makes it especially challenging

progress in cancer research, a

scarcity of detailed data on

disease subgroups and stages.

To overcome this problem,

Generative AI techniques and,

been widely used to handle

high-dimensional data. We

propose a robust **Synthetic** 

Data Generation (SDG) pipeline

based on the VAE using cancer

transcriptomics data. Here, two

main scenarios are presented,

where we use our SDG pipeline

to study different cancer types,

Medulloblastoma is

Group 3 and 4 (Fig. 2).

limited.

a)

childhood tumor of the cere-

bellum, with 4 recognized sub-

groups [2]. Research suggests

the existence of a 5th group

[3,4] (G3-G4) with characteris-

tics overlapping those of

However, the number of avail-

able samples of G3-G4 is

addressing data

limitations effectively.

significant **challenge** is

study. Despite ongoing

common

specifically,

Autoencoder

of

the Variational

(VAE),

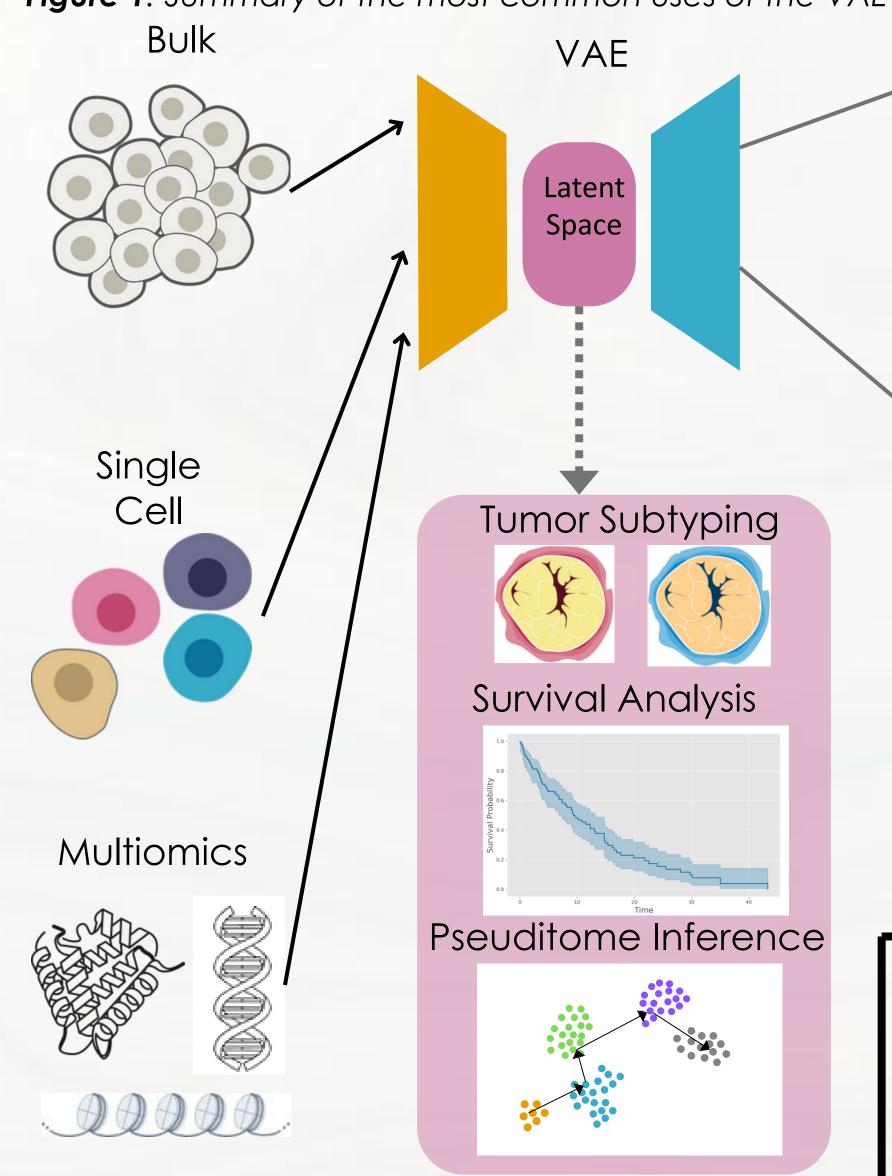
death

have

scarcity

a

Guillermo Prol-Castelo<sup>1,2</sup>, Davide Cirillo<sup>1</sup>, Alfonso Valencia<sup>1,3</sup>




<sup>1</sup>Barcelona Supercomputing Center (BSC), Barcelona, Spain,

<sup>2</sup>Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain

<sup>3</sup>Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Figure 1. Summary of the most common uses of the VAE with omics data.



Static Use Case

(microarray from [1])

SHH

WNT

Medulloblastoma

A Systematic Literature Review (SLR) we performed on the use the VAE in biomedicine revealed the most common uses make use of the latent space (pink box on the left), while its generative abilities (blue box on the right) remain underexplored.

0.2

Reconstruction

Data Alignment

and

Out-of-Sample

Inference

Figure 5. Classification of early and late stages in Kidney Cancer.

Dynamic Use Case -Kidney Cancer (bulk RNA-Seq from TCGA)

Cancer is a dynamic disease, going through several stages. We classified real patients into early and late stages, with performances nearing

We generated synthetic data to create trajectories of intermediate points between the early and late stages. Fig. 6 shows an example of 5 genes following these trajectories.

80% (Fig. 5).

The real-data classifier applied to the synthetic trajectories reflects the trend of transitioning from an early to a late stage (Fig. 7).

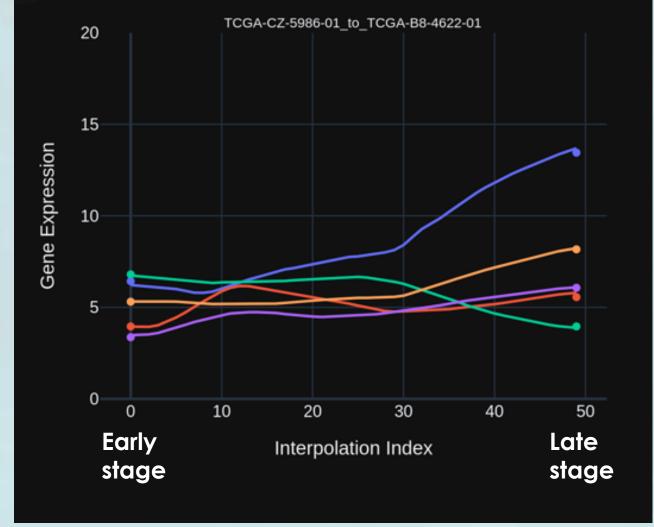



Figure 6. Synthetic trajectory between early- and late- stages patients.

# **b**)

Figure 3. VAE latent space of Medulloblastoma subgroups, with the identified G3-G4 showing a) real data and b) synthetic data

We identified the G3-G4 subgroup with a knn-graph with bootstrapping (Fig. 3a) and balanced the number of patients with the VAE (Fig. 3b).

Group

G3-G4

Group

Figure 2. Subgroups of

Medulloblastoma.

To assess fair outcomes across the targeted groups (3,4 and G3-G4) we evaluated four different classifiers: 2RD, 3RD, 2SD, 3SD. These consider either the two original groups (2) or also G3-G4 (3), both on real (R) and synthetic (S) data. A fair classifier should achieve comparable detection and error rates across the groups. 3SD is the only model with equal performance across all groups (Fig. 4).

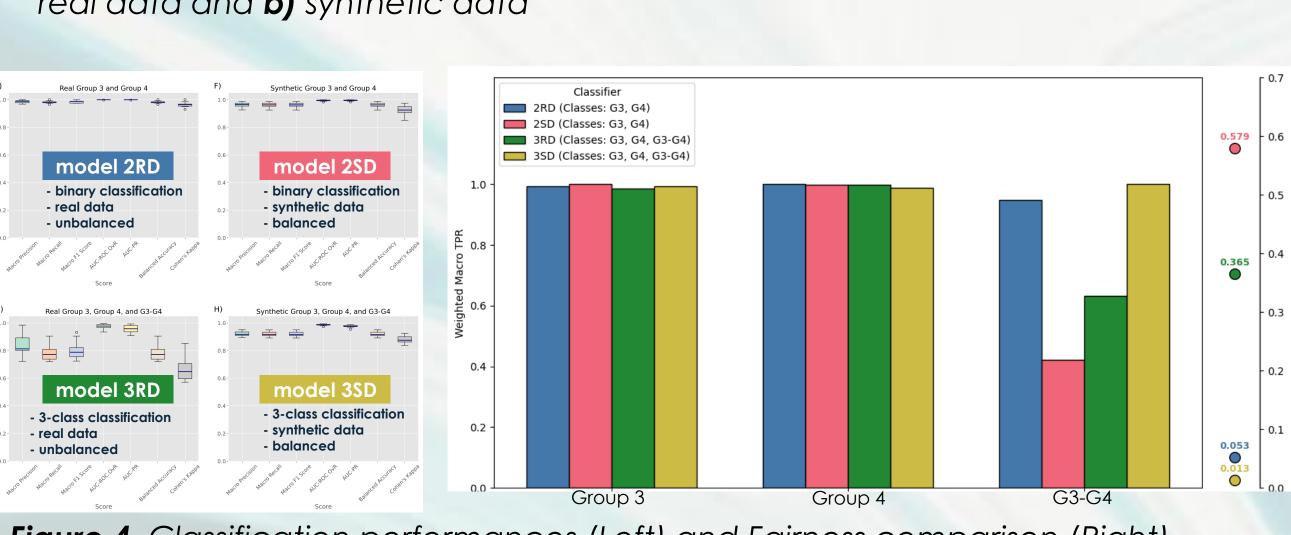



Figure 4. Classification performances (Left) and Fairness comparison (Right).

## Interpolation Index Figure 7. Probability of classification as early/late of the synthetic trajectory points.

Conclusions

### 1. The VAE's generative abilities have remained underexplored in biomedicine.

- 2. The VAE can generate relevant synthetic data in the highly specific scenarios of Medulloblastoma and Kidney Cancer.
- 3. Medulloblastoma's subgroup division is fairest when considering an augmented intermediate subgroup, G3-G4.
- 4. Intermediate cancer stage timepoints show mixed properties between early and late stages

Read The Research!





References

[1] Cavalli et al. 2017. doi:10.1016/j.ccell.2017.05.005 [2] Taylor et al. 2012. doi:10.1007/s00401-011-0922-z [3] Menyhárt et al. 2019. doi:10.1186/s13045-019-0712-y [4] Núñez-Carpintero et al. 2021. doi:10.1016/j.isci.2021.102365

### Acknowledgments





This project is funded by the European Union under Horizon Europe agreement No 101070430.