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Executive Summary

The Horizon Europe project EVENFLOW develops hybrid learning and reasoning techniques for
complex event forecasting, which combine deep learning with logic-based learning and reasoning
into neuro-symbolic forecasting models. These methods combine neural representation learning
techniques, capable of constructing event-based features from streams of perception-level data with
symbolic learning and reasoning tools, that utilize such features to synthesize high-level, interpretable
patterns of critical situations to be forecast. To deal with the brittleness of neural predictors and
the high volume/velocity of temporal data flows, the EVENFLOW techniques rely on novel, formal
verification techniques for machine learning, in addition to a suite of scalability algorithms for
federated training and incremental model construction. The forecasters developed in EVENFLOW are
interpretable and scalable, allowing for explainable insights, delivered in a timely fashion, thus enabling
proactive decision making. The EVENFLOW techniques are evaluated on three use cases related
to (i) oncological forecasting in precision medicine, (ii) safe and efficient behaviour of autonomous
transportation robots in smart factories and (iii) reliable life cycle assessment of critical infrastructure.

In this white paper we summarize the work that has been done in the project regarding neuro-
symbolic temporal learning, reasoning, forecasting and neuro-symbolic verification. In particular, we
present a brief overview of EVENFLOW techniques for:

* Jointly training neural networks alongside temporal knowledge, in order to align neural perceptive
modules with temporal reasoning tasks and explaining the predictions of the hybrid, neuro-
symbolic models.

* Forecasting the occurrence of imminent critical events from perceptual data streams, in order to
allow for proactive decision-making, in a robust and transparent fashion.

* Learning interpretable temporal complex event models from sub-symbolic input and utilizing
such models for detecting and forecasting such events.

* Obtaining formal guarantees on the robustness of hybrid, neuro-symbolic systems, i.e. formally
verifying the property that small perturbations on the subs-symbolic input do not affect the
high-level reasoning output.
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1 From Perceptual Streams to Actionable Insights

The data driving decision-making in many critical sectors increasingly arrive as perceptual streams:
sequences of video frames from cameras, multi-variate trajectories of moving objects (e.g. robots,
vehicles), or high-dimensional time series from infrastructure monitoring in predictive maintenance,
patient monitoring in medical applications and so on. On their own, these streams are opaque to
human decision-makers. What operators, engineers, or clinicians actually care about are semantically
meaningful events, e.g. a dangerous driving pattern in a traffic camera video feed, a safety-threatening
near-collision collision incident between robots in a smart factory, indicators regarding how the
condition of a patient evolves over time and so on. Even more than that, stakeholders are primarily
interested in early warnings about how and when such events may unfold in the future, in order to
respond proactively.

Complex Event Recognition and Forecasting (CER/F) offers a principled way to move from raw
streams to such higher-level situational awareness. In CER/F, low-level observations are abstracted
into simple events, which are then combined into more complex event hierarchies. However, traditional
CERV/F solutions assume that simple events are already available as clean symbolic inputs and that
complex event patterns are hand-crafted by experts. More often than not, however, neither assumption
holds: symbols must be extracted from noisy perception signals using sophisticated machine learning
models, patterns evolve as processes and environments change, and labels for intermediate events
across several levels of an event hierarchy are scarce or entirely missing.

In the remainder of this section we review the foundations of CER/F and highlight how they
extend to settings characterized by sub-symbolic, perceptual input, setting the stage for the temporal
neuro-symbolic methods introduced in the rest of this white paper.

1.1 Complex Event Recognition & Forecasting

Complex Event Recognition [6] and Forecasting [1] (CER/F) systems seek to detect, or even forecast
ahead of time, occurrences of special events of interest, across a set of input data streams. The input
streams consist of simple events, i.e. time-stamped pieces of information, and the output are the
detected/forecast instances of the target situations, which are called complex events and are usually
defined as spatio-temporal combinations of the simple events.

CER/F systems typically rely on a set of complex event patterns, which are declarative specifications
of the interesting situations to be monitored across the input datastreams. Such situations usually
involve sets of correlated events that are expected to occur in a sequential fashion. Due to the sequential
nature of such complex event patterns, the computational objects that correspond to such patterns are
some type of automata (finite state machines), typically, symbolic automata, where the transitions
are guarded by predicates, rather than by mere symbols from a finite alphabet. The recognition
process then amounts to matching such automata-based patterns against the simple event input, i.e.
reaching an accepting state in the automaton during processing the input stream. The forecasting task
amounts to deriving probabilistic estimates of future full pattern matches from partial matches that
have been observed so far. Figure 1 presents an example of such a pattern for an overtake complex
event specification in autonomous driving/traffic monitoring applications.

The symbolic nature of traditional CER/F systems restricts their applicability to symbolic input.
However, numerous applications deal with sub-symbolic, perceptual level input, such as video, audio or
high-dimensional time series. A typical baseline approach in such cases is to train a neural predictor to
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Figure 1: A simple pattern specifying a situation where vehicle v, overtakes vehicle v; via a set of
sequential conditions. Initially the two vehicles are in the same lane with v; being behind v,. This
is followed by a condition where the two vehicles are not in the same lane, capturing the part of the
episode where v; changes lanes to overtake vo. The episode is completed once the two vehicles are
again in the same lane, this time with v; leading. A partial pattern match is a path in the automaton
that has not yet reached the accepting state (the double-circled one). Partial matches correspond to
early stages in evolving complex event episodes and can be used to estimate the likelihood of episode
completion (full pattern matches) from data, thus forecasting complex event occurrences. Matching
such patterns on sub-symbolic input, such as video feeds from traffic monitoring cameras, requires
Neuro-symbolic techniques where perception neural networks extract simple events from the video
frames - e.g. incoming_lane(v;), outgoing_lane(vs) etc - and symbolic modules that reason over
these predictions logically - e.g. for inferring spatial relations between the vehicles - and temporally, to
ensure that the logical conditions in the pattern are indeed observed in the required order.
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map the sub-symbolic input to a set of symbols, corresponding to the simple events in our case, which
are then passed to the symbolic model that handles the downstream CER/F task. Such approaches are
of neuro-symbolic (NeSy) nature, since they combine neural and symbolic components, albeit in a
loosely coupled fashion, and are thus often sub-optimal: the neural predictors are trained in isolation,
ignoring the downstream task and the symbolic components ignore the stochastic, error-prone nature
of the neural grounding process that produces its input symbols. They are also often infeasible, since
they require large amounts of simple event-labeled data, which are usually difficult to obtain.
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Figure 2: Neuro-symbolic Complex Event Recognition & Forecasting.

Gradients

In contrast, tightly integrated NeSy AI [10] approaches treat perception and symbolic reasoning as
a single, coupled learning problem, allowing the CER/F model to shape how symbols are grounded and,
conversely, allowing uncertainty in the grounding process to propagate through the temporal reasoning
layer. Neural components can be trained under losses derived from temporal logics and automata that
define complex events, so that they learn to align their predictions with the requirements of temporal
reasoning. At the same time, symbolic components can be extended with probabilistic semantics to
account for the graded, error-prone outputs of neural predictors, enabling robust probabilistic forecasts
over streams of noisy simple events. This tighter NeSy integration promises CER/F systems that
require far fewer simple-event labels, generalize better to out-of-distribution temporal patterns, and
provide explanations in terms of human-understandable patterns (rules, automata) that remain anchored
to the underlying perceptual data.
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2 Temporal Neurosymbolic Learning & Reasoning

A central challenge in temporal NeSy Al is to couple perception models with rich temporal knowledge
for reasoning over long, noisy data streams (video, multivariate time series) and answer queries that
are naturally probabilistic and counterfactual — e.g., “what is the probability that this pattern will occur
within the next ten steps?”.

To address this problem, in EVENFLOW we developed NeSyA (Neuro-Symbolic Automata)' [8],
a NeSy technique for seamlessly integrating perception neural networks with symbolic temporal
knowledge. NeSyA is a formal probabilistic framework for joint NeSy training of neural and symbolic
temporal models. In particular, NeSyA enables the following:

* Declaratively specify existing domain knowledge, either as a symbolic automaton, or as a
formula in Linear Temporal Logic, which is compiled into such an automaton at runtime. Such
knowledge may dictate patterns specifying events whose sequential occurrence across the input
streams needs to be monitored, or temporal constraints that need to be satisfied by neural
networks processing such streams.

* Train perception networks alongside that knowledge, so that perception is aligned with the
temporal reasoning tasks. This means that these networks are not trained in isolation on dense
latent concept (simple event) supervision, but instead, trained with an objective directly related
to the downstream task of complex event detection, and in an indirect fashion, from complex
event labels only. Of course, simple event ground truth can be utilized as well, if available.

* Explain the behavior of the hybrid (neural + symbolic) model, thanks to the formal probabilistic
semantics of the NeSyA framework. Probabilistic reasoning is at the core of NeSyA: Knowledge
Compilation techniques [4, 3] are used to compile the logical formulas that guard the transitions
in the event pattern automata into tractable probabilistic circuits. These circuits are used to
calculate the probabilities of logical expressions over sets of symbols from the probabilities
of the symbols, which are predicted by the neural component from the input streams. Using
the probabilities of the automaton’s transitions and Markov Chain techniques, NeSyA can then
compute the probability that the automaton is in each one of its states at each point in time, as
well as the most likely paths through the automaton’s transitions that are responsible for that.
Since some states are semantically linked to the target events, such inferences can be used to
explain how and why certain events of interest were detected.

Figure 3 presents an illustration of NeSyA on interpretable activity recognition from video. NeSyA
supports probabilistic queries that are directly related to explainability, such as marginals and most
likely explanations for observed events. Despite the fact that such queries are intractable, we get them
“for free” in NeSyA, thanks to its backbone of knowledge compilation and probabilistic circuits, which
allow for answering such queries in time linear in the circuit size.

Note that the neural network that is used in the scenario of Figure 3 is trained from a small number
of training sequences with scarce event-based supervision and significantly outperforms SoA
purely neural baselines, such CNN + LSTM/Transformer stacks, especially in out-of-Distribution
(OOD) settings [8]. Similar results have been obtained in additional real-world applications, such as
autonomous driving [2] — see Figure 4, as well as challenging synthetic benchmarks.

lh’ctps ://github.com/nmanginas/nesya
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(c¢) Graphical explanation of NeSyA’s predictions.

Figure 3: NeSyA on intrepretable human activity recognition from video. (a) Images from the
input video frames are first processed by a CNN. The bounding boxes corresponding to the two
tracked persons in this scenario (p;, p2) are mapped to simple events — e.g. walking(p;) at time t)
— corresponding to individual activities; (b) A deterministic symbolic automaton encoding complex
events as spatio-temporal combinations of simple events. The complex events are two people moving
together, or meeting and interacting. Only a subset of the transition logic is shown for brevity. In the
case that no outgoing transition from a state is satisfied the SFA loops in its current state.; (¢) Graphical
explanation of NeSyA’s predictions for a particular frame in the input video. The entire transition
logic is illustrated as a logic progrm. Simple event probabilities, predicted by the CNN are linked
to the logical rules, which in turn, cause the automaton to transition across states. For instance, the
disjunctive rules higlighted in red are responsible for a transition to state 3 in this frame (corresponding
to the interacting complex event), causing this event to be recognized.
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Figure 4: Illustration of the inference and training procedure in NeSyA in an autonomous driving
domain, where the goal is to recognize overtake incidents from camera footage, in an interpretable
fashion. A symbolic automaton, learned from fully labelled symbolic sequences, captures overtake
definitions and simulates symbolic background knowlegde that is combined with the perception neural
module. First, videos are processed through this module, which outputs simple event probability
distributions (Output Layer). These probabilities help answer the probabilistic query of whether the
sequence is in a certain state at a given frame (Guards’ Probabilities), utilizing a compiled Boolean
circuit (Logic compiled into an Arithmetic Circuit). Over time, each state accumulates probabilities, by
multiplying the probability distribution with the Transition Matrix, resulting in a final state probability
distribution at the end of the sequence. We use this distribution to compute the loss for the ‘overtake’
incident prediction and backpropagate the loss to train the network, repeating the process until we
achieve the minimum loss value.

3 Neurosymbolic Forecasting

Central to EVENFLOW is taking the event detection task a step forward, towards forecasting critical
events before they actually occur, in order to facilitate proactive measures in decision making, instead
of merely detecting them in a post-hoc fashion. The backbone for event forecasting in EVENFLOW is
the Wayeb? system [1].

Wayeb is an online, probabilistic system designed for Complex Event Forecasting, addressing the
challenge of predicting the potential occurrence of a declaratively defined Complex Event pattern
(often formulated as a Symbolic Regular Expression (SRE)) within an event stream before it is
actively detected by a Complex Event Recognition (CER) engine. Wayeb converts an SRE into
a Deterministic Symbolic Finite Automaton (DSFA), which, when consuming the input stream, is
functionally analogous (via isomorphism) to a classical deterministic automaton operating over the
minterms of the DSFA predicates. To model the statistical properties of the stream, Wayeb employs
Variable-order Markov Models (VMMs), specifically, Prediction Suffix Trees (PST), which capture
long-term dependencies, while avoiding the computational explosion associated with exhaustive
enumeration in fixed-order models. The probabilistic model is constructed by learning the PST from
the minterms derived from the DSFA, using an approach that either involves creating an embedding of
a probabilistic automaton within the DSFA by taking their Cartesian product, or, for superior memory

2https://github.com/ElAlev/Wayeb
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Figure 5: Illustration of the event forecasting process in EVENFLOW'’s Personilized Medicine use
case on cancer progression. The purpose in this case is to make timely forecasts for synthetic patients
transitioning from early cancer to late cancer states from high-dimentional gene expression time series.
To that end, the time series are first preprocessed to reduce their dimentionality, thus focusing only
on the most relevant genes based on gene panels from the literature, and are discretized into a set of
symbols. Next, a symbolic automaton that captures cancer stage transition patterns is learned from
these sequences (see also Section 4), and finally the induced automaton is used alongside Wayeb, in
order to forecast transition incidents from early signs.

efficiency, by directly estimating waiting-time distributions through recursive traversal of the PST,
thereby bypassing the construction of the probabilistic automaton. These calculated waiting-time
distributions, based on the theory of absorbing Markov chains, allow Wayeb to output forecasts,
typically in the form of intervals [start, end], representing the predicted number of future events
until pattern completion with a user-defined confidence threshold . Wayeb has been demonstrated
to achieve high throughput and competitive accuracy compared to state-of-the-art solutions, often
leveraging its ability to accommodate higher-order models for enhanced performance.

Figure 5 presents an overview of how Wayeb was used in the project, using here one of EVEN-
FLOW s use cases on Personalized Medicine as an example. Along with the Barcelona Supercomputing
Center (BSC) that lead this use case, we were able to show with this approach that we can achieve
timely forecasts on cancer progression on synthetic patient data. These forecasts were comparable in
predictive quality and earliness to those of purely neural baselines, with the additional advantage of
being transparent and interpretable. The latter is thanks to the symbolic nature of the event patterns that
specify the conditions that we wish to monitor and the transparent fashion in which Wayeb operates.

We attained similar results in EVENFLOW'’s Industry 4.0 use case — see Figure 6, where the goal
was to forecast deadlock incidents between Automated Guided Vehicle (AGV) robots in a smart factory,
in order for the robots to timely re-plan their trajectories. Along with our partners from DFKI who
lead this use case, we were able to show that forecasting deadlock incidents and using the forecasts for
path re-planning in real-time can significantly reduce deadlock-induced down-times.

In addition to the aforementioned loosely coupled NeSy forecasting pipelines, we have also
developed more tightly integrated NeSy forecasting techniques. The most recent advancement, which
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Figure 6: An overview of deadlock forecasting in EVENFLOW’s Industry 4.0 use case.

we call Mutual Information Markov Models (MiMM), attempts to model temporal phenomena as
Markov processes over abstract states. Learning interpetable Markov abstractions directly from high-
dimensional streams is an important open problem with clear links to forecasting: good abstractions
should encapsulate the temporal information needed to accurately predict future events. Existing
techniques, such as Hidden Markov Models (HMMs), and their extensions (including neural extensions)
attempt to generatively model the data, which assume a process of reconstructing the observations
given the states. However, this reconstruction process is at odds with interpretability, since it requires
to encapsulate into the states a large amount of otherwise irrelevant data characteristics.

MiMM is a NeSy method for discovering discrete latent states and transition dynamics directly
from high-dimensional Markov data (e.g., image streams), without reconstructing the observations. A
neural network maps each observation to a probabilistic assignment over a finite set of latent states,
and its parameters are trained to maximize the mutual information between successive latent states,
yielding an abstract Markov chain that preserves the essential temporal structure of the original process,
while remaining low-dimensional and interpretable. Prior knowledge about the system’s dynamics
(e.g., a PRISM model) can be injected by regularizing the learned transition matrix towards a symbolic
prior, ensuring that the discovered states and transitions respect known behaviour. MiMM provides a
way to derive such latent Markov models from raw data and then use probabilistic model checking to
answer forecasting queries, such as the probability of reaching a critical or goal state within a given
time horizon, thereby directly supporting the EVENLOW?’s objectives on neuro-symbolic complex
event forecasting and robust, explainable decision support. Figure 7 illustrates some indicative results
on using this method on water pipe leakage forecasting in EVENFLOW.

4 Event Pattern Learning

In the previous sections we have mostly assumed that the symbolic knowledge that is input to a
NeSy system is given beforehand. Under this assumption we presented a technique, NeSyA, tailored
specifically for temporal event-based domains, for training the neural part of the NeSy system alongside
the knowledge, so that the two components (neural/symbolic) are aligned. However, the assumption
of existing knowledge does not always hold. In many event-based applications the patterns that
we are interested to monitor are not known beforehand, or they evolve over time as the underlying
processes or data characteristics change. This motivates the need for learning such patterns directly

9
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Figure 7: Indicative NeSy forecasting results with MiMM on EVENFLOW’s water pipe leakage use
case for various leakage types (classes) and a forecast horizon of 20 seconds. Black lines show the
actual signal and red lines correspond to the forecast signal.

from data, rather than relying on hand-crafted specifications, allowing us to automate part of the pattern
engineering process and to seamlessly adapt to new situations. However, although knowledge learning
in a purely symbolic setting (e.g., inductive logic programming, automata and grammar induction) is a
well-studied problem, it is much less explored in the case where the input data are of perceptual nature,
such as videos (image sequences) or high-dimensional time-series data.

A straightforward approach to symbolic knowledge acquisition in such cases is to train a neural
network to map percepts to symbols and then use an off-the-shelf symbolic learner to induce temporal
structure from the network’s symbolic inferences. This approach has several shortcomings, outlined
earlier in Section 1.1.

To address this knowledge acquisition problem, in EVENFLOW we developed event patter learning
techniques capable of learning symbolic temporal patterns of interesting situations, either from
symbolic sequences, multi-variate time series, or even more complex perceptual input, such as image
sequences. The backbone for event structure learning in EVENFLOW has been ASAL (Answer Set
Automata Learning)’ [7].

ASAL is a framework for learning and revising complex event patterns represented as symbolic
finite automata (SFA) from labeled streams of multivariate event-based data. In ASAL, a symbolic
temporal model that accepts or rejects the input event traces is encoded as an answer set automaton
(ASA), i.e., an answer set program that combines a generic automata interpreter, a specification of the
automaton’s structure (states and transitions), background predicates that operate over event tuples
(e.g., trends, thresholds, attribute comparisons etc), and transition guard rules, defined as boolean
combinations of the background predicates. This formulation allows ASAL to express the core
Complex Event Recognition (CER) operators of sequence, iteration, and filtering, while making both
the automaton’s structure and the guard conditions learnable, thanks to the strong connections of

3https://github.com/nkatzz/asal

10
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Figure 8: NeurASAL overview.

Answer Set Programming (ASP) to symbolic learning. In particular, ASAL casts SFA induction
as an abductive, constraint-driven learning process: temporal structure and guard definitions are
generated and tested against constraints related to predictive accuracy/minimality tradeoffs, in an
effort to approximate a global optimum in the training data. To alllow for scaling to larger domains
(long sequences of higher dimensionality), ASAL comes with an incremental variant, which trades
optimality for efficiency and is based on iterative SFA revision from data batches in a Monte Carlo
Tree Search framework.

ASAL was developed in EVENFLOW and was used extensively in the project for learning the
event patterns to use alongside the Wayeb system in the project’s use cases, in order to allow for
interpretable Nesy forecasting — see also Figures 5 and 6. Moreover, it has recently been extended
within the project in several ways, as follows:

Joint Neural-Symbolic Learning. ASAL has been combined with NeSyA (see Section 2), towards a
framework that can learn symbolic patterns, while training a perception neural network to map percepts
to the symbols that these patterns use. An overview of the approach is presented in Figure 8.

The input to this neural/symbolic learner consists of training image sequences with downstream
(complex event) labels only, together with a small subset of images from these sequences for which
simple event labels are also available. ASAL and NeSyA are combined in a co-training framework in
which a perceptual neural network is initially partially trained on the small pool of labeled images. The
partially trained network is then used to predict simple event labels for all images, thereby inducing
noisy symbolic sequences from the raw training sequences. ASAL is subsequently used to learn
an initial symbolic automaton (SFA) from these sequences. To account for the noise introduced by
the poorly trained neural network, each sequence is weighted by the average entropy of the neural
predictions across time, and ASAL incorporates these weights during induction, alongside a Minimum
Description Length (MDL) heuristic, to bias its search towards models that explain low-entropy
sequences while discounting high-entropy ones when they incur a large MDL penalty. NeSyA is
then used to further train the neural network for a few epochs, using the SFA induced by ASAL
as a “teacher”. In this step, two losses are combined: the standard NeSyA loss from sequence

11
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misclassification and the image-level misclassification loss for the labeled images. The system then
employs active learning principles to identify the most informative images to label and requests a
batch of new labels under a query budget. ASAL induces an improved SFA using the newly acquired
labels (rather than the network’s pseudo-labels), and the joint training loop continues until convergence.
This approach ensures that the neural and symbolic components are trained jointly and are mutually
informed. Experiments on synthetic NeSy benchmarks indicate that convergence is achieved with only
a fraction of the labeled images that would be required without NeSy training or without an active
learning heuristic.

Differentiable Learning of Symbolic Automata patterns. ASAL relies on combinatorial search
and, as a result, its running times and memory requirements scale exponentially with the dimensionality
and length of the training sequences and with the size of the symbolic vocabulary (number of symbols
or predicates) produced by the perceptual module. To alleviate this complexity we have extended
ASAL to a version that uses differentiable pattern induction techniques. Given a fixed automaton
topology (number of states and candidate transitions), we parameterize each transition guard as a neural
logical expression over learned base predicates/symbols, implemented as differentiable conjunction and
disjunction operators on top of a perceptual network. Given a sequence of inputs, the corresponding
guard truth values are converted into a probability distribution over the SFA states’ outgoing transition
and a classical forward algorithm is used to compute the sequences’ acceptance probabilities at the
end of each sequence. The fuzzy relaxation and the fully differentiable forward pass through the SFA
graph yield an objective that can be optimized end-to-end from sequence-level labels using standard
gradient-based methods, without performing explicit symbolic search during training. Post-training,
an extraction pipeline prunes small or redundant weights, sweeps thresholds to discretize the neural
DNFs into candidate Boolean guards, and uses a lightweight ASP-based meta-encoding to select which
guards and literals to retain, subject to structural constraints such as determinism and sparsity. In
this way, OSFA recovers a compact, human-readable SFA that closely matches the behavior of the
trained differentiable model, while training and extraction are significantly faster and more scalable
than running ASAL from scratch on the same data.

Experiments on synthetic bechmarks, real-world datasets and EVENFLOW use case data showed
that in this way we can learn high-quality, interpretable event patterns in a fraction of the time and
memory required by symbolic search over noisy, weighted sequences prediction from perceptual
sequences via perception networks.

5 Neurosymbolic Verification

In order to deploy NeSy systems in mission-critical applications, it is often necessary to have formal
guarantees of their reliable performance. In EVENFLOW, we addressed the challenge of verifying the
robustness of probabilistic NeSy systems [9], i.e., verifying the property that input perturbations do
not affect the reasoning output. Techniques for NN verification are valuable to that end, since they
can derive robustness guarantees for purely neural systems. In particular, relaxation-based techniques
[5, 11] can scalably compute bounds for the NN outputs, with respect to input perturbations, which
can then be used to assess robustness. Our work is focused on extending such techniques to the NeSy
case by propagating these bounds through the probabilistic reasoning layer of a NeSy architecture. As
such, we can then provide robustness guarantees for the entire system.
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Figure 9: A motivating example for probabilistic NeSy verification. In this autonomous driving
example we want to verify two logical constraints ¢ on top of two neural networks accepting the
same dashcam image as input. The symbolic constraints are compiled into a tractable representation
containing only addition, subtraction, and multiplication. During inference, this is used to reason over
the NN outputs and calculate the probability that the constraints are satisfied. For verification, we
exploit this structure to scalably compute how perturbations in the input affect the probabilistic output
of the whole (NNs + reasoning) NeSy system.

In [9] we studied the complexity of solving the probabilistic NeSy verification task exactly and
proposed an approximate solution, extending relaxation-based NN verification techniques to the
NeSy setting. We showed how to compile the entire NeSy system into a single computational graph,
which encapsulates both the neural and the symbolic components and is amenable to verification by
off-the-shelf, state-of-the-art formal NN verifiers. Figure 9 provides an overview of the approach.

Starting from the limitations of purely symbolic CER/F systems and purely neural sequence models,
EVENFLOW develops a coherent neuro-symbolic stack that spans perception, temporal abstraction,
learning of interpretable structure, and formal verification. In this white paper we presented a brief
overview of these techniques, focusing on neurosymbolic learning and reasoning, forecasting, event
pattern learning and verification. Together, these techniques and the corresponding tools that were
developed in the project allow for scalable training of robust and interpretable models in temporal
domains. A unifying theme across these methods is trustworthiness, and in particular two of its main
technical pillar, transparency and robustness. Transparency/interpretability is achieved thanks to the
symbolic temporal knowledge and the formal probabilistic semantics of the EVENFLOW tools, that
link low level neural predictions to higher-level reasoning inferences in a clear and transparent fashion.
Robustness is pursued both via the regularization of neural components by symbolic knowledge, and
more explicitly, via verification-based formal guarantees. In summary, EVENFLOW offers a suite of
state-of-the-art neuro-symbolic tools for making sense of perceptual datastreams.
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